/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "QuadraticUtilities.h" #include /* Numeric Solutions (5.6) suggests to solve the quadratic by computing Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) and using the roots t1 = Q / A t2 = C / Q */ // note: caller expects multiple results to be sorted smaller first // note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting // analysis of the quadratic equation, suggesting why the following looks at // the sign of B -- and further suggesting that the greatest loss of precision // is in b squared less two a c int quadraticRoots(double A, double B, double C, double t[2]) { B *= 2; double square = B * B - 4 * A * C; if (square < 0) { return 0; } double squareRt = sqrt(square); double Q = (B + (B < 0 ? -squareRt : squareRt)) / -2; int foundRoots = 0; double ratio = Q / A; if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { if (approximately_less_than_zero(ratio)) { ratio = 0; } else if (approximately_greater_than_one(ratio)) { ratio = 1; } t[0] = ratio; ++foundRoots; } ratio = C / Q; if (approximately_zero_or_more(ratio) && approximately_one_or_less(ratio)) { if (approximately_less_than_zero(ratio)) { ratio = 0; } else if (approximately_greater_than_one(ratio)) { ratio = 1; } if (foundRoots == 0 || !approximately_negative(ratio - t[0])) { t[foundRoots++] = ratio; } else if (!approximately_negative(t[0] - ratio)) { t[foundRoots++] = t[0]; t[0] = ratio; } } return foundRoots; } void dxdy_at_t(const Quadratic& quad, double t, double& x, double& y) { double a = t - 1; double b = 1 - 2 * t; double c = t; if (&x) { x = a * quad[0].x + b * quad[1].x + c * quad[2].x; } if (&y) { y = a * quad[0].y + b * quad[1].y + c * quad[2].y; } } void xy_at_t(const Quadratic& quad, double t, double& x, double& y) { double one_t = 1 - t; double a = one_t * one_t; double b = 2 * one_t * t; double c = t * t; if (&x) { x = a * quad[0].x + b * quad[1].x + c * quad[2].x; } if (&y) { y = a * quad[0].y + b * quad[1].y + c * quad[2].y; } }