/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "Intersections.h" #include "LineUtilities.h" #include "QuadraticUtilities.h" /* Find the interection of a line and quadratic by solving for valid t values. From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where A, B and C are points and t goes from zero to one. This will give you two equations: x = a(1 - t)^2 + b(1 - t)t + ct^2 y = d(1 - t)^2 + e(1 - t)t + ft^2 If you add for instance the line equation (y = kx + m) to that, you'll end up with three equations and three unknowns (x, y and t)." Similar to above, the quadratic is represented as x = a(1-t)^2 + 2b(1-t)t + ct^2 y = d(1-t)^2 + 2e(1-t)t + ft^2 and the line as y = g*x + h Using Mathematica, solve for the values of t where the quadratic intersects the line: (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) (in) Solve[t1 == 0, t] (out) { {t -> (-2 d + 2 e + 2 a g - 2 b g - Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / (2 (-d + 2 e - f + a g - 2 b g + c g)) }, {t -> (-2 d + 2 e + 2 a g - 2 b g + Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / (2 (-d + 2 e - f + a g - 2 b g + c g)) } } Using the results above (when the line tends towards horizontal) A = (-(d - 2*e + f) + g*(a - 2*b + c) ) B = 2*( (d - e ) - g*(a - b ) ) C = (-(d ) + g*(a ) + h ) If g goes to infinity, we can rewrite the line in terms of x. x = g'*y + h' And solve accordingly in Mathematica: (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) (in) Solve[t2 == 0, t] (out) { {t -> (2 a - 2 b - 2 d g' + 2 e g' - Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / (2 (a - 2 b + c - d g' + 2 e g' - f g')) }, {t -> (2 a - 2 b - 2 d g' + 2 e g' + Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ (2 (a - 2 b + c - d g' + 2 e g' - f g')) } } Thus, if the slope of the line tends towards vertical, we use: A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) B = 2*(-(a - b ) + g'*(d - e ) ) C = ( (a ) - g'*(d ) - h' ) */ class LineQuadraticIntersections { public: LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i) : quad(q) , line(l) , intersections(i) { } int intersectRay(double roots[2]) { /* solve by rotating line+quad so line is horizontal, then finding the roots set up matrix to rotate quad to x-axis |cos(a) -sin(a)| |sin(a) cos(a)| note that cos(a) = A(djacent) / Hypoteneuse sin(a) = O(pposite) / Hypoteneuse since we are computing Ts, we can ignore hypoteneuse, the scale factor: | A -O | | O A | A = line[1].x - line[0].x (adjacent side of the right triangle) O = line[1].y - line[0].y (opposite side of the right triangle) for each of the three points (e.g. n = 0 to 2) quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O */ double adj = line[1].x - line[0].x; double opp = line[1].y - line[0].y; double r[3]; for (int n = 0; n < 3; ++n) { r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp; } double A = r[2]; double B = r[1]; double C = r[0]; A += C - 2 * B; // A = a - 2*b + c B -= C; // B = -(b - c) return quadraticRootsValidT(A, 2 * B, C, roots); } int intersect() { addEndPoints(); double rootVals[2]; int roots = intersectRay(rootVals); for (int index = 0; index < roots; ++index) { double quadT = rootVals[index]; double lineT = findLineT(quadT); if (pinTs(quadT, lineT)) { _Point pt; xy_at_t(line, lineT, pt.x, pt.y); intersections.insert(quadT, lineT, pt); } } return intersections.fUsed; } int horizontalIntersect(double axisIntercept, double roots[2]) { double D = quad[2].y; // f double E = quad[1].y; // e double F = quad[0].y; // d D += F - 2 * E; // D = d - 2*e + f E -= F; // E = -(d - e) F -= axisIntercept; return quadraticRootsValidT(D, 2 * E, F, roots); } int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { addHorizontalEndPoints(left, right, axisIntercept); double rootVals[2]; int roots = horizontalIntersect(axisIntercept, rootVals); for (int index = 0; index < roots; ++index) { _Point pt; double quadT = rootVals[index]; xy_at_t(quad, quadT, pt.x, pt.y); double lineT = (pt.x - left) / (right - left); if (pinTs(quadT, lineT)) { intersections.insert(quadT, lineT, pt); } } if (flipped) { flip(); } return intersections.fUsed; } int verticalIntersect(double axisIntercept, double roots[2]) { double D = quad[2].x; // f double E = quad[1].x; // e double F = quad[0].x; // d D += F - 2 * E; // D = d - 2*e + f E -= F; // E = -(d - e) F -= axisIntercept; return quadraticRootsValidT(D, 2 * E, F, roots); } int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { addVerticalEndPoints(top, bottom, axisIntercept); double rootVals[2]; int roots = verticalIntersect(axisIntercept, rootVals); for (int index = 0; index < roots; ++index) { _Point pt; double quadT = rootVals[index]; xy_at_t(quad, quadT, pt.x, pt.y); double lineT = (pt.y - top) / (bottom - top); if (pinTs(quadT, lineT)) { intersections.insert(quadT, lineT, pt); } } if (flipped) { flip(); } return intersections.fUsed; } protected: // add endpoints first to get zero and one t values exactly void addEndPoints() { for (int qIndex = 0; qIndex < 3; qIndex += 2) { for (int lIndex = 0; lIndex < 2; lIndex++) { if (quad[qIndex] == line[lIndex]) { intersections.insert(qIndex >> 1, lIndex, line[lIndex]); } } } } void addHorizontalEndPoints(double left, double right, double y) { for (int qIndex = 0; qIndex < 3; qIndex += 2) { if (quad[qIndex].y != y) { continue; } if (quad[qIndex].x == left) { intersections.insert(qIndex >> 1, 0, quad[qIndex]); } if (quad[qIndex].x == right) { intersections.insert(qIndex >> 1, 1, quad[qIndex]); } } } void addVerticalEndPoints(double top, double bottom, double x) { for (int qIndex = 0; qIndex < 3; qIndex += 2) { if (quad[qIndex].x != x) { continue; } if (quad[qIndex].y == top) { intersections.insert(qIndex >> 1, 0, quad[qIndex]); } if (quad[qIndex].y == bottom) { intersections.insert(qIndex >> 1, 1, quad[qIndex]); } } } double findLineT(double t) { double x, y; xy_at_t(quad, t, x, y); double dx = line[1].x - line[0].x; double dy = line[1].y - line[0].y; if (fabs(dx) > fabs(dy)) { return (x - line[0].x) / dx; } return (y - line[0].y) / dy; } void flip() { // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y int roots = intersections.fUsed; for (int index = 0; index < roots; ++index) { intersections.fT[1][index] = 1 - intersections.fT[1][index]; } } static bool pinTs(double& quadT, double& lineT) { if (!approximately_one_or_less(lineT)) { return false; } if (!approximately_zero_or_more(lineT)) { return false; } if (precisely_less_than_zero(quadT)) { quadT = 0; } else if (precisely_greater_than_one(quadT)) { quadT = 1; } if (precisely_less_than_zero(lineT)) { lineT = 0; } else if (precisely_greater_than_one(lineT)) { lineT = 1; } return true; } private: const Quadratic& quad; const _Line& line; Intersections& intersections; }; // utility for pairs of coincident quads static double horizontalIntersect(const Quadratic& quad, const _Point& pt) { LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); double rootVals[2]; int roots = q.horizontalIntersect(pt.y, rootVals); for (int index = 0; index < roots; ++index) { double x; double t = rootVals[index]; xy_at_t(quad, t, x, *(double*) 0); if (AlmostEqualUlps(x, pt.x)) { return t; } } return -1; } static double verticalIntersect(const Quadratic& quad, const _Point& pt) { LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); double rootVals[2]; int roots = q.verticalIntersect(pt.x, rootVals); for (int index = 0; index < roots; ++index) { double y; double t = rootVals[index]; xy_at_t(quad, t, *(double*) 0, y); if (AlmostEqualUlps(y, pt.y)) { return t; } } return -1; } double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) { if (vertical) { return verticalIntersect(q1, p); } return horizontalIntersect(q1, p); } int horizontalIntersect(const Quadratic& quad, double left, double right, double y, double tRange[2]) { LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); double rootVals[2]; int result = q.horizontalIntersect(y, rootVals); int tCount = 0; for (int index = 0; index < result; ++index) { double x, y; xy_at_t(quad, rootVals[index], x, y); if (x < left || x > right) { continue; } tRange[tCount++] = rootVals[index]; } return tCount; } int horizontalIntersect(const Quadratic& quad, double left, double right, double y, bool flipped, Intersections& intersections) { LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); return q.horizontalIntersect(y, left, right, flipped); } int verticalIntersect(const Quadratic& quad, double top, double bottom, double x, bool flipped, Intersections& intersections) { LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); return q.verticalIntersect(x, top, bottom, flipped); } int intersect(const Quadratic& quad, const _Line& line, Intersections& i) { LineQuadraticIntersections q(quad, line, i); return q.intersect(); } int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) { LineQuadraticIntersections q(quad, line, i); return q.intersectRay(i.fT[0]); }