/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Simplify.h" namespace Op { #define INCLUDED_BY_SHAPE_OPS 1 #include "Simplify.cpp" // FIXME: this and find chase should be merge together, along with // other code that walks winding in angles // OPTIMIZATION: Probably, the walked winding should be rolled into the angle structure // so it isn't duplicated by walkers like this one static Segment* findChaseOp(SkTDArray& chase, int& nextStart, int& nextEnd) { while (chase.count()) { Span* span; chase.pop(&span); const Span& backPtr = span->fOther->span(span->fOtherIndex); Segment* segment = backPtr.fOther; nextStart = backPtr.fOtherIndex; SkTDArray angles; int done = 0; if (segment->activeAngle(nextStart, done, angles)) { Angle* last = angles.end() - 1; nextStart = last->start(); nextEnd = last->end(); #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return last->segment(); } if (done == angles.count()) { continue; } SkTDArray sorted; bool sortable = Segment::SortAngles(angles, sorted); int angleCount = sorted.count(); #if DEBUG_SORT sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0); #endif if (!sortable) { continue; } // find first angle, initialize winding to computed fWindSum int firstIndex = -1; const Angle* angle; do { angle = sorted[++firstIndex]; segment = angle->segment(); } while (segment->windSum(angle) == SK_MinS32); #if DEBUG_SORT segment->debugShowSort(__FUNCTION__, sorted, firstIndex); #endif int sumMiWinding = segment->updateWindingReverse(angle); int sumSuWinding = segment->updateOppWindingReverse(angle); if (segment->operand()) { SkTSwap(sumMiWinding, sumSuWinding); } int nextIndex = firstIndex + 1; int lastIndex = firstIndex != 0 ? firstIndex : angleCount; Segment* first = NULL; do { SkASSERT(nextIndex != firstIndex); if (nextIndex == angleCount) { nextIndex = 0; } angle = sorted[nextIndex]; segment = angle->segment(); int start = angle->start(); int end = angle->end(); int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; segment->setUpWindings(start, end, sumMiWinding, sumSuWinding, maxWinding, sumWinding, oppMaxWinding, oppSumWinding); if (!segment->done(angle)) { if (!first) { first = segment; nextStart = start; nextEnd = end; } (void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding, oppSumWinding, true, angle); } } while (++nextIndex != lastIndex); if (first) { #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return first; } } return NULL; } /* static bool windingIsActive(int winding, int oppWinding, int spanWinding, int oppSpanWinding, bool windingIsOp, ShapeOp op) { bool active = windingIsActive(winding, spanWinding); if (!active) { return false; } if (oppSpanWinding && windingIsActive(oppWinding, oppSpanWinding)) { switch (op) { case kIntersect_Op: case kUnion_Op: return true; case kDifference_Op: { int absSpan = abs(spanWinding); int absOpp = abs(oppSpanWinding); return windingIsOp ? absSpan < absOpp : absSpan > absOpp; } case kXor_Op: return spanWinding != oppSpanWinding; default: SkASSERT(0); } } bool opActive = oppWinding != 0; return gOpLookup[op][opActive][windingIsOp]; } */ static bool bridgeOp(SkTDArray& contourList, const ShapeOp op, const int xorMask, const int xorOpMask, PathWrapper& simple) { bool firstContour = true; bool unsortable = false; bool topUnsortable = false; SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin}; do { int index, endIndex; bool done; Segment* current = findSortableTop(contourList, firstContour, index, endIndex, topLeft, topUnsortable, done, true); if (!current) { if (topUnsortable || !done) { topUnsortable = false; SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin); topLeft.fX = topLeft.fY = SK_ScalarMin; continue; } break; } SkTDArray chaseArray; do { if (current->activeOp(index, endIndex, xorMask, xorOpMask, op)) { do { #if DEBUG_ACTIVE_SPANS if (!unsortable && current->done()) { debugShowActiveSpans(contourList); } #endif SkASSERT(unsortable || !current->done()); int nextStart = index; int nextEnd = endIndex; Segment* next = current->findNextOp(chaseArray, nextStart, nextEnd, unsortable, op, xorMask, xorOpMask); if (!next) { if (!unsortable && simple.hasMove() && current->verb() != SkPath::kLine_Verb && !simple.isClosed()) { current->addCurveTo(index, endIndex, simple, true); SkASSERT(simple.isClosed()); } break; } #if DEBUG_FLOW SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY, current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY); #endif current->addCurveTo(index, endIndex, simple, true); current = next; index = nextStart; endIndex = nextEnd; } while (!simple.isClosed() && ((!unsortable) || !current->done(SkMin32(index, endIndex)))); if (current->activeWinding(index, endIndex) && !simple.isClosed()) { SkASSERT(unsortable); int min = SkMin32(index, endIndex); if (!current->done(min)) { current->addCurveTo(index, endIndex, simple, true); current->markDoneBinary(min); } } simple.close(); } else { Span* last = current->markAndChaseDoneBinary(index, endIndex); if (last && !last->fLoop) { *chaseArray.append() = last; } } current = findChaseOp(chaseArray, index, endIndex); #if DEBUG_ACTIVE_SPANS debugShowActiveSpans(contourList); #endif if (!current) { break; } } while (true); } while (true); return simple.someAssemblyRequired(); } } // end of Op namespace void operate(const SkPath& one, const SkPath& two, ShapeOp op, SkPath& result) { #if DEBUG_SORT || DEBUG_SWAP_TOP Op::gDebugSortCount = Op::gDebugSortCountDefault; #endif result.reset(); result.setFillType(SkPath::kEvenOdd_FillType); // turn path into list of segments SkTArray contours; // FIXME: add self-intersecting cubics' T values to segment Op::EdgeBuilder builder(one, contours); const int xorMask = builder.xorMask(); builder.addOperand(two); builder.finish(); const int xorOpMask = builder.xorMask(); SkTDArray contourList; makeContourList(contours, contourList, xorMask == kEvenOdd_Mask, xorOpMask == kEvenOdd_Mask); Op::Contour** currentPtr = contourList.begin(); if (!currentPtr) { return; } Op::Contour** listEnd = contourList.end(); // find all intersections between segments do { Op::Contour** nextPtr = currentPtr; Op::Contour* current = *currentPtr++; if (current->containsCubics()) { addSelfIntersectTs(current); } Op::Contour* next; do { next = *nextPtr++; } while (addIntersectTs(current, next) && nextPtr != listEnd); } while (currentPtr != listEnd); // eat through coincident edges int total = 0; int index; for (index = 0; index < contourList.count(); ++index) { total += contourList[index]->segments().count(); } #if DEBUG_SHOW_WINDING Op::Contour::debugShowWindingValues(contourList); #endif coincidenceCheck(contourList, total); #if DEBUG_SHOW_WINDING Op::Contour::debugShowWindingValues(contourList); #endif fixOtherTIndex(contourList); sortSegments(contourList); #if DEBUG_ACTIVE_SPANS debugShowActiveSpans(contourList); #endif // construct closed contours Op::PathWrapper wrapper(result); bridgeOp(contourList, op, xorMask, xorOpMask, wrapper); { // if some edges could not be resolved, assemble remaining fragments SkPath temp; temp.setFillType(SkPath::kEvenOdd_FillType); Op::PathWrapper assembled(temp); assemble(wrapper, assembled); result = *assembled.nativePath(); } }