#include #include #include "CubicUtilities.h" #include "Intersection_Tests.h" #include "QuadraticUtilities.h" #include "QuarticRoot.h" double mulA[] = {-3, -1, 1, 3}; size_t mulACount = sizeof(mulA) / sizeof(mulA[0]); double rootB[] = {-9, -6, -3, -1, 0, 1, 3, 6, 9}; size_t rootBCount = sizeof(rootB) / sizeof(rootB[0]); double rootC[] = {-8, -6, -2, -1, 0, 1, 2, 6, 8}; size_t rootCCount = sizeof(rootC) / sizeof(rootC[0]); double rootD[] = {-7, -4, -1, 0, 1, 2, 5}; size_t rootDCount = sizeof(rootD) / sizeof(rootD[0]); double rootE[] = {-5, -1, 0, 1, 7}; size_t rootECount = sizeof(rootE) / sizeof(rootE[0]); static void quadraticTest(bool limit) { // (x - a)(x - b) == x^2 - (a + b)x + ab for (size_t aIndex = 0; aIndex < mulACount; ++aIndex) { for (size_t bIndex = 0; bIndex < rootBCount; ++bIndex) { for (size_t cIndex = 0; cIndex < rootCCount; ++cIndex) { const double A = mulA[aIndex]; double B = rootB[bIndex]; double C = rootC[cIndex]; if (limit) { B = (B - 6) / 12; C = (C - 6) / 12; } const double b = A * (B + C); const double c = A * B * C; double roots[2]; const int rootCount = limit ? quadraticRootsValidT(A, b, c, roots) : quadraticRootsReal(A, b, c, roots); int expected; if (limit) { expected = B <= 0 && B >= -1; expected += B != C && C <= 0 && C >= -1; } else { expected = 1 + (B != C); } assert(rootCount == expected); if (!rootCount) { continue; } assert(approximately_equal(roots[0], -B) || approximately_equal(roots[0], -C)); if (expected > 1) { assert(!approximately_equal(roots[0], roots[1])); assert(approximately_equal(roots[1], -B) || approximately_equal(roots[1], -C)); } } } } } static void testOneCubic(bool limit, size_t aIndex, size_t bIndex, size_t cIndex, size_t dIndex) { const double A = mulA[aIndex]; double B = rootB[bIndex]; double C = rootC[cIndex]; double D = rootD[dIndex]; if (limit) { B = (B - 6) / 12; C = (C - 6) / 12; D = (C - 2) / 6; } const double b = A * (B + C + D); const double c = A * (B * C + C * D + B * D); const double d = A * B * C * D; double roots[3]; const int rootCount = limit ? cubicRootsValidT(A, b, c, d, roots) : cubicRootsReal(A, b, c, d, roots); int expected; if (limit) { expected = B <= 0 && B >= -1; expected += B != C && C <= 0 && C >= -1; expected += B != D && C != D && D <= 0 && D >= -1; } else { expected = 1 + (B != C) + (B != D && C != D); } assert(rootCount == expected); if (!rootCount) { return; } assert(approximately_equal(roots[0], -B) || approximately_equal(roots[0], -C) || approximately_equal(roots[0], -D)); if (expected <= 1) { return; } assert(!approximately_equal(roots[0], roots[1])); assert(approximately_equal(roots[1], -B) || approximately_equal(roots[1], -C) || approximately_equal(roots[1], -D)); if (expected <= 2) { return; } assert(!approximately_equal(roots[0], roots[2]) && !approximately_equal(roots[1], roots[2])); assert(approximately_equal(roots[2], -B) || approximately_equal(roots[2], -C) || approximately_equal(roots[2], -D)); } static void cubicTest(bool limit) { // (x - a)(x - b)(x - c) == x^3 - (a + b + c)x^2 + (ab + bc + ac)x - abc for (size_t aIndex = 0; aIndex < mulACount; ++aIndex) { for (size_t bIndex = 0; bIndex < rootBCount; ++bIndex) { for (size_t cIndex = 0; cIndex < rootCCount; ++cIndex) { for (size_t dIndex = 0; dIndex < rootDCount; ++dIndex) { testOneCubic(limit, aIndex, bIndex, cIndex, dIndex); } } } } } static void testOneQuartic(size_t aIndex, size_t bIndex, size_t cIndex, size_t dIndex, size_t eIndex) { const double A = mulA[aIndex]; const double B = rootB[bIndex]; const double C = rootC[cIndex]; const double D = rootD[dIndex]; const double E = rootE[eIndex]; const double b = A * (B + C + D + E); const double c = A * (B * C + C * D + B * D + B * E + C * E + D * E); const double d = A * (B * C * D + B * C * E + B * D * E + C * D * E); const double e = A * B * C * D * E; double roots[4]; bool oneHint = approximately_zero(A + b + c + d + e); int rootCount = reducedQuarticRoots(A, b, c, d, e, oneHint, roots); if (rootCount < 0) { rootCount = quarticRootsReal(A, b, c, d, e, roots); } const int expected = 1 + (B != C) + (B != D && C != D) + (B != E && C != E && D != E); assert(rootCount == expected); assert(AlmostEqualUlps(roots[0], -B) || AlmostEqualUlps(roots[0], -C) || AlmostEqualUlps(roots[0], -D) || AlmostEqualUlps(roots[0], -E)); if (expected <= 1) { return; } assert(!AlmostEqualUlps(roots[0], roots[1])); assert(AlmostEqualUlps(roots[1], -B) || AlmostEqualUlps(roots[1], -C) || AlmostEqualUlps(roots[1], -D) || AlmostEqualUlps(roots[1], -E)); if (expected <= 2) { return; } assert(!AlmostEqualUlps(roots[0], roots[2]) && !AlmostEqualUlps(roots[1], roots[2])); assert(AlmostEqualUlps(roots[2], -B) || AlmostEqualUlps(roots[2], -C) || AlmostEqualUlps(roots[2], -D) || AlmostEqualUlps(roots[2], -E)); if (expected <= 3) { return; } assert(!AlmostEqualUlps(roots[0], roots[3]) && !AlmostEqualUlps(roots[1], roots[3]) && !AlmostEqualUlps(roots[2], roots[3])); assert(AlmostEqualUlps(roots[3], -B) || AlmostEqualUlps(roots[3], -C) || AlmostEqualUlps(roots[3], -D) || AlmostEqualUlps(roots[3], -E)); } static void quarticTest() { // (x - a)(x - b)(x - c)(x - d) == x^4 - (a + b + c + d)x^3 // + (ab + bc + cd + ac + bd + cd)x^2 - (abc + bcd + abd + acd) * x + abcd for (size_t aIndex = 0; aIndex < mulACount; ++aIndex) { for (size_t bIndex = 0; bIndex < rootBCount; ++bIndex) { for (size_t cIndex = 0; cIndex < rootCCount; ++cIndex) { for (size_t dIndex = 0; dIndex < rootDCount; ++dIndex) { for (size_t eIndex = 0; eIndex < rootECount; ++eIndex) { testOneQuartic(aIndex, bIndex, cIndex, dIndex, eIndex); } } } } } } void QuarticRoot_Test() { testOneCubic(false, 0, 5, 5, 4); testOneQuartic(0, 0, 2, 4, 3); quadraticTest(true); quadraticTest(false); cubicTest(true); cubicTest(false); quarticTest(); }