#include "gm.h" #include "SkColorPriv.h" #include "SkData.h" #include "SkGraphics.h" #include "SkImageDecoder.h" #include "SkImageEncoder.h" #include "SkPicture.h" #include "SkStream.h" #include "SkRefCnt.h" #include "GrContext.h" #include "SkGpuCanvas.h" #include "SkGpuDevice.h" #include "SkEGLContext.h" #include "SkDevice.h" #ifdef SK_SUPPORT_PDF #include "SkPDFDevice.h" #include "SkPDFDocument.h" #endif #ifdef SK_BUILD_FOR_MAC #include "SkCGUtils.h" #define CAN_IMAGE_PDF 1 #else #define CAN_IMAGE_PDF 0 #endif using namespace skiagm; // need to explicitly declare this, or we get some weird infinite loop llist template GMRegistry* SkTRegistry::gHead; class Iter { public: Iter() { this->reset(); } void reset() { fReg = GMRegistry::Head(); } GM* next() { if (fReg) { GMRegistry::Factory fact = fReg->factory(); fReg = fReg->next(); return fact(0); } return NULL; } static int Count() { const GMRegistry* reg = GMRegistry::Head(); int count = 0; while (reg) { count += 1; reg = reg->next(); } return count; } private: const GMRegistry* fReg; }; static SkString make_name(const char shortName[], const char configName[]) { SkString name(shortName); name.appendf("_%s", configName); return name; } static SkString make_filename(const char path[], const char pathSuffix[], const SkString& name, const char suffix[]) { SkString filename(path); if (filename.endsWith("/")) { filename.remove(filename.size() - 1, 1); } filename.append(pathSuffix); filename.append("/"); filename.appendf("%s.%s", name.c_str(), suffix); return filename; } /* since PNG insists on unpremultiplying our alpha, we take no precision chances and force all pixels to be 100% opaque, otherwise on compare we may not get a perfect match. */ static void force_all_opaque(const SkBitmap& bitmap) { SkAutoLockPixels lock(bitmap); for (int y = 0; y < bitmap.height(); y++) { for (int x = 0; x < bitmap.width(); x++) { *bitmap.getAddr32(x, y) |= (SK_A32_MASK << SK_A32_SHIFT); } } } static bool write_bitmap(const SkString& path, const SkBitmap& bitmap) { SkBitmap copy; bitmap.copyTo(©, SkBitmap::kARGB_8888_Config); force_all_opaque(copy); return SkImageEncoder::EncodeFile(path.c_str(), copy, SkImageEncoder::kPNG_Type, 100); } static inline SkPMColor compute_diff_pmcolor(SkPMColor c0, SkPMColor c1) { int dr = SkGetPackedR32(c0) - SkGetPackedR32(c1); int dg = SkGetPackedG32(c0) - SkGetPackedG32(c1); int db = SkGetPackedB32(c0) - SkGetPackedB32(c1); return SkPackARGB32(0xFF, SkAbs32(dr), SkAbs32(dg), SkAbs32(db)); } static void compute_diff(const SkBitmap& target, const SkBitmap& base, SkBitmap* diff) { SkAutoLockPixels alp(*diff); const int w = target.width(); const int h = target.height(); for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { SkPMColor c0 = *base.getAddr32(x, y); SkPMColor c1 = *target.getAddr32(x, y); SkPMColor d = 0; if (c0 != c1) { d = compute_diff_pmcolor(c0, c1); } *diff->getAddr32(x, y) = d; } } } static bool compare(const SkBitmap& target, const SkBitmap& base, const SkString& name, const char* renderModeDescriptor, SkBitmap* diff) { SkBitmap copy; const SkBitmap* bm = ⌖ if (target.config() != SkBitmap::kARGB_8888_Config) { target.copyTo(©, SkBitmap::kARGB_8888_Config); bm = © } SkBitmap baseCopy; const SkBitmap* bp = &base; if (base.config() != SkBitmap::kARGB_8888_Config) { base.copyTo(&baseCopy, SkBitmap::kARGB_8888_Config); bp = &baseCopy; } force_all_opaque(*bm); force_all_opaque(*bp); const int w = bm->width(); const int h = bm->height(); if (w != bp->width() || h != bp->height()) { SkDebugf( "---- %s dimensions mismatch for %s base [%d %d] current [%d %d]\n", renderModeDescriptor, name.c_str(), bp->width(), bp->height(), w, h); return false; } SkAutoLockPixels bmLock(*bm); SkAutoLockPixels baseLock(*bp); for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { SkPMColor c0 = *bp->getAddr32(x, y); SkPMColor c1 = *bm->getAddr32(x, y); if (c0 != c1) { SkDebugf( "----- %s pixel mismatch for %s at [%d %d] base 0x%08X current 0x%08X\n", renderModeDescriptor, name.c_str(), x, y, c0, c1); if (diff) { diff->setConfig(SkBitmap::kARGB_8888_Config, w, h); diff->allocPixels(); compute_diff(*bm, *bp, diff); } return false; } } } // they're equal return true; } static bool write_pdf(const SkString& path, const SkDynamicMemoryWStream& pdf) { SkFILEWStream stream(path.c_str()); SkAutoDataUnref data(pdf.copyToData()); return stream.writeData(data.get()); } enum Backend { kRaster_Backend, kGPU_Backend, kPDF_Backend, }; struct ConfigData { SkBitmap::Config fConfig; Backend fBackend; const char* fName; }; /// Returns true if processing should continue, false to skip the /// remainder of this config for this GM. //@todo thudson 22 April 2011 - could refactor this to take in // a factory to generate the context, always call readPixels() // (logically a noop for rasters, if wasted time), and thus collapse the // GPU special case and also let this be used for SkPicture testing. static void setup_bitmap(const ConfigData& gRec, SkISize& size, SkBitmap* bitmap) { bitmap->setConfig(gRec.fConfig, size.width(), size.height()); bitmap->allocPixels(); bitmap->eraseColor(0); } // Returns true if the test should continue, false if the test should // halt. static bool generate_image(GM* gm, const ConfigData& gRec, GrContext* context, SkBitmap* bitmap) { SkISize size (gm->getISize()); setup_bitmap(gRec, size, bitmap); SkCanvas canvas(*bitmap); if (gRec.fBackend == kRaster_Backend) { gm->draw(&canvas); } else { // GPU if (NULL == context) { return false; } // not a real object, so don't unref it GrRenderTarget* rt = SkGpuDevice::Current3DApiRenderTarget(); SkGpuCanvas gc(context, rt); gc.setDevice(new SkGpuDevice(context, rt))->unref(); gm->draw(&gc); // the device is as large as the current rendertarget, so we explicitly // only readback the amount we expect (in size) // overwrite our previous allocation gc.readPixels(SkIRect::MakeSize(size), bitmap); } return true; } static void generate_image_from_picture(GM* gm, const ConfigData& gRec, SkPicture* pict, SkBitmap* bitmap) { SkISize size = gm->getISize(); setup_bitmap(gRec, size, bitmap); SkCanvas canvas(*bitmap); canvas.drawPicture(*pict); } static void generate_pdf(GM* gm, SkDynamicMemoryWStream& pdf) { #ifdef SK_SUPPORT_PDF SkISize size = gm->getISize(); SkMatrix identity; identity.reset(); SkPDFDevice* dev = new SkPDFDevice(size, size, identity); SkAutoUnref aur(dev); SkCanvas c(dev); gm->draw(&c); SkPDFDocument doc; doc.appendPage(dev); doc.emitPDF(&pdf); #endif } static bool write_reference_image(const ConfigData& gRec, const char writePath [], const char renderModeDescriptor [], const SkString& name, SkBitmap& bitmap, SkDynamicMemoryWStream* pdf) { SkString path; bool success = false; if (gRec.fBackend != kPDF_Backend || CAN_IMAGE_PDF) { path = make_filename(writePath, renderModeDescriptor, name, "png"); success = write_bitmap(path, bitmap); } if (kPDF_Backend == gRec.fBackend) { path = make_filename(writePath, renderModeDescriptor, name, "pdf"); success = write_pdf(path, *pdf); } if (!success) { fprintf(stderr, "FAILED to write %s\n", path.c_str()); } return success; } static bool compare_to_reference_image(const SkString& name, SkBitmap &bitmap, const SkBitmap& comparisonBitmap, const char diffPath [], const char renderModeDescriptor []) { bool success; SkBitmap diffBitmap; success = compare(bitmap, comparisonBitmap, name, renderModeDescriptor, diffPath ? &diffBitmap : NULL); if (!success && diffPath) { SkString diffName = make_filename(diffPath, "", name, ".diff.png"); write_bitmap(diffName, diffBitmap); } return success; } static bool compare_to_reference_image(const char readPath [], const SkString& name, SkBitmap &bitmap, const char diffPath [], const char renderModeDescriptor []) { SkString path = make_filename(readPath, "", name, "png"); SkBitmap orig; bool success = SkImageDecoder::DecodeFile(path.c_str(), &orig, SkBitmap::kARGB_8888_Config, SkImageDecoder::kDecodePixels_Mode, NULL); if (success) { success = compare_to_reference_image(name, bitmap, orig, diffPath, renderModeDescriptor); } else { fprintf(stderr, "FAILED to read %s\n", path.c_str()); // we lie here, and report succes, since we're just missing a master // image. This way we can check in new tests, and not report failure. // A real failure is to draw *differently* from the master image, but // that's not the case here. success = true; } return success; } static bool handle_test_results(GM* gm, const ConfigData& gRec, const char writePath [], const char readPath [], const char diffPath [], const char renderModeDescriptor [], SkBitmap& bitmap, SkDynamicMemoryWStream* pdf, const SkBitmap* comparisonBitmap) { SkString name = make_name(gm->shortName(), gRec.fName); if (writePath) { write_reference_image(gRec, writePath, renderModeDescriptor, name, bitmap, pdf); } else if (readPath && (gRec.fBackend != kPDF_Backend || CAN_IMAGE_PDF)) { return compare_to_reference_image(readPath, name, bitmap, diffPath, renderModeDescriptor); } else if (comparisonBitmap) { return compare_to_reference_image(name, bitmap, *comparisonBitmap, diffPath, renderModeDescriptor); } return true; } static SkPicture* generate_new_picture(GM* gm) { // Pictures are refcounted so must be on heap SkPicture* pict = new SkPicture; SkCanvas* cv = pict->beginRecording(1000, 1000); gm->draw(cv); pict->endRecording(); return pict; } static SkPicture* stream_to_new_picture(const SkPicture& src) { // To do in-memory commiunications with a stream, we need to: // * create a dynamic memory stream // * copy it into a buffer // * create a read stream from it // ?!?! SkDynamicMemoryWStream storage; src.serialize(&storage); int streamSize = storage.getOffset(); SkAutoMalloc dstStorage(streamSize); void* dst = dstStorage.get(); //char* dst = new char [streamSize]; //@todo thudson 22 April 2011 when can we safely delete [] dst? storage.copyTo(dst); SkMemoryStream pictReadback(dst, streamSize); SkPicture* retval = new SkPicture (&pictReadback); return retval; } // Test: draw into a bitmap or pdf. // Depending on flags, possibly compare to an expected image // and possibly output a diff image if it fails to match. static bool test_drawing(GM* gm, const ConfigData& gRec, const char writePath [], const char readPath [], const char diffPath [], GrContext* context, SkBitmap* bitmap) { SkDynamicMemoryWStream pdf; if (gRec.fBackend == kRaster_Backend || gRec.fBackend == kGPU_Backend) { // Early exit if we can't generate the image, but this is // expected in some cases, so don't report a test failure. if (!generate_image(gm, gRec, context, bitmap)) { return true; } } else if (gRec.fBackend == kPDF_Backend) { generate_pdf(gm, pdf); #if CAN_IMAGE_PDF SkAutoDataUnref data(pdf.copyToData()); SkMemoryStream stream(data.data(), data.size()); SkPDFDocumentToBitmap(&stream, bitmap); #endif } return handle_test_results(gm, gRec, writePath, readPath, diffPath, "", *bitmap, &pdf, NULL); } static bool test_picture_playback(GM* gm, const ConfigData& gRec, const SkBitmap& comparisonBitmap, const char readPath [], const char diffPath []) { SkPicture* pict = generate_new_picture(gm); SkAutoUnref aur(pict); if (kRaster_Backend == gRec.fBackend) { SkBitmap bitmap; generate_image_from_picture(gm, gRec, pict, &bitmap); return handle_test_results(gm, gRec, NULL, NULL, diffPath, "-replay", bitmap, NULL, &comparisonBitmap); } return true; } static bool test_picture_serialization(GM* gm, const ConfigData& gRec, const SkBitmap& comparisonBitmap, const char readPath [], const char diffPath []) { SkPicture* pict = generate_new_picture(gm); SkAutoUnref aurp(pict); SkPicture* repict = stream_to_new_picture(*pict); SkAutoUnref aurr(repict); if (kRaster_Backend == gRec.fBackend) { SkBitmap bitmap; generate_image_from_picture(gm, gRec, repict, &bitmap); return handle_test_results(gm, gRec, NULL, NULL, diffPath, "-serialize", bitmap, NULL, &comparisonBitmap); } return true; } static void usage(const char * argv0) { SkDebugf("%s [-w writePath] [-r readPath] [-d diffPath]\n", argv0); SkDebugf(" [--replay] [--serialize]\n"); SkDebugf(" writePath: directory to write rendered images in.