/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CubicUtilities.h" #include "QuadraticUtilities.h" void coefficients(const double* cubic, double& A, double& B, double& C, double& D) { A = cubic[6]; // d B = cubic[4] * 3; // 3*c C = cubic[2] * 3; // 3*b D = cubic[0]; // a A -= D - C + B; // A = -a + 3*b - 3*c + d B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c C -= 3 * D; // C = -3*a + 3*b } // cubic roots const double PI = 4 * atan(1); static bool is_unit_interval(double x) { return x > 0 && x < 1; } // from SkGeometry.cpp (and Numeric Solutions, 5.6) int cubicRoots(double A, double B, double C, double D, double t[3]) { if (approximately_zero(A)) { // we're just a quadratic return quadraticRoots(B, C, D, t); } double a, b, c; { double invA = 1 / A; a = B * invA; b = C * invA; c = D * invA; } double a2 = a * a; double Q = (a2 - b * 3) / 9; double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; double Q3 = Q * Q * Q; double R2MinusQ3 = R * R - Q3; double adiv3 = a / 3; double* roots = t; double r; if (R2MinusQ3 < 0) // we have 3 real roots { double theta = acos(R / sqrt(Q3)); double neg2RootQ = -2 * sqrt(Q); r = neg2RootQ * cos(theta / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; } else // we have 1 real root { double A = fabs(R) + sqrt(R2MinusQ3); A = cube_root(A); if (R > 0) { A = -A; } if (A != 0) { A += Q / A; } r = A - adiv3; if (is_unit_interval(r)) *roots++ = r; } return (int)(roots - t); } // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 double derivativeAtT(const double* cubic, double t) { double one_t = 1 - t; double a = cubic[0]; double b = cubic[2]; double c = cubic[4]; double d = cubic[6]; return (b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t; } // same as derivativeAtT // which is more accurate? which is faster? double derivativeAtT_2(const double* cubic, double t) { double a = cubic[2] - cubic[0]; double b = cubic[4] - 2 * cubic[2] + cubic[0]; double c = cubic[6] + 3 * (cubic[2] - cubic[4]) - cubic[0]; return c * c * t * t + 2 * b * t + a; } void dxdy_at_t(const Cubic& cubic, double t, double& dx, double& dy) { if (&dx) { dx = derivativeAtT(&cubic[0].x, t); } if (&dy) { dy = derivativeAtT(&cubic[0].y, t); } } bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) { double dy = cubic[index].y - cubic[zero].y; double dx = cubic[index].x - cubic[zero].x; if (approximately_equal(dy, 0)) { if (approximately_equal(dx, 0)) { return false; } memcpy(rotPath, cubic, sizeof(Cubic)); return true; } for (int index = 0; index < 4; ++index) { rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy; rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy; } return true; } double secondDerivativeAtT(const double* cubic, double t) { double a = cubic[0]; double b = cubic[2]; double c = cubic[4]; double d = cubic[6]; return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t; } void xy_at_t(const Cubic& cubic, double t, double& x, double& y) { double one_t = 1 - t; double one_t2 = one_t * one_t; double a = one_t2 * one_t; double b = 3 * one_t2 * t; double t2 = t * t; double c = 3 * one_t * t2; double d = t2 * t; if (&x) { x = a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x; } if (&y) { y = a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y; } }