#include "CurveIntersection.h" #include "Intersections.h" #include "LineUtilities.h" #include "QuadraticUtilities.h" /* Find the interection of a line and quadratic by solving for valid t values. From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where A, B and C are points and t goes from zero to one. This will give you two equations: x = a(1 - t)^2 + b(1 - t)t + ct^2 y = d(1 - t)^2 + e(1 - t)t + ft^2 If you add for instance the line equation (y = kx + m) to that, you'll end up with three equations and three unknowns (x, y and t)." Similar to above, the quadratic is represented as x = a(1-t)^2 + 2b(1-t)t + ct^2 y = d(1-t)^2 + 2e(1-t)t + ft^2 and the line as y = g*x + h Using Mathematica, solve for the values of t where the quadratic intersects the line: (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) (in) Solve[t1 == 0, t] (out) { {t -> (-2 d + 2 e + 2 a g - 2 b g - Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / (2 (-d + 2 e - f + a g - 2 b g + c g)) }, {t -> (-2 d + 2 e + 2 a g - 2 b g + Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / (2 (-d + 2 e - f + a g - 2 b g + c g)) } } Numeric Solutions (5.6) suggests to solve the quadratic by computing Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C)) and using the roots t1 = Q / A t2 = C / Q Using the results above (when the line tends towards horizontal) A = (-(d - 2*e + f) + g*(a - 2*b + c) ) B = 2*( (d - e ) - g*(a - b ) ) C = (-(d ) + g*(a ) + h ) If g goes to infinity, we can rewrite the line in terms of x. x = g'*y + h' And solve accordingly in Mathematica: (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) (in) Solve[t2 == 0, t] (out) { {t -> (2 a - 2 b - 2 d g' + 2 e g' - Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / (2 (a - 2 b + c - d g' + 2 e g' - f g')) }, {t -> (2 a - 2 b - 2 d g' + 2 e g' + Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ (2 (a - 2 b + c - d g' + 2 e g' - f g')) } } Thus, if the slope of the line tends towards vertical, we use: A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) B = 2*(-(a - b ) + g'*(d - e ) ) C = ( (a ) - g'*(d ) - h' ) */ class LineQuadraticIntersections : public Intersections { public: LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i) : quad(q) , line(l) , intersections(i) { } bool intersect() { double slope; double axisIntercept; moreHorizontal = implicitLine(line, slope, axisIntercept); double A = quad[2].x; // c double B = quad[1].x; // b double C = quad[0].x; // a A += C - 2 * B; // A = a - 2*b + c B -= C; // B = -(a - b) double D = quad[2].y; // f double E = quad[1].y; // e double F = quad[0].y; // d D += F - 2 * E; // D = d - 2*e + f E -= F; // E = -(d - e) if (moreHorizontal) { A = A * slope - D; B = B * slope - E; C = C * slope - F + axisIntercept; } else { A = A - D * slope; B = B - E * slope; C = C - F * slope - axisIntercept; } double t[2]; int roots = quadraticRoots(A, B, C, t); for (int x = 0; x < roots; ++x) { intersections.add(t[x], findLineT(t[x])); } return roots > 0; } int horizontalIntersect(double axisIntercept) { double D = quad[2].y; // f double E = quad[1].y; // e double F = quad[0].y; // d D += F - 2 * E; // D = d - 2*e + f E -= F; // E = -(d - e) F -= axisIntercept; return quadraticRoots(D, E, F, intersections.fT[0]); } protected: double findLineT(double t) { const double* qPtr; const double* lPtr; if (moreHorizontal) { qPtr = &quad[0].x; lPtr = &line[0].x; } else { qPtr = &quad[0].y; lPtr = &line[0].y; } double s = 1 - t; double quadVal = qPtr[0] * s * s + 2 * qPtr[2] * s * t + qPtr[4] * t * t; return (quadVal - lPtr[0]) / (lPtr[2] - lPtr[0]); } private: const Quadratic& quad; const _Line& line; Intersections& intersections; bool moreHorizontal; }; int horizontalIntersect(const Quadratic& quad, double left, double right, double y, double tRange[2]) { Intersections i; LineQuadraticIntersections q(quad, *((_Line*) 0), i); int result = q.horizontalIntersect(y); int tCount = 0; for (int index = 0; index < result; ++index) { double x, y; xy_at_t(quad, i.fT[0][index], x, y); if (x < left || x > right) { continue; } tRange[tCount++] = i.fT[0][index]; } return tCount; } bool intersect(const Quadratic& quad, const _Line& line, Intersections& i) { LineQuadraticIntersections q(quad, line, i); return q.intersect(); }