/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "CurveIntersection.h" #include "Extrema.h" #include "IntersectionUtilities.h" #include "LineParameters.h" static double interp_cubic_coords(const double* src, double t) { double ab = interp(src[0], src[2], t); double bc = interp(src[2], src[4], t); double cd = interp(src[4], src[6], t); double abc = interp(ab, bc, t); double bcd = interp(bc, cd, t); return interp(abc, bcd, t); } static int coincident_line(const Cubic& cubic, Cubic& reduction) { reduction[0] = reduction[1] = cubic[0]; return 1; } static int vertical_line(const Cubic& cubic, Cubic& reduction) { double tValues[2]; reduction[0] = cubic[0]; reduction[1] = cubic[3]; int smaller = reduction[1].y > reduction[0].y; int larger = smaller ^ 1; int roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); for (int index = 0; index < roots; ++index) { double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]); if (reduction[smaller].y > yExtrema) { reduction[smaller].y = yExtrema; continue; } if (reduction[larger].y < yExtrema) { reduction[larger].y = yExtrema; } } return 2; } static int horizontal_line(const Cubic& cubic, Cubic& reduction) { double tValues[2]; reduction[0] = cubic[0]; reduction[1] = cubic[3]; int smaller = reduction[1].x > reduction[0].x; int larger = smaller ^ 1; int roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); for (int index = 0; index < roots; ++index) { double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]); if (reduction[smaller].x > xExtrema) { reduction[smaller].x = xExtrema; continue; } if (reduction[larger].x < xExtrema) { reduction[larger].x = xExtrema; } } return 2; } // check to see if it is a quadratic or a line static int check_quadratic(const Cubic& cubic, Cubic& reduction) { double dx10 = cubic[1].x - cubic[0].x; double dx23 = cubic[2].x - cubic[3].x; double midX = cubic[0].x + dx10 * 3 / 2; if (!AlmostEqualUlps(midX - cubic[3].x, dx23 * 3 / 2)) { return 0; } double dy10 = cubic[1].y - cubic[0].y; double dy23 = cubic[2].y - cubic[3].y; double midY = cubic[0].y + dy10 * 3 / 2; if (!AlmostEqualUlps(midY - cubic[3].y, dy23 * 3 / 2)) { return 0; } reduction[0] = cubic[0]; reduction[1].x = midX; reduction[1].y = midY; reduction[2] = cubic[3]; return 3; } static int check_linear(const Cubic& cubic, Cubic& reduction, int minX, int maxX, int minY, int maxY) { int startIndex = 0; int endIndex = 3; while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { --endIndex; if (endIndex == 0) { printf("%s shouldn't get here if all four points are about equal\n", __FUNCTION__); assert(0); } } if (!isLinear(cubic, startIndex, endIndex)) { return 0; } // four are colinear: return line formed by outside reduction[0] = cubic[0]; reduction[1] = cubic[3]; int sameSide1; int sameSide2; bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y; if (useX) { sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x); sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x); } else { sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y); sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y); } if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) { return 2; } double tValues[2]; int roots; if (useX) { roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); } else { roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); } for (int index = 0; index < roots; ++index) { _Point extrema; extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]); extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]); // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller int replace; if (useX) { if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) { continue; } replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x) ^ (cubic[0].x < cubic[3].x); } else { if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) { continue; } replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y) ^ (cubic[0].y < cubic[3].y); } reduction[replace] = extrema; } return 2; } bool isLinear(const Cubic& cubic, int startIndex, int endIndex) { LineParameters lineParameters; lineParameters.cubicEndPoints(cubic, startIndex, endIndex); // FIXME: maybe it's possible to avoid this and compare non-normalized lineParameters.normalize(); int mask = other_two(startIndex, endIndex); int inner1 = startIndex ^ mask; int inner2 = endIndex ^ mask; double distance = lineParameters.controlPtDistance(cubic, inner1); if (!approximately_zero(distance)) { return false; } distance = lineParameters.controlPtDistance(cubic, inner2); return approximately_zero(distance); } /* food for thought: http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the corresponding quadratic Bezier are (given in convex combinations of points): q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 Of course, this curve does not interpolate the end-points, but it would be interesting to see the behaviour of such a curve in an applet. -- Kalle Rutanen http://kaba.hilvi.org */ // reduce to a quadratic or smaller // look for identical points // look for all four points in a line // note that three points in a line doesn't simplify a cubic // look for approximation with single quadratic // save approximation with multiple quadratics for later int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Flags allowQuadratics) { int index, minX, maxX, minY, maxY; int minXSet, minYSet; minX = maxX = minY = maxY = 0; minXSet = minYSet = 0; for (index = 1; index < 4; ++index) { if (cubic[minX].x > cubic[index].x) { minX = index; } if (cubic[minY].y > cubic[index].y) { minY = index; } if (cubic[maxX].x < cubic[index].x) { maxX = index; } if (cubic[maxY].y < cubic[index].y) { maxY = index; } } for (index = 0; index < 4; ++index) { if (AlmostEqualUlps(cubic[index].x, cubic[minX].x)) { minXSet |= 1 << index; } if (AlmostEqualUlps(cubic[index].y, cubic[minY].y)) { minYSet |= 1 << index; } } if (minXSet == 0xF) { // test for vertical line if (minYSet == 0xF) { // return 1 if all four are coincident return coincident_line(cubic, reduction); } return vertical_line(cubic, reduction); } if (minYSet == 0xF) { // test for horizontal line return horizontal_line(cubic, reduction); } int result = check_linear(cubic, reduction, minX, maxX, minY, maxY); if (result) { return result; } if (allowQuadratics && (result = check_quadratic(cubic, reduction))) { return result; } memcpy(reduction, cubic, sizeof(Cubic)); return 4; }