/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "BenchTimer.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrRenderTarget.h" #if SK_ANGLE #include "gl/SkANGLEGLContext.h" #endif // SK_ANGLE #include "gl/SkNativeGLContext.h" #include "gl/SkNullGLContext.h" #include "gl/SkDebugGLContext.h" #include "SkGpuDevice.h" #endif // SK_SUPPORT_GPU #include "SkBenchmark.h" #include "SkCanvas.h" #include "SkDeferredCanvas.h" #include "SkDevice.h" #include "SkColorPriv.h" #include "SkGraphics.h" #include "SkImageEncoder.h" #include "SkNWayCanvas.h" #include "SkPicture.h" #include "SkStream.h" #include "SkString.h" class SkBenchLogger { public: SkBenchLogger() : fFileStream(NULL) {} ~SkBenchLogger() { if (fFileStream) SkDELETE(fFileStream); } bool SetLogFile(const char file[]) { fFileStream = SkNEW_ARGS(SkFILEWStream, (file)); return fFileStream->isValid(); } void logError(const char msg[]) { nativeLogError(msg); } void logError(const SkString& str) { nativeLogError(str.c_str()); } void logProgress(const char msg[]) { nativeLogProgress(msg); fileWrite(msg, strlen(msg)); } void logProgress(const SkString& str) { nativeLogProgress(str.c_str()); fileWrite(str.c_str(), str.size()); } private: #ifdef SK_BUILD_FOR_ANDROID void nativeLogError(const char msg[]) { SkDebugf("%s", msg); } void nativeLogProgress(const char msg[]) { SkDebugf("%s", msg); } #else void nativeLogError(const char msg[]) { fprintf(stderr, "%s", msg); } void nativeLogProgress(const char msg[]) { printf("%s", msg); } #endif void fileWrite(const char msg[], size_t size) { if (fFileStream && fFileStream->isValid()) fFileStream->write(msg, size); } SkFILEWStream* fFileStream; } logger; /////////////////////////////////////////////////////////////////////////////// enum benchModes { kNormal_benchModes, kDeferred_benchModes, kRecord_benchModes, kPictureRecord_benchModes }; /////////////////////////////////////////////////////////////////////////////// static void erase(SkBitmap& bm) { if (bm.config() == SkBitmap::kA8_Config) { bm.eraseColor(0); } else { bm.eraseColor(SK_ColorWHITE); } } #if 0 static bool equal(const SkBitmap& bm1, const SkBitmap& bm2) { if (bm1.width() != bm2.width() || bm1.height() != bm2.height() || bm1.config() != bm2.config()) { return false; } size_t pixelBytes = bm1.width() * bm1.bytesPerPixel(); for (int y = 0; y < bm1.height(); y++) { if (memcmp(bm1.getAddr(0, y), bm2.getAddr(0, y), pixelBytes)) { return false; } } return true; } #endif class Iter { public: Iter(void* param) { fBench = BenchRegistry::Head(); fParam = param; } SkBenchmark* next() { if (fBench) { BenchRegistry::Factory f = fBench->factory(); fBench = fBench->next(); return f(fParam); } return NULL; } private: const BenchRegistry* fBench; void* fParam; }; static void make_filename(const char name[], SkString* path) { path->set(name); for (int i = 0; name[i]; i++) { switch (name[i]) { case '/': case '\\': case ' ': case ':': path->writable_str()[i] = '-'; break; default: break; } } } static void saveFile(const char name[], const char config[], const char dir[], const SkBitmap& bm) { SkBitmap copy; if (!bm.copyTo(©, SkBitmap::kARGB_8888_Config)) { return; } if (bm.config() == SkBitmap::kA8_Config) { // turn alpha into gray-scale size_t size = copy.getSize() >> 2; SkPMColor* p = copy.getAddr32(0, 0); for (size_t i = 0; i < size; i++) { int c = (*p >> SK_A32_SHIFT) & 0xFF; c = 255 - c; c |= (c << 24) | (c << 16) | (c << 8); *p++ = c | (SK_A32_MASK << SK_A32_SHIFT); } } SkString