/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "Intersections.h" #include "IntersectionUtilities.h" #include "LineIntersection.h" #include "LineUtilities.h" #include "QuadraticLineSegments.h" #include "QuadraticUtilities.h" #include // for swap class QuadraticIntersections : public Intersections { public: QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i) : quad1(q1) , quad2(q2) , intersections(i) , depth(0) , splits(0) { } bool intersect() { double minT1, minT2, maxT1, maxT2; if (!bezier_clip(quad2, quad1, minT1, maxT1)) { return false; } if (!bezier_clip(quad1, quad2, minT2, maxT2)) { return false; } quad1Divisions = 1 / subDivisions(quad1); quad2Divisions = 1 / subDivisions(quad2); int split; if (maxT1 - minT1 < maxT2 - minT2) { intersections.swap(); minT2 = 0; maxT2 = 1; split = maxT1 - minT1 > tClipLimit; } else { minT1 = 0; maxT1 = 1; split = (maxT2 - minT2 > tClipLimit) << 1; } return chop(minT1, maxT1, minT2, maxT2, split); } protected: bool intersect(double minT1, double maxT1, double minT2, double maxT2) { bool t1IsLine = maxT1 - minT1 <= quad1Divisions; bool t2IsLine = maxT2 - minT2 <= quad2Divisions; if (t1IsLine | t2IsLine) { return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine); } Quadratic smaller, larger; // FIXME: carry last subdivide and reduceOrder result with quad sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller); sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger); double minT, maxT; if (!bezier_clip(smaller, larger, minT, maxT)) { if (approximately_equal(minT, maxT)) { double smallT, largeT; _Point q2pt, q1pt; if (intersections.swapped()) { largeT = interp(minT2, maxT2, minT); xy_at_t(quad2, largeT, q2pt.x, q2pt.y); xy_at_t(quad1, minT1, q1pt.x, q1pt.y); if (approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y)) { smallT = minT1; } else { xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code assert(approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y)); smallT = maxT1; } } else { smallT = interp(minT1, maxT1, minT); xy_at_t(quad1, smallT, q1pt.x, q1pt.y); xy_at_t(quad2, minT2, q2pt.x, q2pt.y); if (approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y)) { largeT = minT2; } else { xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code assert(approximately_equal(q2pt.x, q1pt.x) && approximately_equal(q2pt.y, q1pt.y)); largeT = maxT2; } } intersections.add(smallT, largeT); return true; } return false; } int split; if (intersections.swapped()) { double newMinT1 = interp(minT1, maxT1, minT); double newMaxT1 = interp(minT1, maxT1, maxT); split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1; #define VERBOSE 0 #if VERBOSE printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth, splits, newMinT1, newMaxT1, minT1, maxT1, split); #endif minT1 = newMinT1; maxT1 = newMaxT1; } else { double newMinT2 = interp(minT2, maxT2, minT); double newMaxT2 = interp(minT2, maxT2, maxT); split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit; #if VERBOSE printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth, splits, newMinT2, newMaxT2, minT2, maxT2, split); #endif minT2 = newMinT2; maxT2 = newMaxT2; } return chop(minT1, maxT1, minT2, maxT2, split); } bool intersectAsLine(double minT1, double maxT1, double minT2, double maxT2, bool treat1AsLine, bool treat2AsLine) { _Line line1, line2; if (intersections.swapped()) { std::swap(treat1AsLine, treat2AsLine); std::swap(minT1, minT2); std::swap(maxT1, maxT2); } // do line/quadratic or even line/line intersection instead if (treat1AsLine) { xy_at_t(quad1, minT1, line1[0].x, line1[0].y); xy_at_t(quad1, maxT1, line1[1].x, line1[1].y); } if (treat2AsLine) { xy_at_t(quad2, minT2, line2[0].x, line2[0].y); xy_at_t(quad2, maxT2, line2[1].x, line2[1].y); } int pts; double smallT, largeT; if (treat1AsLine & treat2AsLine) { double t1[2], t2[2]; pts = ::intersect(line1, line2, t1, t2); for (int index = 0; index < pts; ++index) { smallT = interp(minT1, maxT1, t1[index]); largeT = interp(minT2, maxT2, t2[index]); if (pts == 2) { intersections.addCoincident(smallT, largeT); } else { intersections.add(smallT, largeT); } } } else { Intersections lq; pts = ::intersect(treat1AsLine ? quad2 : quad1, treat1AsLine ? line1 : line2, lq); bool coincident = false; if (pts == 2) { // if the line and edge are coincident treat differently _Point midQuad, midLine; double midQuadT = (lq.fT[0][0] + lq.fT[0][1]) / 2; xy_at_t(treat1AsLine ? quad2 : quad1, midQuadT, midQuad.x, midQuad.y); double lineT = t_at(treat1AsLine ? line1 : line2, midQuad); xy_at_t(treat1AsLine ? line1 : line2, lineT, midLine.x, midLine.y); coincident = approximately_equal(midQuad.x, midLine.x) && approximately_equal(midQuad.y, midLine.y); } for (int index = 0; index < pts; ++index) { smallT = lq.fT[0][index]; largeT = lq.fT[1][index]; if (treat1AsLine) { smallT = interp(minT1, maxT1, smallT); } else { largeT = interp(minT2, maxT2, largeT); } if (coincident) { intersections.addCoincident(smallT, largeT); } else { intersections.add(smallT, largeT); } } } return pts > 0; } bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) { ++depth; intersections.swap(); if (split) { ++splits; if (split & 2) { double middle1 = (maxT1 + minT1) / 2; intersect(minT1, middle1, minT2, maxT2); intersect(middle1, maxT1, minT2, maxT2); } else { double middle2 = (maxT2 + minT2) / 2; intersect(minT1, maxT1, minT2, middle2); intersect(minT1, maxT1, middle2, maxT2); } --splits; intersections.swap(); --depth; return intersections.intersected(); } bool result = intersect(minT1, maxT1, minT2, maxT2); intersections.swap(); --depth; return result; } private: static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections const Quadratic& quad1; const Quadratic& quad2; Intersections& intersections; int depth; int splits; double quad1Divisions; // line segments to approximate original within error double quad2Divisions; }; bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) { if (implicit_matches(q1, q2)) { // FIXME: compute T values // compute the intersections of the ends to find the coincident span bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y); double t; if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) { i.fT[0][0] = t; i.fT[1][0] = 0; i.fUsed++; } if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) { i.fT[0][i.fUsed] = t; i.fT[1][i.fUsed] = 1; i.fUsed++; } useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y); if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) { i.fT[0][i.fUsed] = 0; i.fT[1][i.fUsed] = t; i.fUsed++; } if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) { i.fT[0][i.fUsed] = 1; i.fT[1][i.fUsed] = t; i.fUsed++; } assert(i.fUsed <= 2); return i.fUsed > 0; } QuadraticIntersections q(q1, q2, i); return q.intersect(); } // Another approach is to start with the implicit form of one curve and solve // by substituting in the parametric form of the other. // The downside of this approach is that early rejects are difficult to come by. // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step /* given x^4 + ax^3 + bx^2 + cx + d the resolvent cubic is x^3 - 2bx^2 + (b^2 + ac - 4d)x + (c^2 + a^2d - abc) use the cubic formula (CubicRoots.cpp) to find the radical expressions t1, t2, and t3. (x - r1 r2) (x - r3 r4) = x^2 - (t2 + t3 - t1) / 2 x + d s = r1*r2 = ((t2 + t3 - t1) + sqrt((t2 + t3 - t1)^2 - 16*d)) / 4 t = r3*r4 = ((t2 + t3 - t1) - sqrt((t2 + t3 - t1)^2 - 16*d)) / 4 u = r1+r2 = (-a + sqrt(a^2 - 4*t1)) / 2 v = r3+r4 = (-a - sqrt(a^2 - 4*t1)) / 2 r1 = (u + sqrt(u^2 - 4*s)) / 2 r2 = (u - sqrt(u^2 - 4*s)) / 2 r3 = (v + sqrt(v^2 - 4*t)) / 2 r4 = (v - sqrt(v^2 - 4*t)) / 2 */ /* square root of complex number http://en.wikipedia.org/wiki/Square_root#Square_roots_of_negative_and_complex_numbers Algebraic formula When the number is expressed using Cartesian coordinates the following formula can be used for the principal square root:[5][6] sqrt(x + iy) = sqrt((r + x) / 2) +/- i*sqrt((r - x) / 2) where the sign of the imaginary part of the root is taken to be same as the sign of the imaginary part of the original number, and r = abs(x + iy) = sqrt(x^2 + y^2) is the absolute value or modulus of the original number. The real part of the principal value is always non-negative. The other square root is simply –1 times the principal square root; in other words, the two square roots of a number sum to 0. */