/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "DMSrcSink.h" #include "SamplePipeControllers.h" #include "SkCodec.h" #include "SkCommonFlags.h" #include "SkData.h" #include "SkDeferredCanvas.h" #include "SkDocument.h" #include "SkError.h" #include "SkFunction.h" #include "SkImageGenerator.h" #include "SkMultiPictureDraw.h" #include "SkNullCanvas.h" #include "SkOSFile.h" #include "SkPictureData.h" #include "SkPictureRecorder.h" #include "SkRandom.h" #include "SkRecordDraw.h" #include "SkRecorder.h" #include "SkSVGCanvas.h" #include "SkScanlineDecoder.h" #include "SkStream.h" #include "SkXMLWriter.h" DEFINE_bool(multiPage, false, "For document-type backends, render the source" " into multiple pages"); static bool lazy_decode_bitmap(const void* src, size_t size, SkBitmap* dst) { SkAutoTUnref encoded(SkData::NewWithCopy(src, size)); return encoded && SkInstallDiscardablePixelRef(encoded, dst); } namespace DM { GMSrc::GMSrc(skiagm::GMRegistry::Factory factory) : fFactory(factory) {} Error GMSrc::draw(SkCanvas* canvas) const { SkAutoTDelete gm(fFactory(NULL)); canvas->concat(gm->getInitialTransform()); gm->draw(canvas); return ""; } SkISize GMSrc::size() const { SkAutoTDelete gm(fFactory(NULL)); return gm->getISize(); } Name GMSrc::name() const { SkAutoTDelete gm(fFactory(NULL)); return gm->getName(); } void GMSrc::modifyGrContextOptions(GrContextOptions* options) const { SkAutoTDelete gm(fFactory(NULL)); gm->modifyGrContextOptions(options); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ CodecSrc::CodecSrc(Path path, Mode mode, DstColorType dstColorType, float scale) : fPath(path) , fMode(mode) , fDstColorType(dstColorType) , fScale(scale) {} Error CodecSrc::draw(SkCanvas* canvas) const { SkImageInfo canvasInfo; if (NULL == canvas->peekPixels(&canvasInfo, NULL)) { // TODO: Once we implement GPU paths (e.g. JPEG YUV), we should use a deferred decode to // let the GPU handle it. return Error::Nonfatal("No need to test decoding to non-raster backend."); } SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTDelete codec(SkCodec::NewFromData(encoded)); if (NULL == codec.get()) { return SkStringPrintf("Couldn't create codec for %s.", fPath.c_str()); } // Choose the color type to decode to SkImageInfo decodeInfo = codec->getInfo(); SkColorType canvasColorType = canvasInfo.colorType(); switch (fDstColorType) { case kIndex8_Always_DstColorType: decodeInfo = codec->getInfo().makeColorType(kIndex_8_SkColorType); if (kRGB_565_SkColorType == canvasColorType) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } break; case kGrayscale_Always_DstColorType: decodeInfo = codec->getInfo().makeColorType(kGray_8_SkColorType); if (kRGB_565_SkColorType == canvasColorType) { return Error::Nonfatal("Testing non-565 to 565 is uninteresting."); } break; default: decodeInfo = decodeInfo.makeColorType(canvasColorType); break; } // Try to scale the image if it is desired SkISize size = codec->getScaledDimensions(fScale); if (size == decodeInfo.dimensions() && 1.0f != fScale) { return Error::Nonfatal("Test without scaling is uninteresting."); } decodeInfo = decodeInfo.makeWH(size.width(), size.height()); // Construct a color table for the decode if necessary SkAutoTUnref colorTable(NULL); SkPMColor* colorPtr = NULL; int* colorCountPtr = NULL; int maxColors = 256; if (kIndex_8_SkColorType == decodeInfo.colorType()) { SkPMColor colors[256]; colorTable.reset(SkNEW_ARGS(SkColorTable, (colors, maxColors))); colorPtr = const_cast(colorTable->readColors()); colorCountPtr = &maxColors; } // FIXME: Currently we cannot draw unpremultiplied sources. if (decodeInfo.alphaType() == kUnpremul_SkAlphaType) { decodeInfo = decodeInfo.makeAlphaType(kPremul_SkAlphaType); } SkBitmap bitmap; if (!bitmap.tryAllocPixels(decodeInfo, NULL, colorTable.get())) { return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), decodeInfo.width(), decodeInfo.height()); } switch (fMode) { case kNormal_Mode: { switch (codec->getPixels(decodeInfo, bitmap.getPixels(), bitmap.rowBytes(), NULL, colorPtr, colorCountPtr)) { case SkImageGenerator::kSuccess: // We consider incomplete to be valid, since we should still decode what is // available. case SkImageGenerator::kIncompleteInput: break; case SkImageGenerator::kInvalidConversion: return Error::Nonfatal("Incompatible colortype conversion"); default: // Everything else is considered a failure. return SkStringPrintf("Couldn't getPixels %s.", fPath.c_str()); } canvas->drawBitmap(bitmap, 0, 0); break; } case kScanline_Mode: { SkScanlineDecoder* scanlineDecoder = codec->getScanlineDecoder(decodeInfo, NULL, colorPtr, colorCountPtr); if (NULL == scanlineDecoder) { return Error::Nonfatal("Cannot use scanline decoder for all images"); } const SkImageGenerator::Result result = scanlineDecoder->getScanlines( bitmap.getAddr(0, 0), decodeInfo.height(), bitmap.rowBytes()); switch (result) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: break; default: return SkStringPrintf("%s failed with error message %d", fPath.c_str(), (int) result); } canvas->drawBitmap(bitmap, 0, 0); break; } case kScanline_Subset_Mode: { //this mode decodes the image in divisor*divisor subsets, using a scanline decoder const int divisor = 2; const int w = decodeInfo.width(); const int h = decodeInfo.height(); if (divisor > w || divisor > h) { return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big" "for %s with dimensions (%d x %d)", divisor, fPath.c_str(), w, h)); } const int subsetWidth = w/divisor; const int subsetHeight = h/divisor; // One of our subsets will be larger to contain any pixels that do not divide evenly. const int extraX = w % divisor; const int extraY = h % divisor; /* * if w or h are not evenly divided by divisor need to adjust width and height of end * subsets to cover entire image. * Add extraX and extraY to largestSubsetBm's width and height to adjust width * and height of end subsets. * subsetBm is extracted from largestSubsetBm. * subsetBm's size is determined based on the current subset and may be larger for end * subsets. */ SkImageInfo largestSubsetDecodeInfo = decodeInfo.makeWH(subsetWidth + extraX, subsetHeight + extraY); SkBitmap largestSubsetBm; if (!largestSubsetBm.tryAllocPixels(largestSubsetDecodeInfo, NULL, colorTable.get())) { return SkStringPrintf("Image(%s) is too large (%d x %d)\n", fPath.c_str(), largestSubsetDecodeInfo.width(), largestSubsetDecodeInfo.height()); } const size_t rowBytes = decodeInfo.minRowBytes(); char* buffer = SkNEW_ARRAY(char, largestSubsetDecodeInfo.height() * rowBytes); SkAutoTDeleteArray lineDeleter(buffer); for (int col = 0; col < divisor; col++) { //currentSubsetWidth may be larger than subsetWidth for rightmost subsets const int currentSubsetWidth = (col + 1 == divisor) ? subsetWidth + extraX : subsetWidth; const int x = col * subsetWidth; for (int row = 0; row < divisor; row++) { //currentSubsetHeight may be larger than subsetHeight for bottom subsets const int currentSubsetHeight = (row + 1 == divisor) ? subsetHeight + extraY : subsetHeight; const int y = row * subsetHeight; //create scanline decoder for each subset SkScanlineDecoder* subsetScanlineDecoder = codec->getScanlineDecoder(decodeInfo, NULL, colorPtr, colorCountPtr); if (NULL == subsetScanlineDecoder) { if (x == 0 && y == 0) { //first try, image may not be compatible return Error::Nonfatal("Cannot use scanline decoder for all images"); } else { return "Error scanline decoder is NULL"; } } //skip to first line of subset const SkImageGenerator::Result skipResult = subsetScanlineDecoder->skipScanlines(y); switch (skipResult) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: break; default: return SkStringPrintf("%s failed after attempting to skip %d scanlines" "with error message %d", fPath.c_str(), y, (int) skipResult); } //create and set size of subsetBm SkBitmap subsetBm; SkIRect bounds = SkIRect::MakeWH(subsetWidth, subsetHeight); bounds.setXYWH(0, 0, currentSubsetWidth, currentSubsetHeight); SkAssertResult(largestSubsetBm.extractSubset(&subsetBm, bounds)); SkAutoLockPixels autlockSubsetBm(subsetBm, true); const SkImageGenerator::Result subsetResult = subsetScanlineDecoder->getScanlines(buffer, currentSubsetHeight, rowBytes); switch (subsetResult) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: break; default: return SkStringPrintf("%s failed with error message %d", fPath.c_str(), (int) subsetResult); } const size_t bpp = decodeInfo.bytesPerPixel(); /* * we copy all the lines at once becuase when calling getScanlines for * interlaced pngs the entire image must be read regardless of the number * of lines requested. Reading an interlaced png in a loop, line-by-line, would * decode the entire image height times, which is very slow * it is aknowledged that copying each line as you read it in a loop * may be faster for other types of images. Since this is a correctness test * that's okay. */ char* bufferRow = buffer; for (int subsetY = 0; subsetY < currentSubsetHeight; ++subsetY) { memcpy(subsetBm.getAddr(0, subsetY), bufferRow + x*bpp, currentSubsetWidth*bpp); bufferRow += rowBytes; } canvas->drawBitmap(subsetBm, SkIntToScalar(x), SkIntToScalar(y)); } } break; } case kStripe_Mode: { const int height = decodeInfo.height(); // This value is chosen arbitrarily. We exercise more cases by choosing a value that // does not align with image blocks. const int stripeHeight = 37; const int numStripes = (height + stripeHeight - 1) / stripeHeight; // Decode odd stripes SkScanlineDecoder* decoder = codec->getScanlineDecoder(decodeInfo, NULL, colorPtr, colorCountPtr); if (NULL == decoder) { return Error::Nonfatal("Cannot use scanline decoder for all images"); } for (int i = 0; i < numStripes; i += 2) { // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - i * stripeHeight); SkImageGenerator::Result result = decoder->skipScanlines(linesToSkip); switch (result) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: break; default: return SkStringPrintf("Cannot skip scanlines for %s.", fPath.c_str()); } // Read a stripe const int startY = (i + 1) * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); if (linesToRead > 0) { result = decoder->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); switch (result) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: break; default: return SkStringPrintf("Cannot get scanlines for %s.", fPath.c_str()); } } } // Decode even stripes decoder = codec->getScanlineDecoder(decodeInfo, NULL, colorPtr, colorCountPtr); if (NULL == decoder) { return "Failed to create second scanline decoder."; } for (int i = 0; i < numStripes; i += 2) { // Read a stripe const int startY = i * stripeHeight; const int linesToRead = SkTMin(stripeHeight, height - startY); SkImageGenerator::Result result = decoder->getScanlines(bitmap.getAddr(0, startY), linesToRead, bitmap.rowBytes()); switch (result) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: break; default: return SkStringPrintf("Cannot get scanlines for %s.", fPath.c_str()); } // Skip a stripe const int linesToSkip = SkTMin(stripeHeight, height - (i + 1) * stripeHeight); if (linesToSkip > 0) { result = decoder->skipScanlines(linesToSkip); switch (result) { case SkImageGenerator::kSuccess: case SkImageGenerator::kIncompleteInput: break; default: return SkStringPrintf("Cannot skip scanlines