/* * Copyright 2012 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #define LOG_TAG "PathRenderer" #define LOG_NDEBUG 1 #define ATRACE_TAG ATRACE_TAG_GRAPHICS #define VERTEX_DEBUG 0 #include #include #include #include #include #include #include #include #include #ifdef VERBOSE #define ALOGV SkDebugf #else #define ALOGV(x, ...) #endif #include "AndroidPathRenderer.h" #include "Vertex.h" namespace android { namespace uirenderer { #define THRESHOLD 0.5f SkRect PathRenderer::ComputePathBounds(const SkPath& path, const SkPaint* paint) { SkRect bounds = path.getBounds(); if (paint->getStyle() != SkPaint::kFill_Style) { float outset = paint->getStrokeWidth() * 0.5f; bounds.outset(outset, outset); } return bounds; } inline void computeInverseScales(const SkMatrix* transform, float &inverseScaleX, float& inverseScaleY) { if (transform && transform->getType() & (SkMatrix::kScale_Mask|SkMatrix::kAffine_Mask|SkMatrix::kPerspective_Mask)) { float m00 = transform->getScaleX(); float m01 = transform->getSkewY(); float m10 = transform->getSkewX(); float m11 = transform->getScaleY(); float scaleX = sk_float_sqrt(m00 * m00 + m01 * m01); float scaleY = sk_float_sqrt(m10 * m10 + m11 * m11); inverseScaleX = (scaleX != 0) ? (1.0f / scaleX) : 1.0f; inverseScaleY = (scaleY != 0) ? (1.0f / scaleY) : 1.0f; } else { inverseScaleX = 1.0f; inverseScaleY = 1.0f; } } inline void copyVertex(Vertex* destPtr, const Vertex* srcPtr) { Vertex::set(destPtr, srcPtr->position[0], srcPtr->position[1]); } inline void copyAlphaVertex(AlphaVertex* destPtr, const AlphaVertex* srcPtr) { AlphaVertex::set(destPtr, srcPtr->position[0], srcPtr->position[1], srcPtr->alpha); } /** * Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset * from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices * will be offset by 1.0 * * Note that we can't add and normalize the two vectors, that would result in a rectangle having an * offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1) * * NOTE: assumes angles between normals 90 degrees or less */ inline SkVector totalOffsetFromNormals(const SkVector& normalA, const SkVector& normalB) { SkVector pseudoNormal = normalA + normalB; pseudoNormal.scale(1.0f / (1.0f + sk_float_abs(normalA.dot(normalB)))); return pseudoNormal; } inline void scaleOffsetForStrokeWidth(SkVector& offset, float halfStrokeWidth, float inverseScaleX, float inverseScaleY) { if (halfStrokeWidth == 0.0f) { // hairline - compensate for scale offset.fX *= 0.5f * inverseScaleX; offset.fY *= 0.5f * inverseScaleY; } else { offset.scale(halfStrokeWidth); } } static void getFillVerticesFromPerimeter(const SkTArray& perimeter, VertexBuffer* vertexBuffer) { Vertex* buffer = vertexBuffer->alloc(perimeter.count()); int currentIndex = 0; // zig zag between all previous points on the inside of the hull to create a // triangle strip that fills the hull int srcAindex = 0; int srcBindex = perimeter.count() - 1; while (srcAindex <= srcBindex) { copyVertex(&buffer[currentIndex++], &perimeter[srcAindex]); if (srcAindex == srcBindex) break; copyVertex(&buffer[currentIndex++], &perimeter[srcBindex]); srcAindex++; srcBindex--; } } static void getStrokeVerticesFromPerimeter(const SkTArray& perimeter, float halfStrokeWidth, VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { Vertex* buffer = vertexBuffer->alloc(perimeter.count() * 2 + 2); int currentIndex = 0; const Vertex* last = &(perimeter[perimeter.count() - 1]); const Vertex* current = &(perimeter[0]); SkVector lastNormal; lastNormal.set(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); for (int i = 0; i < perimeter.count(); i++) { const Vertex* next = &(perimeter[i + 1 >= perimeter.count() ? 0 : i + 1]); SkVector nextNormal; nextNormal.set(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); Vertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.fX, current->position[1] + totalOffset.fY); Vertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.fX, current->position[1] - totalOffset.fY); last = current; current = next; lastNormal = nextNormal; } // wrap around to beginning copyVertex(&buffer[currentIndex++], &buffer[0]); copyVertex(&buffer[currentIndex++], &buffer[1]); } static void getStrokeVerticesFromUnclosedVertices(const SkTArray& vertices, float halfStrokeWidth, VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { Vertex* buffer = vertexBuffer->alloc(vertices.count() * 2); int currentIndex = 0; const Vertex* current = &(vertices[0]); SkVector lastNormal; for (int i = 0; i < vertices.count() - 1; i++) { const Vertex* next = &(vertices[i + 1]); SkVector nextNormal; nextNormal.set(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); SkVector totalOffset; if (i == 0) { totalOffset = nextNormal; } else { totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); } scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); Vertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.fX, current->position[1] + totalOffset.fY); Vertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.fX, current->position[1] - totalOffset.fY); current = next; lastNormal = nextNormal; } SkVector totalOffset = lastNormal; scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); Vertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.fX, current->position[1] + totalOffset.fY); Vertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.fX, current->position[1] - totalOffset.fY); #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { SkDebugf("point at %f %f", buffer[i].position[0], buffer[i].position[1]); } #endif } static void getFillVerticesFromPerimeterAA(const SkTArray& perimeter, VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { AlphaVertex* buffer = vertexBuffer->alloc(perimeter.count() * 3 + 2); // generate alpha points - fill Alpha vertex gaps in between each point with // alpha 0 vertex, offset by a scaled normal. int currentIndex = 0; const Vertex* last = &(perimeter[perimeter.count() - 1]); const Vertex* current = &(perimeter[0]); SkVector lastNormal; lastNormal.set(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); for (int i = 0; i < perimeter.count(); i++) { const Vertex* next = &(perimeter[i + 1 >= perimeter.count() ? 0 : i + 1]); SkVector nextNormal; nextNormal.set(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); // AA point offset from original point is that point's normal, such that each side is offset // by .5 pixels SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); totalOffset.fX *= 0.5f * inverseScaleX; totalOffset.fY *= 0.5f * inverseScaleY; AlphaVertex::set(&buffer[currentIndex++], current->position[0] + totalOffset.fX, current->position[1] + totalOffset.fY, 0.0f); AlphaVertex::set(&buffer[currentIndex++], current->position[0] - totalOffset.fX, current->position[1] - totalOffset.fY, 1.0f); last = current; current = next; lastNormal = nextNormal; } // wrap around to beginning copyAlphaVertex(&buffer[currentIndex++], &buffer[0]); copyAlphaVertex(&buffer[currentIndex++], &buffer[1]); // zig zag between all previous points on the inside of the hull to create a // triangle strip that fills the hull, repeating the first inner point to // create degenerate tris to start inside path int srcAindex = 0; int srcBindex = perimeter.count() - 1; while (srcAindex <= srcBindex) { copyAlphaVertex(&buffer[currentIndex++], &buffer[srcAindex * 2 + 1]); if (srcAindex == srcBindex) break; copyAlphaVertex(&buffer[currentIndex++], &buffer[srcBindex * 2 + 1]); srcAindex++; srcBindex--; } #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { SkDebugf("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); } #endif } static void getStrokeVerticesFromUnclosedVerticesAA(const SkTArray& vertices, float halfStrokeWidth, VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { AlphaVertex* buffer = vertexBuffer->alloc(6 * vertices.count() + 2); // avoid lines smaller than hairline since they break triangle based sampling. instead reducing // alpha value (TODO: support different X/Y scale) float maxAlpha = 1.0f; if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && halfStrokeWidth * inverseScaleX < 0.5f) { maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; halfStrokeWidth = 0.0f; } // there is no outer/inner here, using them for consistency with below approach int offset = 2 * (vertices.count() - 2); int currentAAOuterIndex = 2; int currentAAInnerIndex = 2 * offset + 5; // reversed int currentStrokeIndex = currentAAInnerIndex + 7; const Vertex* last = &(vertices[0]); const Vertex* current = &(vertices[1]); SkVector lastNormal; lastNormal.set(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); { // start cap SkVector totalOffset = lastNormal; SkVector AAOffset = totalOffset; AAOffset.fX *= 0.5f * inverseScaleX; AAOffset.fY *= 0.5f * inverseScaleY; SkVector innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); SkVector outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; // TODO: support square cap by changing this offset to incorporate halfStrokeWidth SkVector capAAOffset; capAAOffset.set(AAOffset.fY, -AAOffset.fX); AlphaVertex::set(&buffer[0], last->position[0] + outerOffset.fX + capAAOffset.fX, last->position[1] + outerOffset.fY + capAAOffset.fY, 0.0f); AlphaVertex::set(&buffer[1], last->position[0] + innerOffset.fX - capAAOffset.fX, last->position[1] + innerOffset.fY - capAAOffset.fY, maxAlpha); AlphaVertex::set(&buffer[2 * offset + 6], last->position[0] - outerOffset.fX + capAAOffset.fX, last->position[1] - outerOffset.fY + capAAOffset.fY, 0.0f); AlphaVertex::set(&buffer[2 * offset + 7], last->position[0] - innerOffset.fX - capAAOffset.fX, last->position[1] - innerOffset.fY - capAAOffset.fY, maxAlpha); copyAlphaVertex(&buffer[2 * offset + 8], &buffer[0]); copyAlphaVertex(&buffer[2 * offset + 9], &buffer[1]); copyAlphaVertex(&buffer[2 * offset + 10], &buffer[1]); // degenerate tris (the only two!) copyAlphaVertex(&buffer[2 * offset + 11], &buffer[2 * offset + 7]); } for (int i = 1; i < vertices.count() - 1; i++) { const Vertex* next = &(vertices[i + 1]); SkVector nextNormal; nextNormal.set(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); SkVector AAOffset = totalOffset; AAOffset.fX *= 0.5f * inverseScaleX; AAOffset.fY *= 0.5f * inverseScaleY; SkVector innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); SkVector outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + outerOffset.fX, current->position[1] + outerOffset.fY, 0.0f); AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + innerOffset.fX, current->position[1] + innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] + innerOffset.fX, current->position[1] + innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] - innerOffset.fX, current->position[1] - innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex--], current->position[0] - innerOffset.fX, current->position[1] - innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex--], current->position[0] - outerOffset.fX, current->position[1] - outerOffset.fY, 0.0f); last = current; current = next; lastNormal = nextNormal; } { // end cap SkVector totalOffset = lastNormal; SkVector AAOffset = totalOffset; AAOffset.fX *= 0.5f * inverseScaleX; AAOffset.fY *= 0.5f * inverseScaleY; SkVector innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); SkVector outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; // TODO: support square cap by changing this offset to incorporate halfStrokeWidth SkVector capAAOffset; capAAOffset.set(-AAOffset.fY, AAOffset.fX); AlphaVertex::set(&buffer[offset + 2], current->position[0] + outerOffset.fX + capAAOffset.fX, current->position[1] + outerOffset.fY + capAAOffset.fY, 0.0f); AlphaVertex::set(&buffer[offset + 3], current->position[0] + innerOffset.fX - capAAOffset.fX, current->position[1] + innerOffset.fY - capAAOffset.fY, maxAlpha); AlphaVertex::set(&buffer[offset + 4], current->position[0] - outerOffset.fX + capAAOffset.fX, current->position[1] - outerOffset.fY + capAAOffset.fY, 0.0f); AlphaVertex::set(&buffer[offset + 5], current->position[0] - innerOffset.fX - capAAOffset.fX, current->position[1] - innerOffset.fY - capAAOffset.fY, maxAlpha); copyAlphaVertex(&buffer[vertexBuffer->getSize() - 2], &buffer[offset + 3]); copyAlphaVertex(&buffer[vertexBuffer->getSize() - 1], &buffer[offset + 5]); } #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { SkDebugf("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); } #endif } static void getStrokeVerticesFromPerimeterAA(const SkTArray& perimeter, float halfStrokeWidth, VertexBuffer* vertexBuffer, float inverseScaleX, float inverseScaleY) { AlphaVertex* buffer = vertexBuffer->alloc(6 * perimeter.count() + 8); // avoid lines smaller than hairline since they break triangle based sampling. instead reducing // alpha value (TODO: support different X/Y scale) float maxAlpha = 1.0f; if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY && halfStrokeWidth * inverseScaleX < 0.5f) { maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX; halfStrokeWidth = 0.0f; } int offset = 2 * perimeter.count() + 3; int currentAAOuterIndex = 0; int currentStrokeIndex = offset; int currentAAInnerIndex = offset * 2; const Vertex* last = &(perimeter[perimeter.count() - 1]); const Vertex* current = &(perimeter[0]); SkVector lastNormal; lastNormal.set(current->position[1] - last->position[1], last->position[0] - current->position[0]); lastNormal.normalize(); for (int i = 0; i < perimeter.count(); i++) { const Vertex* next = &(perimeter[i + 1 >= perimeter.count() ? 