\n"); SkDebugf( " readPath: directory to read reference images from;\n" " reports if any pixels mismatch between reference and new images\n"); SkDebugf(" diffPath: directory to write difference images in.\n"); SkDebugf(" --replay: exercise SkPicture replay.\n"); SkDebugf( " --serialize: exercise SkPicture serialization & deserialization.\n"); SkDebugf(" --match foo will only run tests that substring match foo.\n"); } static const ConfigData gRec[] = { { SkBitmap::kARGB_8888_Config, kRaster_Backend, "8888" }, { SkBitmap::kARGB_4444_Config, kRaster_Backend, "4444" }, { SkBitmap::kRGB_565_Config, kRaster_Backend, "565" }, #ifdef SK_SCALAR_IS_FLOAT { SkBitmap::kARGB_8888_Config, kGPU_Backend, "gpu" }, #endif #ifdef SK_SUPPORT_PDF { SkBitmap::kARGB_8888_Config, kPDF_Backend, "pdf" }, #endif }; namespace skiagm { static GrContext* gGrContext; GrContext* GetGr() { return gGrContext; } } int main(int argc, char * const argv[]) { SkAutoGraphics ag; const char* writePath = NULL; // if non-null, where we write the originals const char* readPath = NULL; // if non-null, were we read from to compare const char* diffPath = NULL; // if non-null, where we write our diffs (from compare) const char* matchStr = NULL; bool doReplay = true; bool doSerialize = false; const char* const commandName = argv[0]; char* const* stop = argv + argc; for (++argv; argv < stop; ++argv) { if (strcmp(*argv, "-w") == 0) { argv++; if (argv < stop && **argv) { writePath = *argv; } } else if (strcmp(*argv, "-r") == 0) { argv++; if (argv < stop && **argv) { readPath = *argv; } } else if (strcmp(*argv, "-d") == 0) { argv++; if (argv < stop && **argv) { diffPath = *argv; } } else if (strcmp(*argv, "--noreplay") == 0) { doReplay = false; } else if (strcmp(*argv, "--serialize") == 0) { doSerialize = true; } else if (strcmp(*argv, "--match") == 0) { ++argv; if (argv < stop && **argv) { matchStr = *argv; } } else { usage(commandName); return -1; } } if (argv != stop) { usage(commandName); return -1; } int maxW = -1; int maxH = -1; Iter iter; GM* gm; while ((gm = iter.next()) != NULL) { SkISize size = gm->getISize(); maxW = SkMax32(size.width(), maxW); maxH = SkMax32(size.height(), maxH); } // setup a GL context for drawing offscreen SkEGLContext eglContext; if (eglContext.init(maxW, maxH)) { gGrContext = GrContext::CreateGLShaderContext(); } if (readPath) { fprintf(stderr, "reading from %s\n", readPath); } else if (writePath) { fprintf(stderr, "writing to %s\n", writePath); } // Accumulate success of all tests so we can flag error in any // one with the return value. iter.reset(); bool overallSuccess = true; while ((gm = iter.next()) != NULL) { const char* shortName = gm->shortName(); if (matchStr && !strstr(shortName, matchStr)) { SkDELETE(gm); continue; } SkISize size = gm->getISize(); SkDebugf("drawing... %s [%d %d]\n", shortName, size.width(), size.height()); SkBitmap forwardRenderedBitmap; for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); i++) { bool testSuccess = test_drawing(gm, gRec[i], writePath, readPath, diffPath, gGrContext, &forwardRenderedBitmap); overallSuccess &= testSuccess; if (doReplay && testSuccess) { testSuccess = test_picture_playback(gm, gRec[i], forwardRenderedBitmap, readPath, diffPath); overallSuccess &= testSuccess; } if (doSerialize && testSuccess) { testSuccess &= test_picture_serialization(gm, gRec[i], forwardRenderedBitmap, readPath, diffPath); overallSuccess &= testSuccess; } } SkDELETE(gm); } if (false == overallSuccess) { return -1; } return 0; } /////////////////////////////////////////////////////////////////////////////// using namespace skiagm; GM::GM() {} GM::~GM() {} void GM::draw(SkCanvas* canvas) { this->onDraw(canvas); }