/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CubicUtilities.h" #include "CurveIntersection.h" #include "TestUtilities.h" void quad_to_cubic(const Quadratic& quad, Cubic& cubic) { cubic[0] = quad[0]; cubic[1].x = quad[0].x / 3 + quad[1].x * 2 / 3; cubic[1].y = quad[0].y / 3 + quad[1].y * 2 / 3; cubic[2].x = quad[2].x / 3 + quad[1].x * 2 / 3; cubic[2].y = quad[2].y / 3 + quad[1].y * 2 / 3; cubic[3] = quad[2]; } static bool tiny(const Cubic& cubic) { int index, minX, maxX, minY, maxY; minX = maxX = minY = maxY = 0; for (index = 1; index < 4; ++index) { if (cubic[minX].x > cubic[index].x) { minX = index; } if (cubic[minY].y > cubic[index].y) { minY = index; } if (cubic[maxX].x < cubic[index].x) { maxX = index; } if (cubic[maxY].y < cubic[index].y) { maxY = index; } } return approximately_equal(cubic[maxX].x, cubic[minX].x) && approximately_equal(cubic[maxY].y, cubic[minY].y); } void find_tight_bounds(const Cubic& cubic, _Rect& bounds) { CubicPair cubicPair; chop_at(cubic, cubicPair, 0.5); if (!tiny(cubicPair.first()) && !controls_inside(cubicPair.first())) { find_tight_bounds(cubicPair.first(), bounds); } else { bounds.add(cubicPair.first()[0]); bounds.add(cubicPair.first()[3]); } if (!tiny(cubicPair.second()) && !controls_inside(cubicPair.second())) { find_tight_bounds(cubicPair.second(), bounds); } else { bounds.add(cubicPair.second()[0]); bounds.add(cubicPair.second()[3]); } } bool controls_inside(const Cubic& cubic) { return ((cubic[0].x <= cubic[1].x && cubic[0].x <= cubic[2].x && cubic[1].x <= cubic[3].x && cubic[2].x <= cubic[3].x) || (cubic[0].x >= cubic[1].x && cubic[0].x >= cubic[2].x && cubic[1].x >= cubic[3].x && cubic[2].x >= cubic[3].x)) && ((cubic[0].y <= cubic[1].y && cubic[0].y <= cubic[2].y && cubic[1].y <= cubic[3].y && cubic[2].y <= cubic[3].y) || (cubic[0].y >= cubic[1].y && cubic[0].y >= cubic[2].y && cubic[1].y >= cubic[3].y && cubic[2].x >= cubic[3].y)); }