#include "CubicUtilities.h" #include "DataTypes.h" #include "QuadraticUtilities.h" void coefficients(const double* cubic, double& A, double& B, double& C, double& D) { A = cubic[6]; // d B = cubic[4] * 3; // 3*c C = cubic[2] * 3; // 3*b D = cubic[0]; // a A -= D - C + B; // A = -a + 3*b - 3*c + d B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c C -= 3 * D; // C = -3*a + 3*b } // cubic roots const double PI = 4 * atan(1); static bool is_unit_interval(double x) { return x > 0 && x < 1; } // from SkGeometry.cpp (and Numeric Solutions, 5.6) int cubicRoots(double A, double B, double C, double D, double t[3]) { if (approximately_zero(A)) { // we're just a quadratic return quadraticRoots(B, C, D, t); } double a, b, c; { double invA = 1 / A; a = B * invA; b = C * invA; c = D * invA; } double a2 = a * a; double Q = (a2 - b * 3) / 9; double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; double Q3 = Q * Q * Q; double R2MinusQ3 = R * R - Q3; double adiv3 = a / 3; double* roots = t; double r; if (R2MinusQ3 < 0) // we have 3 real roots { double theta = acos(R / sqrt(Q3)); double neg2RootQ = -2 * sqrt(Q); r = neg2RootQ * cos(theta / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; if (is_unit_interval(r)) *roots++ = r; } else // we have 1 real root { double A = fabs(R) + sqrt(R2MinusQ3); A = cube_root(A); if (R > 0) { A = -A; } if (A != 0) { A += Q / A; } r = A - adiv3; if (is_unit_interval(r)) *roots++ = r; } return (int)(roots - t); }