str; make_filename(name, &str); str.appendf("_%s.png", config); str.prepend(dir); ::remove(str.c_str()); SkImageEncoder::EncodeFile(str.c_str(), copy, SkImageEncoder::kPNG_Type, 100); } static void performClip(SkCanvas* canvas, int w, int h) { SkRect r; r.set(SkIntToScalar(10), SkIntToScalar(10), SkIntToScalar(w*2/3), SkIntToScalar(h*2/3)); canvas->clipRect(r, SkRegion::kIntersect_Op); r.set(SkIntToScalar(w/3), SkIntToScalar(h/3), SkIntToScalar(w-10), SkIntToScalar(h-10)); canvas->clipRect(r, SkRegion::kXOR_Op); } static void performRotate(SkCanvas* canvas, int w, int h) { const SkScalar x = SkIntToScalar(w) / 2; const SkScalar y = SkIntToScalar(h) / 2; canvas->translate(x, y); canvas->rotate(SkIntToScalar(35)); canvas->translate(-x, -y); } static void performScale(SkCanvas* canvas, int w, int h) { const SkScalar x = SkIntToScalar(w) / 2; const SkScalar y = SkIntToScalar(h) / 2; canvas->translate(x, y); // just enough so we can't take the sprite case canvas->scale(SK_Scalar1 * 99/100, SK_Scalar1 * 99/100); canvas->translate(-x, -y); } static bool parse_bool_arg(char * const* argv, char* const* stop, bool* var) { if (argv < stop) { *var = atoi(*argv) != 0; return true; } return false; } enum Backend { kRaster_Backend, kGPU_Backend, kPDF_Backend, }; #if SK_SUPPORT_GPU class GLHelper { public: GLHelper() { } bool init(SkGLContext* glCtx, int width, int height) { GrContext* grCtx; GrRenderTarget* rt; if (glCtx->init(width, height)) { GrPlatform3DContext ctx = reinterpret_cast(glCtx->gl()); grCtx = GrContext::Create(kOpenGL_Shaders_GrEngine, ctx); if (NULL != grCtx) { GrPlatformRenderTargetDesc desc; desc.fConfig = kSkia8888_PM_GrPixelConfig; desc.fWidth = width; desc.fHeight = height; desc.fStencilBits = 8; desc.fRenderTargetHandle = glCtx->getFBOID(); rt = grCtx->createPlatformRenderTarget(desc); if (NULL == rt) { grCtx->unref(); return false; } } } else { return false; } glCtx->ref(); fGLContext.reset(glCtx); fGrContext.reset(grCtx); fRenderTarget.reset(rt); return true; } void cleanup() { fGLContext.reset(NULL); fGrContext.reset(NULL); fRenderTarget.reset(NULL); } bool isValid() { return NULL != fGLContext.get(); } SkGLContext* glContext() { return fGLContext.get(); } GrRenderTarget* renderTarget() { return fRenderTarget.get(); } GrContext* grContext() { return fGrContext.get(); } private: SkAutoTUnref fGLContext; SkAutoTUnref fGrContext; SkAutoTUnref fRenderTarget; }; static GLHelper gRealGLHelper; static GLHelper gNullGLHelper; static GLHelper gDebugGLHelper; #if SK_ANGLE static GLHelper gANGLEGLHelper; #endif // SK_ANGLE #else // !SK_SUPPORT_GPU class GLHelper; class SkGLContext; #endif // !SK_SUPPORT_GPU static SkDevice* make_device(SkBitmap::Config config, const SkIPoint& size, Backend backend, GLHelper* glHelper) { SkDevice* device = NULL; SkBitmap bitmap; bitmap.setConfig(config, size.fX, size.fY); switch (backend) { case kRaster_Backend: bitmap.allocPixels(); erase(bitmap); device = new SkDevice(bitmap); break; #if SK_SUPPORT_GPU case kGPU_Backend: device = new SkGpuDevice(glHelper->grContext(), glHelper->renderTarget()); break; #endif case kPDF_Backend: default: SkASSERT(!"unsupported"); } return device; } static const struct { SkBitmap::Config fConfig; const char* fName; Backend fBackend; GLHelper* fGLHelper; } gConfigs[] = { { SkBitmap::kARGB_8888_Config, "8888", kRaster_Backend, NULL }, { SkBitmap::kRGB_565_Config, "565", kRaster_Backend, NULL }, #if SK_SUPPORT_GPU { SkBitmap::kARGB_8888_Config, "GPU", kGPU_Backend, &gRealGLHelper }, #if SK_ANGLE { SkBitmap::kARGB_8888_Config, "ANGLE", kGPU_Backend, &gANGLEGLHelper }, #endif // SK_ANGLE #ifdef SK_DEBUG { SkBitmap::kARGB_8888_Config, "Debug", kGPU_Backend, &gDebugGLHelper }, #endif // SK_DEBUG { SkBitmap::kARGB_8888_Config, "NULLGPU", kGPU_Backend, &gNullGLHelper }, #endif // SK_SUPPORT_GPU }; static int findConfig(const char config[]) { for (size_t i = 0; i < SK_ARRAY_COUNT(gConfigs); i++) { if (!strcmp(config, gConfigs[i].fName)) { return i; } } return -1; } static void determine_gpu_context_size(SkTDict& defineDict, int* contextWidth, int* contextHeight) { Iter iter(&defineDict); SkBenchmark* bench; while ((bench = iter.next()) != NULL) { SkIPoint dim = bench->getSize(); if (*contextWidth < dim.fX) { *contextWidth = dim.fX; } if (*contextHeight < dim.fY) { *contextHeight = dim.fY; } } } static bool skip_name(const SkTDArray array, const char name[]) { if (0 == array.count()) { // no names, so don't skip anything return false; } for (int i = 0; i < array.count(); ++i) { if (strstr(name, array[i])) { // found the name, so don't skip return false; } } return true; } static void help() { SkDebugf("Usage: bench [-o outDir] [-repeat nr] [-logPerIter 1|0] " "[-timers [wcg]*] [-rotate]\n" " [-scale] [-clip] [-forceAA 1|0] [-forceFilter 1|0]\n" " [-forceDither 1|0] [-forceBlend 1|0] [-strokeWidth width]\n" " [-match name] [-mode normal|deferred|record|picturerecord]\n" " [-config 8888|565|GPU|ANGLE|NULLGPU] [-Dfoo bar]\n" " [-h|--help]"); SkDebugf("\n\n"); SkDebugf(" -o outDir : Image of each bench will be put in outDir.\n"); SkDebugf(" -repeat nr : Each bench repeats for nr times.\n"); SkDebugf(" -logPerIter 1|0 : " "Log each repeat timer instead of mean, default is disabled.\n"); SkDebugf(" -timers [wcg]* : " "Display wall time, cpu time or gpu time for each bench.\n"); SkDebugf(" -rotate : Rotate before each bench runs.\n"); SkDebugf(" -scale : Scale before each bench runs.\n"); SkDebugf(" -clip : Clip before each bench runs.\n"); SkDebugf(" -forceAA 1|0 : " "Enable/disable anti-aliased, default is enabled.\n"); SkDebugf(" -forceFilter 1|0 : " "Enable/disable bitmap filtering, default is disabled.\n"); SkDebugf(" -forceDither 1|0 : " "Enable/disable dithering, default is disabled.\n"); SkDebugf(" -forceBlend 1|0 : " "Enable/disable dithering, default is disabled.\n"); SkDebugf(" -strokeWidth width : The width for path stroke.\n"); SkDebugf(" -match name : Only run bench whose name is matched.\n"); SkDebugf(" -mode normal|deferred|record|picturerecord : Run in the corresponding mode\n" " normal, Use a normal canvas to draw to;\n" " deferred, Use a deferrred canvas when drawing;\n" " record, Benchmark the time to record to an SkPicture;\n" " picturerecord, Benchmark the time to do record from a \n" " SkPicture to a SkPicture.\n"); SkDebugf(" -logFile : destination for writing log output, in addition to stdout.\n"); #if SK_SUPPORT_GPU SkDebugf(" -config 8888|565|GPU|ANGLE|NULLGPU : " "Run bench in corresponding config mode.\n"); #else SkDebugf(" -config 8888|565: " "Run bench in corresponding config mode.\n"); #endif SkDebugf(" -Dfoo bar : Add extra definition to bench.\n"); SkDebugf(" -h|--help : Show this help message.