/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "gm.h" #include "SkRandom.h" #include "SkTArray.h" class SkOnce : SkNoncopyable { public: SkOnce() { fDidOnce = false; } bool needToDo() const { return !fDidOnce; } bool alreadyDone() const { return fDidOnce; } void accomplished() { SkASSERT(!fDidOnce); fDidOnce = true; } private: bool fDidOnce; }; namespace skiagm { class ConvexPathsGM : public GM { SkOnce fOnce; public: ConvexPathsGM() { this->setBGColor(0xFF000000); } protected: virtual SkString onShortName() { return SkString("convexpaths"); } virtual SkISize onISize() { return make_isize(1200, 1100); } void makePaths() { if (fOnce.alreadyDone()) { return; } fOnce.accomplished(); // CW fPaths.push_back().moveTo(0, 0); fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, 0, 100 * SK_Scalar1); fPaths.back().lineTo(0, 0); // CCW fPaths.push_back().moveTo(0, 0); fPaths.back().lineTo(0, 100 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, 0, 0); // CW fPaths.push_back().moveTo(0, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 0, 100 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, 0, 50 * SK_Scalar1); // CCW fPaths.push_back().moveTo(0, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 100 * SK_Scalar1, 100 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 0, 0, 50 * SK_Scalar1); fPaths.push_back().addRect(0, 0, 100 * SK_Scalar1, 100 * SK_Scalar1, SkPath::kCW_Direction); fPaths.push_back().addRect(0, 0, 100 * SK_Scalar1, 100 * SK_Scalar1, SkPath::kCCW_Direction); fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, SkPath::kCW_Direction); fPaths.push_back().addCircle(50 * SK_Scalar1, 50 * SK_Scalar1, 40 * SK_Scalar1, SkPath::kCCW_Direction); fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, 50 * SK_Scalar1, 100 * SK_Scalar1), SkPath::kCW_Direction); fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, 100 * SK_Scalar1, 50 * SK_Scalar1), SkPath::kCCW_Direction); fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, 100 * SK_Scalar1, 5 * SK_Scalar1), SkPath::kCCW_Direction); fPaths.push_back().addOval(SkRect::MakeXYWH(0, 0, SK_Scalar1, 100 * SK_Scalar1), SkPath::kCCW_Direction); fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0, SK_Scalar1 * 100, SK_Scalar1 * 100), 40 * SK_Scalar1, 20 * SK_Scalar1, SkPath::kCW_Direction); fPaths.push_back().addRoundRect(SkRect::MakeXYWH(0, 0, SK_Scalar1 * 100, SK_Scalar1 * 100), 20 * SK_Scalar1, 40 * SK_Scalar1, SkPath::kCCW_Direction); // shallow diagonals fPaths.push_back().lineTo(100 * SK_Scalar1, SK_Scalar1); fPaths.back().lineTo(98 * SK_Scalar1, 100 * SK_Scalar1); fPaths.back().lineTo(3 * SK_Scalar1, 96 * SK_Scalar1); //It turns out arcTos are not automatically marked as convex and they //may in fact be ever so slightly concave. //fPaths.push_back().arcTo(SkRect::MakeXYWH(0, 0, // 50 * SK_Scalar1, // 100 * SK_Scalar1), // 25 * SK_Scalar1, 130 * SK_Scalar1, false); // cubics fPaths.push_back().cubicTo( 1 * SK_Scalar1, 1 * SK_Scalar1, 10 * SK_Scalar1, 90 * SK_Scalar1, 0 * SK_Scalar1, 100 * SK_Scalar1); fPaths.push_back().cubicTo(100 * SK_Scalar1, 50 * SK_Scalar1, 20 * SK_Scalar1, 100 * SK_Scalar1, 0 * SK_Scalar1, 0 * SK_Scalar1); // path that has a cubic with a repeated first control point and // a repeated last control point. fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10); fPaths.back().cubicTo(10 * SK_Scalar1, 10 * SK_Scalar1, 10 * SK_Scalar1, 0, 20 * SK_Scalar1, 0); fPaths.back().lineTo(40 * SK_Scalar1, 0); fPaths.back().cubicTo(40 * SK_Scalar1, 0, 50 * SK_Scalar1, 0, 50 * SK_Scalar1, 