/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "CurveUtilities.h" #include "Intersection_Tests.h" #include "Intersections.h" #include "QuadraticIntersection_TestData.h" #include "TestUtilities.h" #include "SkTypes.h" const int firstQuadIntersectionTest = 9; static void standardTestCases() { for (size_t index = firstQuadIntersectionTest; index < quadraticTests_count; ++index) { const Quadratic& quad1 = quadraticTests[index][0]; const Quadratic& quad2 = quadraticTests[index][1]; Quadratic reduce1, reduce2; int order1 = reduceOrder(quad1, reduce1); int order2 = reduceOrder(quad2, reduce2); if (order1 < 3) { printf("[%d] quad1 order=%d\n", (int) index, order1); } if (order2 < 3) { printf("[%d] quad2 order=%d\n", (int) index, order2); } if (order1 == 3 && order2 == 3) { Intersections intersections, intersections2; intersect(reduce1, reduce2, intersections); intersect2(reduce1, reduce2, intersections2); SkASSERT(intersections.used() == intersections2.used()); if (intersections.intersected()) { for (int pt = 0; pt < intersections.used(); ++pt) { double tt1 = intersections.fT[0][pt]; double tx1, ty1; xy_at_t(quad1, tt1, tx1, ty1); double tt2 = intersections.fT[1][pt]; double tx2, ty2; xy_at_t(quad2, tt2, tx2, ty2); if (!approximately_equal(tx1, tx2)) { printf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } if (!approximately_equal(ty1, ty2)) { printf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); } tt1 = intersections2.fT[0][pt]; SkASSERT(approximately_equal(intersections.fT[0][pt], tt1)); tt2 = intersections2.fT[1][pt]; SkASSERT(approximately_equal(intersections.fT[1][pt], tt2)); } } } } } static const Quadratic testSet[] = { {{369.8543701171875, 145.66734313964844}, {382.36788940429688, 121.28203582763672}, {406.21844482421875, 121.28203582763672}}, {{369.96469116210938, 137.96672058105469}, {383.97555541992188, 121.28203582763672}, {406.2218017578125, 121.28203582763672}}, {{369.850525, 145.675964}, {382.362915, 121.29287}, {406.211273, 121.29287}}, {{369.962311, 137.976044}, {383.971893, 121.29287}, {406.216125, 121.29287}}, {{400.121704, 149.468719}, {391.949493, 161.037186}, {391.949493, 181.202423}}, {{391.946747, 181.839218}, {391.946747, 155.62442}, {406.115479, 138.855438}}, {{360.048828125, 229.2578125}, {360.048828125, 224.4140625}, {362.607421875, 221.3671875}}, {{362.607421875, 221.3671875}, {365.166015625, 218.3203125}, {369.228515625, 218.3203125}}, {{8, 8}, {10, 10}, {8, -10}}, {{8, 8}, {12, 12}, {14, 4}}, {{8, 8}, {9, 9}, {10, 8}} }; const size_t testSetCount = sizeof(testSet) / sizeof(testSet[0]); static void oneOffTest() { for (size_t outer = 0; outer < testSetCount - 1; ++outer) { for (size_t inner = outer + 1; inner < testSetCount; ++inner) { const Quadratic& quad1 = testSet[outer]; const Quadratic& quad2 = testSet[inner]; double tt1, tt2; Intersections intersections2; intersect2(quad1, quad2, intersections2); for (int pt = 0; pt < intersections2.used(); ++pt) { tt1 = intersections2.fT[0][pt]; double tx1, ty1; xy_at_t(quad1, tt1, tx1, ty1); int pt2 = intersections2.fFlip ? intersections2.used() - pt - 1 : pt; tt2 = intersections2.fT[1][pt2]; double tx2, ty2; xy_at_t(quad2, tt2, tx2, ty2); if (!approximately_equal(tx1, tx2)) { SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); SkASSERT(0); } if (!approximately_equal(ty1, ty2)) { SkDebugf("%s [%d,%d] y!= t1=%g (%g,%g) t2=%g (%g,%g)\n", __FUNCTION__, (int)index, pt, tt1, tx1, ty1, tt2, tx2, ty2); SkASSERT(0); } SkDebugf("%s [%d][%d] t1=%1.9g (%1.9g, %1.9g) t2=%1.9g\n", __FUNCTION__, outer, inner, tt1, tx1, tx2, tt2); } } } } static const Quadratic coincidentTestSet[] = { {{369.850525, 145.675964}, {382.362915, 121.29287}, {406.211273, 121.29287}}, {{369.850525, 145.675964}, {382.362915, 121.29287}, {406.211273, 121.29287}}, {{8, 8}, {10, 10}, {8, -10}}, {{8, -10}, {10, 10}, {8, 8}}, }; const size_t coincidentTestSetCount = sizeof(coincidentTestSet) / sizeof(coincidentTestSet[0]); static void coincidentTest() { for (size_t testIndex = 0; testIndex < coincidentTestSetCount - 1; testIndex += 2) { const Quadratic& quad1 = coincidentTestSet[testIndex]; const Quadratic& quad2 = coincidentTestSet[testIndex + 1]; Intersections intersections2; intersect2(quad1, quad2, intersections2); SkASSERT(intersections2.coincidentUsed() == 2); for (int pt = 0; pt < intersections2.coincidentUsed(); ++pt) { double tt1 = intersections2.fT[0][pt]; double tt2 = intersections2.fT[1][pt]; // SkASSERT(approximately_equal(intersections.fT[0][pt], tt1)); // SkASSERT(approximately_equal(intersections.fT[1][pt], tt2)); } } } void QuadraticIntersection_Test() { oneOffTest(); coincidentTest(); standardTestCases(); }