0 : i + 1]); SkVector nextNormal; nextNormal.set(next->position[1] - current->position[1], current->position[0] - next->position[0]); nextNormal.normalize(); SkVector totalOffset = totalOffsetFromNormals(lastNormal, nextNormal); SkVector AAOffset = totalOffset; AAOffset.fX *= 0.5f * inverseScaleX; AAOffset.fY *= 0.5f * inverseScaleY; SkVector innerOffset = totalOffset; scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY); SkVector outerOffset = innerOffset + AAOffset; innerOffset -= AAOffset; AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + outerOffset.fX, current->position[1] + outerOffset.fY, 0.0f); AlphaVertex::set(&buffer[currentAAOuterIndex++], current->position[0] + innerOffset.fX, current->position[1] + innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] + innerOffset.fX, current->position[1] + innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentStrokeIndex++], current->position[0] - innerOffset.fX, current->position[1] - innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex++], current->position[0] - innerOffset.fX, current->position[1] - innerOffset.fY, maxAlpha); AlphaVertex::set(&buffer[currentAAInnerIndex++], current->position[0] - outerOffset.fX, current->position[1] - outerOffset.fY, 0.0f); last = current; current = next; lastNormal = nextNormal; } // wrap each strip around to beginning, creating degenerate tris to bridge strips copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[0]); copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]); copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]); copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset]); copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]); copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]); copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset]); copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset + 1]); // don't need to create last degenerate tri #if VERTEX_DEBUG for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) { SkDebugf("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha); } #endif } void PathRenderer::ConvexPathVertices(const SkPath &path, const SkStrokeRec& stroke, bool isAA, const SkMatrix* transform, VertexBuffer* vertexBuffer) { SkStrokeRec::Style style = stroke.getStyle(); float inverseScaleX, inverseScaleY; computeInverseScales(transform, inverseScaleX, inverseScaleY); SkTArray tempVertices; float threshInvScaleX = inverseScaleX; float threshInvScaleY = inverseScaleY; if (style == SkStrokeRec::kStroke_Style) { // alter the bezier recursion threshold values we calculate in order to compensate for // expansion done after the path vertices are found SkRect bounds = path.getBounds(); if (!bounds.isEmpty()) { threshInvScaleX *= bounds.width() / (bounds.width() + stroke.getWidth()); threshInvScaleY *= bounds.height() / (bounds.height() + stroke.getWidth()); } } // force close if we're filling the path, since fill path expects closed perimeter. bool forceClose = style != SkStrokeRec::kStroke_Style; bool wasClosed = ConvexPathPerimeterVertices(path, forceClose, threshInvScaleX * threshInvScaleX, threshInvScaleY * threshInvScaleY, &tempVertices); if (!tempVertices.count()) { // path was empty, return without allocating vertex buffer return; } #if VERTEX_DEBUG for (unsigned int i = 0; i < tempVertices.count(); i++) { SkDebugf("orig path: point at %f %f", tempVertices[i].position[0], tempVertices[i].position[1]); } #endif if (style == SkStrokeRec::kStroke_Style) { float halfStrokeWidth = stroke.getWidth() * 0.5f; if (!isAA) { if (wasClosed) { getStrokeVerticesFromPerimeter(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } else { getStrokeVerticesFromUnclosedVertices(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } } else { if (wasClosed) { getStrokeVerticesFromPerimeterAA(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } else { getStrokeVerticesFromUnclosedVerticesAA(tempVertices, halfStrokeWidth, vertexBuffer, inverseScaleX, inverseScaleY); } } } else { // For kStrokeAndFill style, the path should be adjusted externally, as it will be treated as a fill here. if (!isAA) { getFillVerticesFromPerimeter(tempVertices, vertexBuffer); } else { getFillVerticesFromPerimeterAA(tempVertices, vertexBuffer, inverseScaleX, inverseScaleY); } } } static void pushToVector(SkTArray* vertices, float x, float y) { // TODO: make this not yuck vertices->push_back(); Vertex* newVertex = &((*vertices)[vertices->count() - 1]); Vertex::set(newVertex, x, y); } bool PathRenderer::ConvexPathPerimeterVertices(const SkPath& path, bool forceClose, float sqrInvScaleX, float sqrInvScaleY, SkTArray* outputVertices) { // TODO: to support joins other than sharp miter, join vertices should be labelled in the // perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case. SkPath::Iter iter(path, forceClose); SkPoint pts[4]; SkPath::Verb v; while (SkPath::kDone_Verb != (v = iter.next(pts))) { switch (v) { case SkPath::kMove_Verb: pushToVector(outputVertices, pts[0].x(), pts[0].y()); ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y()); break; case SkPath::kClose_Verb: ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y()); break; case SkPath::kLine_Verb: ALOGV("kLine_Verb %f %f -> %f %f", pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y()); pushToVector(outputVertices, pts[1].x(), pts[1].y()); break; case SkPath::kQuad_Verb: ALOGV("kQuad_Verb"); RecursiveQuadraticBezierVertices( pts[0].x(), pts[0].y(), pts[2].x(), pts[2].y(), pts[1].x(), pts[1].y(), sqrInvScaleX, sqrInvScaleY, outputVertices); break; case SkPath::kCubic_Verb: ALOGV("kCubic_Verb"); RecursiveCubicBezierVertices( pts[0].x(), pts[0].y(), pts[1].x(), pts[1].y(), pts[3].x(), pts[3].y(), pts[2].x(), pts[2].y(), sqrInvScaleX, sqrInvScaleY, outputVertices); break; default: break; } } int size = outputVertices->count(); if (size >= 2 && (*outputVertices)[0].position[0] == (*outputVertices)[size - 1].position[0] && (*outputVertices)[0].position[1] == (*outputVertices)[size - 1].position[1]) { outputVertices->pop_back(); return true; } return false; } void PathRenderer::RecursiveCubicBezierVertices( float p1x, float p1y, float c1x, float c1y, float p2x, float p2y, float c2x, float c2y, float sqrInvScaleX, float sqrInvScaleY, SkTArray* outputVertices) { float dx = p2x - p1x; float dy = p2y - p1y; float d1 = sk_float_abs((c1x - p2x) * dy - (c1y - p2y) * dx); float d2 = sk_float_abs((c2x - p2x) * dy - (c2y - p2y) * dx); float d = d1 + d2; // multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) { // below thresh, draw line by adding endpoint pushToVector(outputVertices, p2x, p2y); } else { float p1c1x = (p1x + c1x) * 0.5f; float p1c1y = (p1y + c1y) * 0.5f; float p2c2x = (p2x + c2x) * 0.5f; float p2c2y = (p2y + c2y) * 0.5f; float c1c2x = (c1x + c2x) * 0.5f; float c1c2y = (c1y + c2y) * 0.5f; float p1c1c2x = (p1c1x + c1c2x) * 0.5f; float p1c1c2y = (p1c1y + c1c2y) * 0.5f; float p2c1c2x = (p2c2x + c1c2x) * 0.5f; float p2c1c2y = (p2c2y + c1c2y) * 0.5f; float mx = (p1c1c2x + p2c1c2x) * 0.5f; float my = (p1c1c2y + p2c1c2y) * 0.5f; RecursiveCubicBezierVertices( p1x, p1y, p1c1x, p1c1y, mx, my, p1c1c2x, p1c1c2y, sqrInvScaleX, sqrInvScaleY, outputVertices); RecursiveCubicBezierVertices( mx, my, p2c1c2x, p2c1c2y, p2x, p2y, p2c2x, p2c2y, sqrInvScaleX, sqrInvScaleY, outputVertices); } } void PathRenderer::RecursiveQuadraticBezierVertices( float ax, float ay, float bx, float by, float cx, float cy, float sqrInvScaleX, float sqrInvScaleY, SkTArray* outputVertices) { float dx = bx - ax; float dy = by - ay; float d = (cx - bx) * dy - (cy - by) * dx; if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) { // below thresh, draw line by adding endpoint pushToVector(outputVertices, bx, by); } else { float acx = (ax + cx) * 0.5f; float bcx = (bx + cx) * 0.5f; float acy = (ay + cy) * 0.5f; float bcy = (by + cy) * 0.5f; // midpoint float mx = (acx + bcx) * 0.5f; float my = (acy + bcy) * 0.5f; RecursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy, sqrInvScaleX, sqrInvScaleY, outputVertices); RecursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy, sqrInvScaleX, sqrInvScaleY, outputVertices); } } }; // namespace uirenderer }; // namespace android