/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CubicUtilities.h" #include "QuadraticUtilities.h" const int precisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework // FIXME: cache keep the bounds and/or precision with the caller? double calcPrecision(const Cubic& cubic) { _Rect dRect; dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ? double width = dRect.right - dRect.left; double height = dRect.bottom - dRect.top; return (width > height ? width : height) / precisionUnit; } #if SK_DEBUG double calcPrecision(const Cubic& cubic, double t, double scale) { Cubic part; sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part); return calcPrecision(part); } #endif void coefficients(const double* cubic, double& A, double& B, double& C, double& D) { A = cubic[6]; // d B = cubic[4] * 3; // 3*c C = cubic[2] * 3; // 3*b D = cubic[0]; // a A -= D - C + B; // A = -a + 3*b - 3*c + d B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c C -= 3 * D; // C = -3*a + 3*b } // cubic roots const double PI = 4 * atan(1); // from SkGeometry.cpp (and Numeric Solutions, 5.6) int cubicRootsValidT(double A, double B, double C, double D, double t[3]) { #if 0 if (approximately_zero(A)) { // we're just a quadratic return quadraticRootsValidT(B, C, D, t); } double a, b, c; { double invA = 1 / A; a = B * invA; b = C * invA; c = D * invA; } double a2 = a * a; double Q = (a2 - b * 3) / 9; double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; double Q3 = Q * Q * Q; double R2MinusQ3 = R * R - Q3; double adiv3 = a / 3; double* roots = t; double r; if (R2MinusQ3 < 0) // we have 3 real roots { double theta = acos(R / sqrt(Q3)); double neg2RootQ = -2 * sqrt(Q); r = neg2RootQ * cos(theta / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; } else // we have 1 real root { double A = fabs(R) + sqrt(R2MinusQ3); A = cube_root(A); if (R > 0) { A = -A; } if (A != 0) { A += Q / A; } r = A - adiv3; if (is_unit_interval(r)) *roots++ = r; } return (int)(roots - t); #else double s[3]; int realRoots = cubicRootsReal(A, B, C, D, s); int foundRoots = add_valid_ts(s, realRoots, t); return foundRoots; #endif } int cubicRootsReal(double A, double B, double C, double D, double s[3]) { #if SK_DEBUG // create a string mathematica understands // GDB set print repe 15 # if repeated digits is a bother // set print elements 400 # if line doesn't fit char str[1024]; bzero(str, sizeof(str)); sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D); #endif if (approximately_zero(A)) { // we're just a quadratic return quadraticRootsReal(B, C, D, s); } if (approximately_zero(D)) { // 0 is one root int num = quadraticRootsReal(A, B, C, s); for (int i = 0; i < num; ++i) { if (approximately_zero(s[i])) { return num; } } s[num++] = 0; return num; } if (approximately_zero(A + B + C + D)) { // 1 is one root int num = quadraticRootsReal(A, A + B, -D, s); for (int i = 0; i < num; ++i) { if (AlmostEqualUlps(s[i], 1)) { return num; } } s[num++] = 1; return num; } double a, b, c; { double invA = 1 / A; a = B * invA; b = C * invA; c = D * invA; } double a2 = a * a; double Q = (a2 - b * 3) / 9; double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; double R2 = R * R; double Q3 = Q * Q * Q; double R2MinusQ3 = R2 - Q3; double adiv3 = a / 3; double r; double* roots = s; #if 0 if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) { if (approximately_zero_squared(R)) {/* one triple solution */ *roots++ = -adiv3; } else { /* one single and one double solution */ double u = cube_root(-R); *roots++ = 2 * u - adiv3; *roots++ = -u - adiv3; } } else #endif if (R2MinusQ3 < 0) // we have 3 real roots { double theta = acos(R / sqrt(Q3)); double neg2RootQ = -2 * sqrt(Q); r = neg2RootQ * cos(theta / 3) - adiv3; *roots++ = r; r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; if (!AlmostEqualUlps(s[0], r)) { *roots++ = r; } r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) { *roots++ = r; } } else // we have 1 real root { double sqrtR2MinusQ3 = sqrt(R2MinusQ3); double A = fabs(R) + sqrtR2MinusQ3; A = cube_root(A); if (R > 0) { A = -A; } if (A != 0) { A += Q / A; } r = A - adiv3; *roots++ = r; if (AlmostEqualUlps(R2, Q3)) { r = -A / 2 - adiv3; if (!AlmostEqualUlps(s[0], r)) { *roots++ = r; } } } return (int)(roots - s); } // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 static double derivativeAtT(const double* cubic, double t) { double one_t = 1 - t; double a = cubic[0]; double b = cubic[2]; double c = cubic[4]; double d = cubic[6]; return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); } double dx_at_t(const Cubic& cubic, double t) { return derivativeAtT(&cubic[0].x, t); } double dy_at_t(const Cubic& cubic, double t) { return derivativeAtT(&cubic[0].y, t); } // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t? void dxdy_at_t(const Cubic& cubic, double t, _Point& dxdy) { dxdy.x = derivativeAtT(&cubic[0].x, t); dxdy.y = derivativeAtT(&cubic[0].y, t); } int find_cubic_inflections(const Cubic& src, double tValues[]) { double Ax = src[1].x - src[0].x; double Ay = src[1].y - src[0].y; double Bx = src[2].x - 2 * src[1].x + src[0].x; double By = src[2].y - 2 * src[1].y + src[0].y; double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x; double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y; return quadraticRootsValidT(Bx * Cy - By * Cx, (Ax * Cy - Ay * Cx), Ax * By - Ay * Bx, tValues); } bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) { double dy = cubic[index].y - cubic[zero].y; double dx = cubic[index].x - cubic[zero].x; if (approximately_zero(dy)) { if (approximately_zero(dx)) { return false; } memcpy(rotPath, cubic, sizeof(Cubic)); return true; } for (int index = 0; index < 4; ++index) { rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy; rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy; } return true; } #if 0 // unused for now double secondDerivativeAtT(const double* cubic, double t) { double a = cubic[0]; double b = cubic[2]; double c = cubic[4]; double d = cubic[6]; return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t; } #endif void xy_at_t(const Cubic& cubic, double t, double& x, double& y) { double one_t = 1 - t; double one_t2 = one_t * one_t; double a = one_t2 * one_t; double b = 3 * one_t2 * t; double t2 = t * t; double c = 3 * one_t * t2; double d = t2 * t; if (&x) { x = a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x; } if (&y) { y = a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y; } }