\n"); } int main (int argc, char * const argv[]) { SkAutoGraphics ag; SkTDict defineDict(1024); int repeatDraw = 1; bool logPerIter = false; int forceAlpha = 0xFF; bool forceAA = true; bool forceFilter = false; SkTriState::State forceDither = SkTriState::kDefault; bool timerWall = false; bool timerCpu = true; bool timerGpu = true; bool doScale = false; bool doRotate = false; bool doClip = false; bool hasStrokeWidth = false; float strokeWidth; SkTDArray fMatches; benchModes benchMode = kNormal_benchModes; SkString perIterTimeformat("%.2f"); SkString normalTimeFormat("%6.2f"); SkString outDir; SkBitmap::Config outConfig = SkBitmap::kNo_Config; GLHelper* glHelper = NULL; const char* configName = ""; Backend backend = kRaster_Backend; // for warning SkTDArray configs; bool userConfig = false; char* const* stop = argv + argc; for (++argv; argv < stop; ++argv) { if (strcmp(*argv, "-o") == 0) { argv++; if (argv < stop && **argv) { outDir.set(*argv); if (outDir.c_str()[outDir.size() - 1] != '/') { outDir.append("/"); } } } else if (strcmp(*argv, "-repeat") == 0) { argv++; if (argv < stop) { repeatDraw = atoi(*argv); if (repeatDraw < 1) { repeatDraw = 1; } } else { logger.logError("missing arg for -repeat\n"); help(); return -1; } } else if (strcmp(*argv, "-logPerIter") == 0) { if (!parse_bool_arg(++argv, stop, &logPerIter)) { logger.logError("missing arg for -logPerIter\n"); help(); return -1; } } else if (strcmp(*argv, "-timers") == 0) { argv++; if (argv < stop) { timerWall = false; timerCpu = false; timerGpu = false; for (char* t = *argv; *t; ++t) { switch (*t) { case 'w': timerWall = true; break; case 'c': timerCpu = true; break; case 'g': timerGpu = true; break; } } } else { logger.logError("missing arg for -timers\n"); help(); return -1; } } else if (!strcmp(*argv, "-rotate")) { doRotate = true; } else if (!strcmp(*argv, "-scale")) { doScale = true; } else if (!strcmp(*argv, "-clip")) { doClip = true; } else if (strcmp(*argv, "-forceAA") == 0) { if (!parse_bool_arg(++argv, stop, &forceAA)) { logger.logError("missing arg for -forceAA\n"); help(); return -1; } } else if (strcmp(*argv, "-forceFilter") == 0) { if (!parse_bool_arg(++argv, stop, &forceFilter)) { logger.logError("missing arg for -forceFilter\n"); help(); return -1; } } else if (strcmp(*argv, "-forceDither") == 0) { bool tmp; if (!parse_bool_arg(++argv, stop, &tmp)) { logger.logError("missing arg for -forceDither\n"); help(); return -1; } forceDither = tmp ? SkTriState::kTrue : SkTriState::kFalse; } else if (strcmp(*argv, "-forceBlend") == 0) { bool wantAlpha = false; if (!parse_bool_arg(++argv, stop, &wantAlpha)) { logger.logError("missing arg for -forceBlend\n"); help(); return -1; } forceAlpha = wantAlpha ? 0x80 : 0xFF; } else if (strcmp(*argv, "-mode") == 0) { argv++; if (argv < stop) { if (strcmp(*argv, "normal") == 0) { benchMode = kNormal_benchModes; } else if (strcmp(*argv, "deferred") == 0) { benchMode = kDeferred_benchModes; } else if (strcmp(*argv, "record") == 0) { benchMode = kRecord_benchModes; } else if (strcmp(*argv, "picturerecord") == 0) { benchMode = kPictureRecord_benchModes; } else { logger.logError("bad arg for -mode\n"); help(); return -1; } } else { logger.logError("missing arg for -mode\n"); help(); return -1; } } else if (strcmp(*argv, "-strokeWidth") == 0) { argv++; if (argv < stop) { const char *strokeWidthStr = *argv; if (sscanf(strokeWidthStr, "%f", &strokeWidth) != 1) { logger.logError("bad arg for -strokeWidth\n"); help(); return -1; } hasStrokeWidth = true; } else { logger.logError("missing arg for -strokeWidth\n"); help(); return -1; } } else if (strcmp(*argv, "-match") == 0) { argv++; if (argv < stop) { *fMatches.append() = *argv; } else { logger.logError("missing arg for -match\n"); help(); return -1; } } else if (strcmp(*argv, "-config") == 0) { argv++; if (argv < stop) { int index = findConfig(*argv); if (index >= 0) { *configs.append() = index; userConfig = true; } else { SkString str; str.printf("unrecognized config %s\n", *argv); logger.logError(str); help(); return -1; } } else { logger.logError("missing arg for -config\n"); help(); return -1; } } else if (strcmp(*argv, "-logFile") == 0) { argv++; if (argv < stop) { if (!logger.SetLogFile(*argv)) { SkString str; str.printf("Could not open %s for writing.", *argv); return -1; } } else { logger.logError("missing arg for -logFile\n"); help(); return -1; } } else if (strlen(*argv) > 2 && strncmp(*argv, "-D", 2) == 0) { argv++; if (argv < stop) { defineDict.set(argv[-1] + 2, *argv); } else { logger.logError("incomplete '-Dfoo bar' definition\n"); help(); return -1; } } else if (strcmp(*argv, "--help") == 0 || strcmp(*argv, "-h") == 0) { help(); return 0; } else { SkString str; str.printf("unrecognized arg %s\n", *argv); logger.logError(str); help(); return -1; } } if ((benchMode == kRecord_benchModes || benchMode == kPictureRecord_benchModes) && !outDir.isEmpty()) { logger.logError("'-mode record' and '-mode picturerecord' are not" " compatible with -o.\n"); return -1; } if ((benchMode == kRecord_benchModes || benchMode == kPictureRecord_benchModes)) { perIterTimeformat.set("%.4f"); normalTimeFormat.set("%6.4f"); } if (!userConfig) { // if no config is specified by user, we add them all. for (unsigned int i = 0; i < SK_ARRAY_COUNT(gConfigs); ++i) { *configs.append() = i; } } // report our current settings { SkString str; str.printf("skia bench: alpha=0x%02X antialias=%d filter=%d " "deferred=%d logperiter=%d", forceAlpha, forceAA, forceFilter, benchMode == kDeferred_benchModes, logPerIter); str.appendf(" rotate=%d scale=%d clip=%d", doRotate, doScale, doClip); str.appendf(" record=%d picturerecord=%d", benchMode == kRecord_benchModes, benchMode == kPictureRecord_benchModes); const char * ditherName; switch (forceDither) { case SkTriState::kDefault: ditherName = "default"; break; case SkTriState::kTrue: ditherName = "true"; break; case SkTriState::kFalse: ditherName = "false"; break; default: ditherName = ""; break; } str.appendf(" dither=%s", ditherName); if (hasStrokeWidth) { str.appendf(" strokeWidth=%f", strokeWidth); } else { str.append(" strokeWidth=none"); } #if defined(SK_SCALAR_IS_FLOAT) str.append(" scalar=float"); #elif defined(SK_SCALAR_IS_FIXED) str.append(" scalar=fixed"); #endif #if defined(SK_BUILD_FOR_WIN32) str.append(" system=WIN32"); #elif defined(SK_BUILD_FOR_MAC) str.append(" system=MAC"); #elif defined(SK_BUILD_FOR_ANDROID) str.append(" system=ANDROID"); #elif defined(SK_BUILD_FOR_UNIX) str.append(" system=UNIX"); #else str.append(" system=other"); #endif #if defined(SK_DEBUG) str.append(" DEBUG"); #endif str.append("\n"); logger.logProgress(str); } SkGLContext* timerCtx = NULL; //Don't do GL when fixed. #if !defined(SK_SCALAR_IS_FIXED) && SK_SUPPORT_GPU int contextWidth = 1024; int contextHeight = 1024; determine_gpu_context_size(defineDict, &contextWidth, &contextHeight); SkAutoTUnref realGLCtx(new SkNativeGLContext); SkAutoTUnref nullGLCtx(new SkNullGLContext); SkAutoTUnref debugGLCtx(new SkDebugGLContext); gRealGLHelper.init(realGLCtx.get(), contextWidth, contextHeight); gNullGLHelper.init(nullGLCtx.get(), contextWidth, contextHeight); gDebugGLHelper.init(debugGLCtx.get(), contextWidth, contextHeight); #if SK_ANGLE