#include "EdgeWalker_Test.h" #include "Intersection_Tests.h" static void testSimplifyCoincidentInner() { SkPath path, out; path.setFillType(SkPath::kWinding_FillType); path.addRect(10, 10, 60, 60, SkPath::kCCW_Direction); path.addRect(20, 20, 50, 50, SkPath::kCW_Direction); path.addRect(20, 30, 40, 40, SkPath::kCW_Direction); testSimplify(path, true, out); } static void testSimplifyCoincidentVertical() { SkPath path, out; path.setFillType(SkPath::kWinding_FillType); path.addRect(10, 10, 30, 30); path.addRect(10, 30, 30, 40); simplify(path, true, out); SkRect rect; if (!out.isRect(&rect)) { SkDebugf("%s expected rect\n", __FUNCTION__); } if (rect != SkRect::MakeLTRB(10, 10, 30, 40)) { SkDebugf("%s expected union\n", __FUNCTION__); } } static void testSimplifyCoincidentHorizontal() { SkPath path, out; path.setFillType(SkPath::kWinding_FillType); path.addRect(10, 10, 30, 30); path.addRect(30, 10, 40, 30); simplify(path, true, out); SkRect rect; if (!out.isRect(&rect)) { SkDebugf("%s expected rect\n", __FUNCTION__); } if (rect != SkRect::MakeLTRB(10, 10, 40, 30)) { SkDebugf("%s expected union\n", __FUNCTION__); } } static void testSimplifyMulti() { SkPath path, out; path.setFillType(SkPath::kWinding_FillType); path.addRect(10, 10, 30, 30); path.addRect(20, 20, 40, 40); simplify(path, true, out); SkPath expected; expected.setFillType(SkPath::kEvenOdd_FillType); expected.moveTo(10,10); // two cutout corners expected.lineTo(10,30); expected.lineTo(20,30); expected.lineTo(20,40); expected.lineTo(40,40); expected.lineTo(40,20); expected.lineTo(30,20); expected.lineTo(30,10); expected.lineTo(10,10); expected.close(); if (out != expected) { SkDebugf("%s expected equal\n", __FUNCTION__); } path = out; path.addRect(30, 10, 40, 20); path.addRect(10, 30, 20, 40); simplify(path, true, out); SkRect rect; if (!out.isRect(&rect)) { SkDebugf("%s expected rect\n", __FUNCTION__); } if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) { SkDebugf("%s expected union\n", __FUNCTION__); } path = out; path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction); simplify(path, true, out); if (!out.isEmpty()) { SkDebugf("%s expected empty\n", __FUNCTION__); } } static void testSimplifyAddL() { SkPath path, out; path.moveTo(10,10); // 'L' shape path.lineTo(10,40); path.lineTo(40,40); path.lineTo(40,20); path.lineTo(30,20); path.lineTo(30,10); path.lineTo(10,10); path.close(); path.addRect(30, 10, 40, 20); // missing notch of 'L' simplify(path, true, out); SkRect rect; if (!out.isRect(&rect)) { SkDebugf("%s expected rect\n", __FUNCTION__); } if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) { SkDebugf("%s expected union\n", __FUNCTION__); } } static void testSimplifyCoincidentCCW() { SkPath path, out; path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction); path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction); simplify(path, true, out); SkRect rect; if (!out.isRect(&rect)) { SkDebugf("%s expected rect\n", __FUNCTION__); } if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) { SkDebugf("%s expected union\n", __FUNCTION__); } } static void testSimplifyCoincidentCW() { SkPath path, out; path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction); path.addRect(10, 10, 40, 40, SkPath::kCW_Direction); simplify(path, true, out); if (!out.isEmpty()) { SkDebugf("%s expected empty\n", __FUNCTION__); } } static void testSimplifyCorner() { SkPath path, out; path.addRect(10, 10, 20, 20, SkPath::kCCW_Direction); path.addRect(20, 20, 40, 40, SkPath::kCW_Direction); simplify(path, true, out); SkTDArray boundsArray; contourBounds(out, boundsArray); if (boundsArray.count() != 2) { SkDebugf("%s expected 2 contours\n", __FUNCTION__); return; } SkRect one = SkRect::MakeLTRB(10, 10, 20, 20); SkRect two = SkRect::MakeLTRB(20, 20, 40, 40); if (boundsArray[0] != one && boundsArray[0] != two || boundsArray[1] != one && boundsArray[1] != two) { SkDebugf("%s expected match\n", __FUNCTION__); } } static void testSimplifyDiagonal() { SkRect rect2 = SkRect::MakeXYWH(10, 10, 10, 10); for (size_t outDir = SkPath::kCW_Direction; outDir <= SkPath::kCCW_Direction; ++outDir) { for (size_t inDir = SkPath::kCW_Direction; inDir <= SkPath::kCCW_Direction; ++inDir) { for (int x = 0; x <= 20; x += 20) { for (int y = 0; y <= 20; y += 20) { SkPath path, out; SkRect rect1 = SkRect::MakeXYWH(x, y, 10, 10); path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); SkPath::Iter iter(out, false); SkPoint pts[4], lastLine[2]; SkPath::Verb verb; SkRect bounds[2]; bounds[0].setEmpty(); bounds[1].setEmpty(); SkRect* boundsPtr = bounds; int count = 0, segments = 0; bool lastLineSet = false; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: if (!boundsPtr->isEmpty()) { SkASSERT(boundsPtr == bounds); ++boundsPtr; } boundsPtr->set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY); count = 0; lastLineSet = false; break; case SkPath::kLine_Verb: if (lastLineSet) { SkASSERT((lastLine[1].fX - lastLine[0].fX) * (pts[1].fY - lastLine[0].fY) != (lastLine[1].fY - lastLine[0].fY) * (pts[1].fX - lastLine[0].fX)); } lastLineSet = true; lastLine[0] = pts[0]; lastLine[1] = pts[1]; count = 1; ++segments; break; case SkPath::kClose_Verb: count = 0; break; default: SkDEBUGFAIL("bad verb"); return; } for (int i = 1; i <= count; ++i) { boundsPtr->growToInclude(pts[i].fX, pts[i].fY); } } if (boundsPtr != bounds) { SkASSERT((bounds[0] == rect1 || bounds[1] == rect1) && (bounds[0] == rect2 || bounds[1] == rect2)); } else { SkASSERT(segments == 8); } } } } } } static void assertOneContour(const SkPath& out, bool edge, bool extend) { SkPath::Iter iter(out, false); SkPoint pts[4]; SkPath::Verb verb; SkRect bounds; bounds.setEmpty(); int count = 0; while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: SkASSERT(count == 0); break; case SkPath::kLine_Verb: SkASSERT(pts[0].fX == pts[1].fX || pts[0].fY == pts[1].fY); ++count; break; case SkPath::kClose_Verb: break; default: SkDEBUGFAIL("bad verb"); return; } } SkASSERT(count == (extend ? 4 : edge ? 6 : 8)); } static void testSimplifyCoincident() { // outside to inside, outside to right, outside to outside // left to inside, left to right, left to outside // inside to right, inside to outside // repeat above for left, right, bottom SkScalar start[] = { 0, 10, 20 }; size_t startCount = sizeof(start) / sizeof(start[0]); SkScalar stop[] = { 30, 40, 50 }; size_t stopCount = sizeof(stop) / sizeof(stop[0]); SkRect rect2 = SkRect::MakeXYWH(10, 10, 30, 30); for (size_t outDir = SkPath::kCW_Direction; outDir <= SkPath::kCCW_Direction; ++outDir) { for (size_t inDir = SkPath::kCW_Direction; inDir <= SkPath::kCCW_Direction; ++inDir) { for (size_t startIndex = 0; startIndex < startCount; ++startIndex) { for (size_t stopIndex = 0; stopIndex < stopCount; ++stopIndex) { bool extend = start[startIndex] == rect2.fLeft && stop[stopIndex] == rect2.fRight; bool edge = start[startIndex] == rect2.fLeft || stop[stopIndex] == rect2.fRight; SkRect rect1 = SkRect::MakeLTRB(start[startIndex], 0, stop[stopIndex], 10); SkPath path, out; path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); assertOneContour(out, edge, extend); path.reset(); rect1 = SkRect::MakeLTRB(start[startIndex], 40, stop[stopIndex], 50); path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); assertOneContour(out, edge, extend); path.reset(); rect1 = SkRect::MakeLTRB(0, start[startIndex], 10, stop[stopIndex]); path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); assertOneContour(out, edge, extend); path.reset(); rect1 = SkRect::MakeLTRB(40, start[startIndex], 50, stop[stopIndex]); path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); assertOneContour(out, edge, extend); } } } } } static void testSimplifyOverlap() { SkScalar start[] = { 0, 10, 20 }; size_t startCount = sizeof(start) / sizeof(start[0]); SkScalar stop[] = { 30, 40, 50 }; size_t stopCount = sizeof(stop) / sizeof(stop[0]); SkRect rect2 = SkRect::MakeXYWH(10, 10, 30, 30); for (size_t dir = SkPath::kCW_Direction; dir <= SkPath::kCCW_Direction; ++dir) { for (size_t lefty = 0; lefty < startCount; ++lefty) { for (size_t righty = 0; righty < stopCount; ++righty) { for (size_t toppy = 0; toppy < startCount; ++toppy) { for (size_t botty = 0; botty < stopCount; ++botty) { SkRect rect1 = SkRect::MakeLTRB(start[lefty], start[toppy], stop[righty], stop[botty]); SkPath path, out; path.addRect(rect1, static_cast(dir)); path.addRect(rect2, static_cast(dir)); testSimplify(path, true, out); } } } } } } static