/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "QuadraticUtilities.h" #include "SkTypes.h" #include /* Numeric Solutions (5.6) suggests to solve the quadratic by computing Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) and using the roots t1 = Q / A t2 = C / Q */ int add_valid_ts(double s[], int realRoots, double* t) { int foundRoots = 0; for (int index = 0; index < realRoots; ++index) { double tValue = s[index]; if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) { if (approximately_less_than_zero(tValue)) { tValue = 0; } else if (approximately_greater_than_one(tValue)) { tValue = 1; } for (int idx2 = 0; idx2 < foundRoots; ++idx2) { if (approximately_equal(t[idx2], tValue)) { goto nextRoot; } } t[foundRoots++] = tValue; } nextRoot: ; } return foundRoots; } // note: caller expects multiple results to be sorted smaller first // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting // analysis of the quadratic equation, suggesting why the following looks at // the sign of B -- and further suggesting that the greatest loss of precision // is in b squared less two a c int quadraticRootsValidT(double A, double B, double C, double t[2]) { #if 0 B *= 2; double square = B * B - 4 * A * C; if (approximately_negative(square)) { if (!approximately_positive(square)) { return 0; } square = 0; } double squareRt = sqrt(square); double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2; int foundRoots = 0; double ratio = Q / A; if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { if (approximately_less_than_zero(ratio)) { ratio = 0; } else if (approximately_greater_than_one(ratio)) { ratio = 1; } t[0] = ratio; ++foundRoots; } ratio = C / Q; if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { if (approximately_less_than_zero(ratio)) { ratio = 0; } else if (approximately_greater_than_one(ratio)) { ratio = 1; } if (foundRoots == 0 || !approximately_negative(ratio - t[0])) { t[foundRoots++] = ratio; } else if (!approximately_negative(t[0] - ratio)) { t[foundRoots++] = t[0]; t[0] = ratio; } } #else double s[2]; int realRoots = quadraticRootsReal(A, B, C, s); int foundRoots = add_valid_ts(s, realRoots, t); #endif return foundRoots; } // unlike quadratic roots, this does not discard real roots <= 0 or >= 1 int quadraticRootsReal(const double A, const double B, const double C, double s[2]) { if (approximately_zero(A)) { if (approximately_zero(B)) { s[0] = 0; return C == 0; } s[0] = -C / B; return 1; } /* normal form: x^2 + px + q = 0 */ const double p = B / (2 * A); const double q = C / A; const double p2 = p * p; #if 0 double D = AlmostEqualUlps(p2, q) ? 0 : p2 - q; if (D <= 0) { if (D < 0) { return 0; } s[0] = -p; SkDebugf("[%d] %1.9g\n", 1, s[0]); return 1; } double sqrt_D = sqrt(D); s[0] = sqrt_D - p; s[1] = -sqrt_D - p; SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]); return 2; #else if (!AlmostEqualUlps(p2, q) && p2 < q) { return 0; } double sqrt_D = 0; if (p2 > q) { sqrt_D = sqrt(p2 - q); } s[0] = sqrt_D - p; s[1] = -sqrt_D - p; #if 0 if (AlmostEqualUlps(s[0], s[1])) { SkDebugf("[%d] %1.9g\n", 1, s[0]); } else { SkDebugf("[%d] %1.9g %1.9g\n", 2, s[0], s[1]); } #endif return 1 + !AlmostEqualUlps(s[0], s[1]); #endif } static double derivativeAtT(const double* quad, double t) { double a = t - 1; double b = 1 - 2 * t; double c = t; return a * quad[0] + b * quad[2] + c * quad[4]; } double dx_at_t(const Quadratic& quad, double t) { return derivativeAtT(&quad[0].x, t); } double dy_at_t(const Quadratic& quad, double t) { return derivativeAtT(&quad[0].y, t); } void dxdy_at_t(const Quadratic& quad, double t, _Point& dxy) { double a = t - 1; double b = 1 - 2 * t; double c = t; dxy.x = a * quad[0].x + b * quad[1].x + c * quad[2].x; dxy.y = a * quad[0].y + b * quad[1].y + c * quad[2].y; } void xy_at_t(const Quadratic& quad, double t, double& x, double& y) { double one_t = 1 - t; double a = one_t * one_t; double b = 2 * one_t * t; double c = t * t; if (&x) { x = a * quad[0].x + b * quad[1].x + c * quad[2].x; } if (&y) { y = a * quad[0].y + b * quad[1].y + c * quad[2].y; } }