10 * SK_Scalar1); // path that has two cubics with repeated middle control points. fPaths.push_back().moveTo(SK_Scalar1 * 10, SK_Scalar1 * 10); fPaths.back().cubicTo(10 * SK_Scalar1, 0, 10 * SK_Scalar1, 0, 20 * SK_Scalar1, 0); fPaths.back().lineTo(40 * SK_Scalar1, 0); fPaths.back().cubicTo(50 * SK_Scalar1, 0, 50 * SK_Scalar1, 0, 50 * SK_Scalar1, 10 * SK_Scalar1); // cubic where last three points are almost a line fPaths.push_back().moveTo(0, 228 * SK_Scalar1 / 8); fPaths.back().cubicTo(628 * SK_Scalar1 / 8, 82 * SK_Scalar1 / 8, 1255 * SK_Scalar1 / 8, 141 * SK_Scalar1 / 8, 1883 * SK_Scalar1 / 8, 202 * SK_Scalar1 / 8); // flat cubic where the at end point tangents both point outward. fPaths.push_back().moveTo(10 * SK_Scalar1, 0); fPaths.back().cubicTo(0, SK_Scalar1, 30 * SK_Scalar1, SK_Scalar1, 20 * SK_Scalar1, 0); // flat cubic where initial tangent is in, end tangent out fPaths.push_back().moveTo(0, 0 * SK_Scalar1); fPaths.back().cubicTo(10 * SK_Scalar1, SK_Scalar1, 30 * SK_Scalar1, SK_Scalar1, 20 * SK_Scalar1, 0); // flat cubic where initial tangent is out, end tangent in fPaths.push_back().moveTo(10 * SK_Scalar1, 0); fPaths.back().cubicTo(0, SK_Scalar1, 20 * SK_Scalar1, SK_Scalar1, 30 * SK_Scalar1, 0); // triangle where one edge is a degenerate quad fPaths.push_back().moveTo(SkFloatToScalar(8.59375f), 45 * SK_Scalar1); fPaths.back().quadTo(SkFloatToScalar(16.9921875f), 45 * SK_Scalar1, SkFloatToScalar(31.25f), 45 * SK_Scalar1); fPaths.back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1); fPaths.back().lineTo(SkFloatToScalar(8.59375f), 45 * SK_Scalar1); // point degenerate fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().lineTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.push_back().moveTo(50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.back().cubicTo(50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); // moveTo only paths fPaths.push_back().moveTo(0, 0); fPaths.back().moveTo(0, 0); fPaths.back().moveTo(SK_Scalar1, SK_Scalar1); fPaths.back().moveTo(SK_Scalar1, SK_Scalar1); fPaths.back().moveTo(10 * SK_Scalar1, 10 * SK_Scalar1); fPaths.push_back().moveTo(0, 0); fPaths.back().moveTo(0, 0); // line degenerate fPaths.push_back().lineTo(100 * SK_Scalar1, 100 * SK_Scalar1); fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 0, 0); fPaths.push_back().quadTo(100 * SK_Scalar1, 100 * SK_Scalar1, 50 * SK_Scalar1, 50 * SK_Scalar1); fPaths.push_back().quadTo(50 * SK_Scalar1, 50 * SK_Scalar1, 100 * SK_Scalar1, 100 * SK_Scalar1); fPaths.push_back().cubicTo(0, 0, 0, 0, 100 * SK_Scalar1, 100 * SK_Scalar1); // small circle. This is listed last so that it has device coords far // from the origin (small area relative to x,y values). fPaths.push_back().addCircle(0, 0, SkFloatToScalar(0.8f)); } virtual void onDraw(SkCanvas* canvas) { this->makePaths(); SkPaint paint; paint.setAntiAlias(true); SkRandom rand; canvas->translate(20 * SK_Scalar1, 20 * SK_Scalar1); for (int i = 0; i < fPaths.count(); ++i) { canvas->save(); // position the path, and make it at off-integer coords. canvas->translate(SK_Scalar1 * 200 * (i % 5) + SK_Scalar1 / 4, SK_Scalar1 * 200 * (i / 5) + 3 * SK_Scalar1 / 4); SkColor color = rand.nextU(); color |= 0xff000000; paint.setColor(color); SkASSERT(fPaths[i].isConvex()); canvas->drawPath(fPaths[i], paint); canvas->restore(); } } private: typedef GM INHERITED; SkTArray fPaths; }; ////////////////////////////////////////////////////////////////////////////// static GM* MyFactory(void*) { return new ConvexPathsGM; } static GMRegistry reg(MyFactory); }