for %s.", fPath.c_str()); } } } canvas->drawBitmap(bitmap, 0, 0); break; } } return ""; } SkISize CodecSrc::size() const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); SkAutoTDelete codec(SkCodec::NewFromData(encoded)); if (NULL != codec) { SkISize size = codec->getScaledDimensions(fScale); return size; } else { return SkISize::Make(0, 0); } } Name CodecSrc::name() const { if (1.0f == fScale) { return SkOSPath::Basename(fPath.c_str()); } else { return SkStringPrintf("%s_%.3f", SkOSPath::Basename(fPath.c_str()).c_str(), fScale); } } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ImageSrc::ImageSrc(Path path, int divisor) : fPath(path), fDivisor(divisor) {} Error ImageSrc::draw(SkCanvas* canvas) const { SkImageInfo canvasInfo; if (NULL == canvas->peekPixels(&canvasInfo, NULL)) { // TODO: Instead, use lazy decoding to allow the GPU to handle cases like YUV. return Error::Nonfatal("No need to test decoding to non-raster backend."); } SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); if (!encoded) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } const SkColorType dstColorType = canvasInfo.colorType(); if (fDivisor == 0) { // Decode the full image. SkBitmap bitmap; if (!SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, dstColorType, SkImageDecoder::kDecodePixels_Mode)) { return SkStringPrintf("Couldn't decode %s.", fPath.c_str()); } if (kRGB_565_SkColorType == dstColorType && !bitmap.isOpaque()) { // Do not draw a bitmap with alpha to a destination without alpha. return Error::Nonfatal("Uninteresting to decode image with alpha into 565."); } encoded.reset((SkData*)NULL); // Might as well drop this when we're done with it. canvas->drawBitmap(bitmap, 0,0); return ""; } // Decode subsets. This is a little involved. SkAutoTDelete stream(new SkMemoryStream(encoded)); SkAutoTDelete decoder(SkImageDecoder::Factory(stream.get())); if (!decoder) { return SkStringPrintf("Can't find a good decoder for %s.", fPath.c_str()); } stream->rewind(); int w,h; if (!decoder->buildTileIndex(stream.detach(), &w, &h)) { return Error::Nonfatal("Subset decoding not supported."); } // Divide the image into subsets that cover the entire image. if (fDivisor > w || fDivisor > h) { return Error::Nonfatal(SkStringPrintf("Cannot decode subset: divisor %d is too big" "for %s with dimensions (%d x %d)", fDivisor, fPath.c_str(), w, h)); } const int subsetWidth = w / fDivisor, subsetHeight = h / fDivisor; for (int y = 0; y < h; y += subsetHeight) { for (int x = 0; x < w; x += subsetWidth) { SkBitmap subset; SkIRect rect = SkIRect::MakeXYWH(x, y, subsetWidth, subsetHeight); if (!decoder->decodeSubset(&subset, rect, dstColorType)) { return SkStringPrintf("Could not decode subset (%d, %d, %d, %d).", x, y, x+subsetWidth, y+subsetHeight); } if (kRGB_565_SkColorType == dstColorType && !subset.isOpaque()) { // Do not draw a bitmap with alpha to a destination without alpha. // This is not an error, but there is nothing interesting to show. // This should only happen on the first iteration through the loop. SkASSERT(0 == x && 0 == y); return Error::Nonfatal("Uninteresting to decode image with alpha into 565."); } canvas->drawBitmap(subset, SkIntToScalar(x), SkIntToScalar(y)); } } return ""; } SkISize ImageSrc::size() const { SkAutoTUnref encoded(SkData::NewFromFileName(fPath.c_str())); SkBitmap bitmap; if (!encoded || !SkImageDecoder::DecodeMemory(encoded->data(), encoded->size(), &bitmap, kUnknown_SkColorType, SkImageDecoder::kDecodeBounds_Mode)) { return SkISize::Make(0,0); } return bitmap.dimensions(); } Name ImageSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static const SkRect kSKPViewport = {0,0, 1000,1000}; SKPSrc::SKPSrc(Path path) : fPath(path) {} Error SKPSrc::draw(SkCanvas* canvas) const { SkAutoTDelete stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkStringPrintf("Couldn't read %s.", fPath.c_str()); } SkAutoTUnref pic(SkPicture::CreateFromStream(stream, &lazy_decode_bitmap)); if (!pic) { return SkStringPrintf("Couldn't decode %s as a picture.", fPath.c_str()); } stream.reset((SkStream*)NULL); // Might as well drop this when we're done with it. canvas->clipRect(kSKPViewport); canvas->drawPicture(pic); return ""; } SkISize SKPSrc::size() const { SkAutoTDelete stream(SkStream::NewFromFile(fPath.c_str())); if (!stream) { return SkISize::Make(0,0); } SkPictInfo info; if (!SkPicture::InternalOnly_StreamIsSKP(stream, &info)) { return SkISize::Make(0,0); } SkRect viewport = kSKPViewport; if (!viewport.intersect(info.fCullRect)) { return SkISize::Make(0,0); } return viewport.roundOut().size(); } Name SKPSrc::name() const { return SkOSPath::Basename(fPath.c_str()); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error NullSink::draw(const Src& src, SkBitmap*, SkWStream*, SkString*) const { SkAutoTDelete canvas(SkCreateNullCanvas()); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ DEFINE_bool(gpuStats, false, "Append GPU stats to the log for each GPU task?"); GPUSink::GPUSink(GrContextFactory::GLContextType ct, GrGLStandard api, int samples, bool dfText, bool threaded) : fContextType(ct) , fGpuAPI(api) , fSampleCount(samples) , fUseDFText(dfText) , fThreaded(threaded) {} int GPUSink::enclave() const { return fThreaded ? kAnyThread_Enclave : kGPU_Enclave; } void PreAbandonGpuContextErrorHandler(SkError, void*) {} Error GPUSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString* log) const { GrContextOptions options; src.modifyGrContextOptions(&options); GrContextFactory factory(options); const SkISize size = src.size(); const SkImageInfo info = SkImageInfo::Make(size.width(), size.height(), kN32_SkColorType, kPremul_SkAlphaType); SkAutoTUnref surface( NewGpuSurface(&factory, fContextType, fGpuAPI, info, fSampleCount, fUseDFText)); if (!surface) { return "Could not create a surface."; } if (FLAGS_preAbandonGpuContext) { SkSetErrorCallback(&PreAbandonGpuContextErrorHandler, NULL); factory.abandonContexts(); } SkCanvas* canvas = surface->getCanvas(); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } canvas->flush(); if (FLAGS_gpuStats) { canvas->getGrContext()->dumpCacheStats(log); canvas->getGrContext()->dumpGpuStats(log); } dst->allocPixels(info); canvas->readPixels(dst, 0, 0); if (FLAGS_abandonGpuContext) { factory.abandonContexts(); } return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static Error draw_skdocument(const Src& src, SkDocument* doc, SkWStream* dst) { // Print the given DM:Src to a document, breaking on 8.5x11 pages. SkASSERT(doc); int width = src.size().width(), height = src.size().height(); if (FLAGS_multiPage) { const int kLetterWidth = 612, // 8.5 * 72 kLetterHeight = 792; // 11 * 72 const SkRect letter = SkRect::MakeWH(SkIntToScalar(kLetterWidth), SkIntToScalar(kLetterHeight)); int xPages = ((width - 1) / kLetterWidth) + 1; int yPages = ((height - 1) / kLetterHeight) + 1; for (int y = 0; y < yPages; ++y) { for (int x = 0; x < xPages; ++x) { int w = SkTMin(kLetterWidth, width - (x * kLetterWidth)); int h = SkTMin(kLetterHeight, height - (y * kLetterHeight)); SkCanvas* canvas = doc->beginPage(SkIntToScalar(w), SkIntToScalar(h)); if (!canvas) { return "SkDocument::beginPage(w,h) returned NULL"; } canvas->clipRect(letter); canvas->translate(-letter.width() * x, -letter.height() * y); Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } } } else { SkCanvas* canvas = doc->beginPage(SkIntToScalar(width), SkIntToScalar(height)); if (!canvas) { return "SkDocument::beginPage(w,h) returned NULL"; } Error err = src.draw(canvas); if (!err.isEmpty()) { return err; } doc->endPage(); } if (!doc->close()) { return "SkDocument::close() returned false"; } dst->flush(); return ""; } PDFSink::PDFSink() {} Error PDFSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTUnref doc(SkDocument::CreatePDF(dst)); if (!doc) { return "SkDocument::CreatePDF() returned NULL"; } return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ XPSSink::XPSSink() {} Error XPSSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTUnref doc(SkDocument::CreateXPS(dst)); if (!doc) { return "SkDocument::CreateXPS() returned NULL"; } return draw_skdocument(src, doc.get(), dst); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SKPSink::SKPSink() {} Error SKPSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkSize size; size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(size.width(), size.height())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); pic->serialize(dst); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ SVGSink::SVGSink() {} Error SVGSink::draw(const Src& src, SkBitmap*, SkWStream* dst, SkString*) const { SkAutoTDelete xmlWriter(SkNEW_ARGS(SkXMLStreamWriter, (dst))); SkAutoTUnref canvas(SkSVGCanvas::Create( SkRect::MakeWH(SkIntToScalar(src.size().width()), SkIntToScalar(src.size().height())), xmlWriter)); return src.draw(canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ RasterSink::RasterSink(SkColorType colorType) : fColorType(colorType) {} Error RasterSink::draw(const Src& src, SkBitmap* dst, SkWStream*, SkString*) const { const SkISize size = src.size(); // If there's an appropriate alpha type for this color type, use it, otherwise use premul. SkAlphaType alphaType = kPremul_SkAlphaType; (void)SkColorTypeValidateAlphaType(fColorType, alphaType, &alphaType); dst->allocPixels(SkImageInfo::Make(size.width(), size.height(), fColorType, alphaType)); dst->eraseColor(SK_ColorTRANSPARENT); SkCanvas canvas(*dst); return src.draw(&canvas); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Handy for front-patching a Src. Do whatever up-front work you need, then call draw_to_canvas(), // passing the Sink draw() arguments, a size, and a function draws into an SkCanvas. // Several examples below. static Error draw_to_canvas(Sink* sink, SkBitmap* bitmap, SkWStream* stream, SkString* log, SkISize size, SkFunction draw) { class ProxySrc : public Src { public: ProxySrc(SkISize size, SkFunction draw) : fSize(size), fDraw(draw) {} Error draw(SkCanvas* canvas) const override { return fDraw(canvas); } Name name() const override { sk_throw(); return ""; } // Won't be called. SkISize size() const override { return fSize; } private: SkISize fSize; SkFunction fDraw; }; return sink->draw(ProxySrc(size, draw), bitmap, stream, log); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ static SkISize auto_compute_translate(SkMatrix* matrix, int srcW, int srcH) { SkRect bounds = SkRect::MakeIWH(srcW, srcH); matrix->mapRect(&bounds); matrix->postTranslate(-bounds.x(), -bounds.y()); return SkISize::Make(SkScalarRoundToInt(bounds.width()), SkScalarRoundToInt(bounds.height())); } ViaMatrix::ViaMatrix(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaMatrix::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { SkMatrix matrix = fMatrix; SkISize size = auto_compute_translate(&matrix, src.size().width(), src.size().height()); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->concat(matrix); return src.draw(canvas); }); } // Undoes any flip or 90 degree rotate without changing the scale of the bitmap. // This should be pixel-preserving. ViaUpright::ViaUpright(SkMatrix matrix, Sink* sink) : Via(sink), fMatrix(matrix) {} Error ViaUpright::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { Error err = fSink->draw(src, bitmap, stream, log); if (!err.isEmpty()) { return err; } SkMatrix inverse; if (!fMatrix.rectStaysRect() || !fMatrix.invert(&inverse)) { return "Cannot upright --matrix."; } SkMatrix upright = SkMatrix::I(); upright.setScaleX(SkScalarSignAsScalar(inverse.getScaleX())); upright.setScaleY(SkScalarSignAsScalar(inverse.getScaleY())); upright.setSkewX(SkScalarSignAsScalar(inverse.getSkewX())); upright.setSkewY(SkScalarSignAsScalar(inverse.getSkewY())); SkBitmap uprighted; SkISize size = auto_compute_translate(&upright, bitmap->width(), bitmap->height()); uprighted.allocPixels(bitmap->info().makeWH(size.width(), size.height())); SkCanvas canvas(uprighted); canvas.concat(upright); SkPaint paint; paint.setXfermodeMode(SkXfermode::kSrc_Mode); canvas.drawBitmap(*bitmap, 0, 0, &paint); *bitmap = uprighted; bitmap->lockPixels(); return ""; } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaPipe::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { PipeController controller(canvas, &SkImageDecoder::DecodeMemory); SkGPipeWriter pipe; const uint32_t kFlags = 0; // We mirror SkDeferredCanvas, which doesn't use any flags. return src.draw(pipe.startRecording(&controller, kFlags, size.width(), size.height())); }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaDeferred::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // We draw via a deferred canvas into a surface that's compatible with the original canvas, // then snap that surface as an image and draw it into the original canvas. return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error { SkAutoTUnref surface(canvas->newSurface(canvas->imageInfo())); if (!surface.get()) { return "can't make surface for deferred canvas"; } SkAutoTDelete defcan(SkDeferredCanvas::Create(surface)); Error err = src.draw(defcan); if (!err.isEmpty()) { return err; } SkAutoTUnref image(defcan->newImageSnapshot()); if (!image) { return "failed to create deferred image snapshot"; } canvas->drawImage(image, 0, 0, NULL); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ Error ViaSerialization::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { // Record our Src into a picture. auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecording()); // Serialize it and then deserialize it. SkDynamicMemoryWStream wStream; pic->serialize(&wStream); SkAutoTDelete rStream(wStream.detachAsStream()); SkAutoTUnref deserialized(SkPicture::CreateFromStream(rStream, &lazy_decode_bitmap)); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) { canvas->drawPicture(deserialized); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ ViaTiles::ViaTiles(int w, int h, SkBBHFactory* factory, Sink* sink) : Via(sink) , fW(w) , fH(h) , fFactory(factory) {} Error ViaTiles::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); SkPictureRecorder recorder; Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()), fFactory.get())); if (!err.isEmpty()) { return err; } SkAutoTUnref pic(recorder.endRecordingAsPicture()); return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) { const int xTiles = (size.width() + fW - 1) / fW, yTiles = (size.height() + fH - 1) / fH; SkMultiPictureDraw mpd(xTiles*yTiles); SkTDArray surfaces; surfaces.setReserve(xTiles*yTiles); SkImageInfo info = canvas->imageInfo().makeWH(fW, fH); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { // This lets our ultimate Sink determine the best kind of surface. // E.g., if it's a GpuSink, the surfaces and images are textures. SkSurface* s = canvas->newSurface(info); if (!s) { s = SkSurface::NewRaster(info); // Some canvases can't create surfaces. } surfaces.push(s); SkCanvas* c = s->getCanvas(); c->translate(SkIntToScalar(-i * fW), SkIntToScalar(-j * fH)); // Line up the canvas with this tile. mpd.add(c, pic); } } mpd.draw(); for (int j = 0; j < yTiles; j++) { for (int i = 0; i < xTiles; i++) { SkAutoTUnref image(surfaces[i+xTiles*j]->newImageSnapshot()); canvas->drawImage(image, SkIntToScalar(i*fW), SkIntToScalar(j*fH)); } } surfaces.unrefAll(); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Draw the Src into two pictures, then draw the second picture into the wrapped Sink. // This tests that any shortcuts we may take while recording that second picture are legal. Error ViaSecondPicture::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { SkPictureRecorder recorder; SkAutoTUnref pic; for (int i = 0; i < 2; i++) { Error err = src.draw(recorder.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height()))); if (!err.isEmpty()) { return err; } pic.reset(recorder.endRecordingAsPicture()); } canvas->drawPicture(pic); return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // Draw the Src twice. This can help exercise caching. Error ViaTwice::draw(const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { return draw_to_canvas(fSink, bitmap, stream, log, src.size(), [&](SkCanvas* canvas) -> Error { for (int i = 0; i < 2; i++) { SkAutoCanvasRestore acr(canvas, true/*save now*/); canvas->clear(SK_ColorTRANSPARENT); Error err = src.draw(canvas); if (err.isEmpty()) { return err; } } return ""; }); } /*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/ // This is like SkRecords::Draw, in that it plays back SkRecords ops into a Canvas. // Unlike SkRecords::Draw, it builds a single-op sub-picture out of each Draw-type op. // This is an only-slightly-exaggerated simluation of Blink's Slimming Paint pictures. struct DrawsAsSingletonPictures { SkCanvas* fCanvas; SK_CREATE_MEMBER_DETECTOR(paint); template void draw(const T& op, SkCanvas* canvas) { // We must pass SkMatrix::I() as our initial matrix. // By default SkRecords::Draw() uses the canvas' matrix as its initial matrix, // which would have the funky effect of applying transforms over and over. SkRecords::Draw(canvas, nullptr, nullptr, 0, &SkMatrix::I())(op); } // Most things that have paints are Draw-type ops. Create sub-pictures for each. template SK_WHEN(HasMember_paint, void) operator()(const T& op) { SkPictureRecorder rec; this->draw(op, rec.beginRecording(SkRect::MakeLargest())); SkAutoTUnref pic(rec.endRecordingAsPicture()); fCanvas->drawPicture(pic); } // If you don't have a paint or are a SaveLayer, you're not a Draw-type op. // We cannot make subpictures out of these because they affect state. Draw them directly. template SK_WHEN(!HasMember_paint, void) operator()(const T& op) { this->draw(op, fCanvas); } void operator()(const SkRecords::SaveLayer& op) { this->draw(op, fCanvas); } }; // Record Src into a picture, then record it into a macro picture with a sub-picture for each draw. // Then play back that macro picture into our wrapped sink. Error ViaSingletonPictures::draw( const Src& src, SkBitmap* bitmap, SkWStream* stream, SkString* log) const { auto size = src.size(); return draw_to_canvas(fSink, bitmap, stream, log, size, [&](SkCanvas* canvas) -> Error { // Use low-level (Skia-private) recording APIs so we can read the SkRecord. SkRecord skr; SkRecorder recorder(&skr, size.width(), size.height()); Error err = src.draw(&recorder); if (!err.isEmpty()) { return err; } // Record our macro-picture, with each draw op as its own sub-picture. SkPictureRecorder macroRec; SkCanvas* macroCanvas = macroRec.beginRecording(SkIntToScalar(size.width()), SkIntToScalar(size.height())); DrawsAsSingletonPictures drawsAsSingletonPictures = { macroCanvas }; for (unsigned i = 0; i < skr.count(); i++) { skr.visit(i, drawsAsSingletonPictures); } SkAutoTUnref macroPic(macroRec.endRecordingAsPicture()); canvas->drawPicture(macroPic); return ""; }); } } // namespace DM