void testSimplifyOverlapTiny() { SkScalar start[] = { 0, 1, 2 }; size_t startCount = sizeof(start) / sizeof(start[0]); SkScalar stop[] = { 3, 4, 5 }; size_t stopCount = sizeof(stop) / sizeof(stop[0]); SkRect rect2 = SkRect::MakeXYWH(1, 1, 3, 3); for (size_t dir = SkPath::kCW_Direction; dir <= SkPath::kCCW_Direction; ++dir) { for (size_t lefty = 0; lefty < startCount; ++lefty) { for (size_t righty = 0; righty < stopCount; ++righty) { for (size_t toppy = 0; toppy < startCount; ++toppy) { for (size_t botty = 0; botty < stopCount; ++botty) { SkRect rect1 = SkRect::MakeLTRB(start[lefty], start[toppy], stop[righty], stop[botty]); SkPath path, out; path.addRect(rect1, static_cast(dir)); path.addRect(rect2, static_cast(dir)); simplify(path, true, out); comparePathsTiny(path, out); } } } } } } static void testSimplifyDegenerate() { SkScalar start[] = { 0, 10, 20 }; size_t startCount = sizeof(start) / sizeof(start[0]); SkScalar stop[] = { 30, 40, 50 }; size_t stopCount = sizeof(stop) / sizeof(stop[0]); SkRect rect2 = SkRect::MakeXYWH(10, 10, 30, 30); for (size_t outDir = SkPath::kCW_Direction; outDir <= SkPath::kCCW_Direction; ++outDir) { for (size_t inDir = SkPath::kCW_Direction; inDir <= SkPath::kCCW_Direction; ++inDir) { for (size_t startIndex = 0; startIndex < startCount; ++startIndex) { for (size_t stopIndex = 0; stopIndex < stopCount; ++stopIndex) { SkRect rect1 = SkRect::MakeLTRB(start[startIndex], 0, stop[stopIndex], 0); SkPath path, out; path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); SkRect rect; if (!out.isRect(&rect)) { SkDebugf("%s 1 expected rect\n", __FUNCTION__); } if (rect != rect2) { SkDebugf("%s 1 expected union\n", __FUNCTION__); } path.reset(); rect1 = SkRect::MakeLTRB(start[startIndex], 40, stop[stopIndex], 40); path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); if (!out.isRect(&rect)) { SkDebugf("%s 2 expected rect\n", __FUNCTION__); } if (rect != rect2) { SkDebugf("%s 2 expected union\n", __FUNCTION__); } path.reset(); rect1 = SkRect::MakeLTRB(0, start[startIndex], 0, stop[stopIndex]); path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); if (!out.isRect(&rect)) { SkDebugf("%s 3 expected rect\n", __FUNCTION__); } if (rect != rect2) { SkDebugf("%s 3 expected union\n", __FUNCTION__); } path.reset(); rect1 = SkRect::MakeLTRB(40, start[startIndex], 40, stop[stopIndex]); path.addRect(rect1, static_cast(outDir)); path.addRect(rect2, static_cast(inDir)); simplify(path, true, out); if (!out.isRect(&rect)) { SkDebugf("%s 4 expected rect\n", __FUNCTION__); } if (rect != rect2) { SkDebugf("%s 4 expected union\n", __FUNCTION__); } } } } } } static void testSimplifyDegenerate1() { SkPath path, out; path.setFillType(SkPath::kWinding_FillType); path.addRect( 0, 0, 0, 30); path.addRect(10, 10, 40, 40); simplify(path, true, out); SkRect rect; if (!out.isRect(&rect)) { SkDebugf("%s expected rect\n", __FUNCTION__); } if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) { SkDebugf("%s expected union\n", __FUNCTION__); } } static void (*simplifyTests[])() = { testSimplifyCoincidentInner, testSimplifyOverlapTiny, testSimplifyDegenerate1, testSimplifyCorner, testSimplifyDegenerate, testSimplifyOverlap, testSimplifyDiagonal, testSimplifyCoincident, testSimplifyCoincidentCW, testSimplifyCoincidentCCW, testSimplifyCoincidentVertical, testSimplifyCoincidentHorizontal, testSimplifyAddL, testSimplifyMulti, }; static size_t simplifyTestsCount = sizeof(simplifyTests) / sizeof(simplifyTests[0]); static void (*firstTest)() = 0; void SimplifyRectangularPaths_Test() { size_t index = 0; if (firstTest) { while (index < simplifyTestsCount && simplifyTests[index] != firstTest) { ++index; } } for ( ; index < simplifyTestsCount; ++index) { if (simplifyTests[index] == testSimplifyCorner) { // testSimplifyCorner fails because it expects two contours, where // only one is returned. Both results are reasonable, but if two // contours are desirable, or if we provide an option to choose // between longer contours and more contours, turn this back on. For // the moment, testSimplifyDiagonal also checks the test case, and // permits either two rects or one non-crossing poly as valid // unreported results. continue; } (*simplifyTests[index])(); } }