/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "CubicUtilities.h" #include "Intersections.h" #include "LineUtilities.h" /* Find the interection of a line and cubic by solving for valid t values. Analogous to line-quadratic intersection, solve line-cubic intersection by representing the cubic as: x = a(1-t)^3 + 2b(1-t)^2t + c(1-t)t^2 + dt^3 y = e(1-t)^3 + 2f(1-t)^2t + g(1-t)t^2 + ht^3 and the line as: y = i*x + j (if the line is more horizontal) or: x = i*y + j (if the line is more vertical) Then using Mathematica, solve for the values of t where the cubic intersects the line: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - i*x - j, x] (out) -e + j + 3 e t - 3 f t - 3 e t^2 + 6 f t^2 - 3 g t^2 + e t^3 - 3 f t^3 + 3 g t^3 - h t^3 + i ( a - 3 a t + 3 b t + 3 a t^2 - 6 b t^2 + 3 c t^2 - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 ) if i goes to infinity, we can rewrite the line in terms of x. Mathematica: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - i*y - j, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] (out) a - j - 3 a t + 3 b t + 3 a t^2 - 6 b t^2 + 3 c t^2 - a t^3 + 3 b t^3 - 3 c t^3 + d t^3 - i ( e - 3 e t + 3 f t + 3 e t^2 - 6 f t^2 + 3 g t^2 - e t^3 + 3 f t^3 - 3 g t^3 + h t^3 ) Solving this with Mathematica produces an expression with hundreds of terms; instead, use Numeric Solutions recipe to solve the cubic. The near-horizontal case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 A = (-(-e + 3*f - 3*g + h) + i*(-a + 3*b - 3*c + d) ) B = 3*(-( e - 2*f + g ) + i*( a - 2*b + c ) ) C = 3*(-(-e + f ) + i*(-a + b ) ) D = (-( e ) + i*( a ) + j ) The near-vertical case, in terms of: Ax^3 + Bx^2 + Cx + D == 0 A = ( (-a + 3*b - 3*c + d) - i*(-e + 3*f - 3*g + h) ) B = 3*( ( a - 2*b + c ) - i*( e - 2*f + g ) ) C = 3*( (-a + b ) - i*(-e + f ) ) D = ( ( a ) - i*( e ) - j ) For horizontal lines: (in) Resultant[ a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - j, e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, y] (out) e - j - 3 e t + 3 f t + 3 e t^2 - 6 f t^2 + 3 g t^2 - e t^3 + 3 f t^3 - 3 g t^3 + h t^3 So the cubic coefficients are: */ class LineCubicIntersections : public Intersections { public: LineCubicIntersections(const Cubic& c, const _Line& l, double r[3]) : cubic(c) , line(l) , range(r) { } int intersect() { double slope; double axisIntercept; moreHorizontal = implicitLine(line, slope, axisIntercept); double A, B, C, D; coefficients(&cubic[0].x, A, B, C, D); double E, F, G, H; coefficients(&cubic[0].y, E, F, G, H); if (moreHorizontal) { A = A * slope - E; B = B * slope - F; C = C * slope - G; D = D * slope - H + axisIntercept; } else { A = A - E * slope; B = B - F * slope; C = C - G * slope; D = D - H * slope - axisIntercept; } return cubicRoots(A, B, C, D, range); } int horizontalIntersect(double axisIntercept) { double A, B, C, D; coefficients(&cubic[0].y, A, B, C, D); D -= axisIntercept; return cubicRoots(A, B, C, D, range); } int verticalIntersect(double axisIntercept) { double A, B, C, D; coefficients(&cubic[0].x, A, B, C, D); D -= axisIntercept; return cubicRoots(A, B, C, D, range); } double findLineT(double t) { const double* cPtr; const double* lPtr; if (moreHorizontal) { cPtr = &cubic[0].x; lPtr = &line[0].x; } else { cPtr = &cubic[0].y; lPtr = &line[0].y; } // FIXME: should fold the following in with TestUtilities.cpp xy_at_t() double s = 1 - t; double cubicVal = cPtr[0] * s * s * s + 3 * cPtr[2] * s * s * t + 3 * cPtr[4] * s * t * t + cPtr[6] * t * t * t; return (cubicVal - lPtr[0]) / (lPtr[2] - lPtr[0]); } private: const Cubic& cubic; const _Line& line; double* range; bool moreHorizontal; }; int horizontalIntersect(const Cubic& cubic, double y, double tRange[3]) { LineCubicIntersections c(cubic, *((_Line*) 0), tRange); return c.horizontalIntersect(y); } int horizontalIntersect(const Cubic& cubic, double left, double right, double y, double tRange[3]) { LineCubicIntersections c(cubic, *((_Line*) 0), tRange); int result = c.horizontalIntersect(y); for (int index = 0; index < result; ) { double x, y; xy_at_t(cubic, tRange[index], x, y); if (x < left || x > right) { if (--result > index) { tRange[index] = tRange[result]; } continue; } ++index; } return result; } int horizontalIntersect(const Cubic& cubic, double left, double right, double y, bool flipped, Intersections& intersections) { LineCubicIntersections c(cubic, *((_Line*) 0), intersections.fT[0]); int result = c.horizontalIntersect(y); for (int index = 0; index < result; ) { double x, y; xy_at_t(cubic, intersections.fT[0][index], x, y); if (x < left || x > right) { if (--result > index) { intersections.fT[0][index] = intersections.fT[0][result]; } continue; } intersections.fT[1][index] = (x - left) / (right - left); ++index; } if (flipped) { // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x for (int index = 0; index < result; ++index) { intersections.fT[1][index] = 1 - intersections.fT[1][index]; } } return result; } int verticalIntersect(const Cubic& cubic, double top, double bottom, double x, bool flipped, Intersections& intersections) { LineCubicIntersections c(cubic, *((_Line*) 0), intersections.fT[0]); int result = c.verticalIntersect(x); for (int index = 0; index < result; ) { double x, y; xy_at_t(cubic, intersections.fT[0][index], x, y); if (y < top || y > bottom) { if (--result > index) { intersections.fT[1][index] = intersections.fT[0][result]; } continue; } intersections.fT[0][index] = (y - top) / (bottom - top); ++index; } if (flipped) { // OPTIMIZATION: instead of swapping, pass original line, use [1].x - [0].x for (int index = 0; index < result; ++index) { intersections.fT[1][index] = 1 - intersections.fT[1][index]; } } return result; } int intersect(const Cubic& cubic, const _Line& line, double cRange[3], double lRange[3]) { LineCubicIntersections c(cubic, line, cRange); int roots; if (approximately_equal(line[0].y, line[1].y)) { roots = c.horizontalIntersect(line[0].y); } else { roots = c.intersect(); } for (int index = 0; index < roots; ++index) { lRange[index] = c.findLineT(cRange[index]); } return roots; }