/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "CubicUtilities.h" #include "Intersections.h" #include "LineUtilities.h" /* Find the interection of a line and cubic by solving for valid t values. Analogous to line-quadratic intersection, solve line-cubic intersection by representing the cubic as: x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 and the line as: y = i*x + j (if the line is more horizontal) or: x = i*y + j (if the line is more vertical) Then using Mathematica, solve for the values of t where the cubic intersects the line: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] (out) -e + j + 3 e t - 3 f t - 3 e t^2 + 6 f t^2 - 3 g t^2 + e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + i ( a - 3 a t + 3 b t + 3 a t^2 - 6 b t^2 + 3 c t^2 - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) if i goes to infinity, we can rewrite the line in terms of x. Mathematica: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] (out) a - j - 3 a t + 3 b t + 3 a t^2 - 6 b t^2 + 3 c t^2 - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - i ( e - 3 e t + 3 f t + 3 e t^2 - 6 f t^2 + 3 g t^2 - e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) Solving this with Mathematica produces an expression with hundreds of terms; instead, use Numeric Solutions recipe to solve the cubic. The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) C = 3*(-(-e + f ) + i*(-a + b ) ) D = (-( e ) + i*( a ) + j ) The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) C = 3*( (-a + b ) - i*(-e + f ) ) D = ( ( a ) - i*( e ) - j ) For horizontal lines: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] (out) e - j - 3 e t + 3 f t + 3 e t^2 - 6 f t^2 + 3 g t^2 - e t^3 + 3 f t^3 - 3 g t^3 + h t^3 So the cubic coefficients are: */ class LineCubicIntersections { public: LineCubicIntersections(const Cubic& c, const _Line& l, Intersections& i) : cubic(c) , line(l) , intersections(i) { } // see parallel routine in line quadratic intersections int intersectRay(double roots[3]) { double adj = line[1].x - line[0].x; double opp = line[1].y - line[0].y; Cubic r; for (int n = 0; n < 4; ++n) { r[n].x = (cubic[n].y - line[0].y) * adj - (cubic[n].x - line[0].x) * opp; } double A, B, C, D; coefficients(&r[0].x, A, B, C, D); return cubicRootsValidT(A, B, C, D, roots); } int intersect() { addEndPoints(); double rootVals[3]; int roots = intersectRay(rootVals); for (int index = 0; index < roots; ++index) { double cubicT = rootVals[index]; double lineT = findLineT(cubicT); if (pinTs(cubicT, lineT)) { intersections.insert(cubicT, lineT); } } return intersections.fUsed; } int horizontalIntersect(double axisIntercept, double roots[3]) { double A, B, C, D; coefficients(&cubic[0].y, A, B, C, D); D -= axisIntercept; return cubicRootsValidT(A, B, C, D, roots); } int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { addHorizontalEndPoints(left, right, axisIntercept); double rootVals[3]; int roots = horizontalIntersect(axisIntercept, rootVals); for (int index = 0; index < roots; ++index) { double x; double cubicT = rootVals[index]; xy_at_t(cubic, cubicT, x, *(double*) NULL); double lineT = (x - left) / (right - left); if (pinTs(cubicT, lineT)) { intersections.insert(cubicT, lineT); } } if (flipped) { flip(); } return intersections.fUsed; } int verticalIntersect(double axisIntercept, double roots[3]) { double A, B, C, D; coefficients(&cubic[0].x, A, B, C, D); D -= axisIntercept; return cubicRootsValidT(A, B, C, D, roots); } int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { addVerticalEndPoints(top, bottom, axisIntercept); double rootVals[3]; int roots = verticalIntersect(axisIntercept, rootVals); for (int index = 0; index < roots; ++index) { double y; double cubicT = rootVals[index]; xy_at_t(cubic, cubicT, *(double*) NULL, y); double lineT = (y - top) / (bottom - top); if (pinTs(cubicT, lineT)) { intersections.insert(cubicT, lineT); } } if (flipped) { flip(); } return intersections.fUsed; } protected: void addEndPoints() { for (int cIndex = 0; cIndex < 4; cIndex += 3) { for (int lIndex = 0; lIndex < 2; lIndex++) { if (cubic[cIndex] == line[lIndex]) { intersections.insert(cIndex >> 1, lIndex); } } } } void addHorizontalEndPoints(double left, double right, double y) { for (int cIndex = 0; cIndex < 4; cIndex += 3) { if (cubic[cIndex].y != y) { continue; } if (cubic[cIndex].x == left) { intersections.insert(cIndex >> 1, 0); } if (cubic[cIndex].x == right) { intersections.insert(cIndex >> 1, 1); } } } void addVerticalEndPoints(double top, double bottom, double x) { for (int cIndex = 0; cIndex < 4; cIndex += 3) { if (cubic[cIndex].x != x) { continue; } if (cubic[cIndex].y == top) { intersections.insert(cIndex >> 1, 0); } if (cubic[cIndex].y == bottom) { intersections.insert(cIndex >> 1, 1); } } } double findLineT(double t) { double x, y; xy_at_t(cubic, t, x, y); double dx = line[1].x - line[0].x; double dy = line[1].y - line[0].y; if (fabs(dx) > fabs(dy)) { return (x - line[0].x) / dx; } return (y - line[0].y) / dy; } void flip() { // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y int roots = intersections.fUsed; for (int index = 0; index < roots; ++index) { intersections.fT[1][index] = 1 - intersections.fT[1][index]; } } bool pinTs(double& cubicT, double& lineT) { if (!approximately_one_or_less(lineT)) { return false; } if (!approximately_zero_or_more(lineT)) { return false; } if (cubicT < 0) { cubicT = 0; } else if (cubicT > 1) { cubicT = 1; } if (lineT < 0) { lineT = 0; } else if (lineT > 1) { lineT = 1; } return true; } private: const Cubic& cubic; const _Line& line; Intersections& intersections; }; int horizontalIntersect(const Cubic& cubic, double left, double right, double y, double tRange[3]) { LineCubicIntersections c(cubic, *((_Line*) 0), *((Intersections*) 0)); double rootVals[3]; int result = c.horizontalIntersect(y, rootVals); int tCount = 0; for (int index = 0; index < result; ++index) { double x, y; xy_at_t(cubic, rootVals[index], x, y); if (x < left || x > right) { continue; } tRange[tCount++] = rootVals[index]; } return result; } int horizontalIntersect(const Cubic& cubic, double left, double right, double y, bool flipped, Intersections& intersections) { LineCubicIntersections c(cubic, *((_Line*) 0), intersections); return c.horizontalIntersect(y, left, right, flipped); } int verticalIntersect(const Cubic& cubic, double top, double bottom, double x, bool flipped, Intersections& intersections) { LineCubicIntersections c(cubic, *((_Line*) 0), intersections); return c.verticalIntersect(x, top, bottom, flipped); } int intersect(const Cubic& cubic, const _Line& line, Intersections& i) { LineCubicIntersections c(cubic, line, i); return c.intersect(); }