SkAutoTUnref angleGLCtx(new SkANGLEGLContext); gANGLEGLHelper.init(angleGLCtx.get(), contextWidth, contextHeight); #endif // SK_ANGLE timerCtx = gRealGLHelper.glContext(); #endif // !defined(SK_SCALAR_IS_FIXED) && SK_SUPPORT_GPU BenchTimer timer = BenchTimer(timerCtx); Iter iter(&defineDict); SkBenchmark* bench; while ((bench = iter.next()) != NULL) { SkIPoint dim = bench->getSize(); if (dim.fX <= 0 || dim.fY <= 0) { continue; } bench->setForceAlpha(forceAlpha); bench->setForceAA(forceAA); bench->setForceFilter(forceFilter); bench->setDither(forceDither); if (hasStrokeWidth) { bench->setStrokeWidth(strokeWidth); } // only run benchmarks if their name contains matchStr if (skip_name(fMatches, bench->getName())) { continue; } { SkString str; str.printf("running bench [%d %d] %28s", dim.fX, dim.fY, bench->getName()); logger.logProgress(str); } for (int x = 0; x < configs.count(); ++x) { int configIndex = configs[x]; outConfig = gConfigs[configIndex].fConfig; configName = gConfigs[configIndex].fName; backend = gConfigs[configIndex].fBackend; glHelper = gConfigs[configIndex].fGLHelper; #if SK_SUPPORT_GPU if (kGPU_Backend == backend && (NULL == glHelper || !glHelper->isValid())) { continue; } #endif SkDevice* device = make_device(outConfig, dim, backend, glHelper); SkCanvas* canvas = NULL; SkPicture pictureRecordFrom; SkPicture pictureRecordTo; switch(benchMode) { case kDeferred_benchModes: canvas = new SkDeferredCanvas(device); break; case kRecord_benchModes: canvas = pictureRecordTo.beginRecording(dim.fX, dim.fY); canvas->ref(); break; case kPictureRecord_benchModes: { // This sets up picture-to-picture recording. // The C++ drawing calls for the benchmark are recorded into // pictureRecordFrom. As the benchmark, we will time how // long it takes to playback pictureRecordFrom into // pictureRecordTo. SkCanvas* tempCanvas = pictureRecordFrom.beginRecording(dim.fX, dim.fY); bench->draw(tempCanvas); pictureRecordFrom.endRecording(); canvas = pictureRecordTo.beginRecording(dim.fX, dim.fY); canvas->ref(); break; } case kNormal_benchModes: canvas = new SkCanvas(device); break; default: SkASSERT(0); } device->unref(); SkAutoUnref canvasUnref(canvas); if (doClip) { performClip(canvas, dim.fX, dim.fY); } if (doScale) { performScale(canvas, dim.fX, dim.fY); } if (doRotate) { performRotate(canvas, dim.fX, dim.fY); } // warm up caches if needed if (repeatDraw > 1) { SkAutoCanvasRestore acr(canvas, true); if (benchMode == kPictureRecord_benchModes) { pictureRecordFrom.draw(canvas); } else { bench->draw(canvas); } canvas->flush(); #if SK_SUPPORT_GPU if (glHelper) { glHelper->grContext()->flush(); SK_GL(*glHelper->glContext(), Finish()); } #endif } // record timer values for each repeat, and their sum SkString fWallStr(" msecs = "); SkString fCpuStr(" cmsecs = "); SkString fGpuStr(" gmsecs = "); double fWallSum = 0.0; double fCpuSum = 0.0; double fGpuSum = 0.0; for (int i = 0; i < repeatDraw; i++) { if ((benchMode == kRecord_benchModes || benchMode == kPictureRecord_benchModes)) { // This will clear the recorded commands so that they do not // acculmulate. canvas = pictureRecordTo.beginRecording(dim.fX, dim.fY); } timer.start(); SkAutoCanvasRestore acr(canvas, true); if (benchMode == kPictureRecord_benchModes) { pictureRecordFrom.draw(canvas); } else { bench->draw(canvas); } canvas->flush(); #if SK_SUPPORT_GPU if (glHelper) { glHelper->grContext()->flush(); } #endif timer.end(); if (i == repeatDraw - 1) { // no comma after the last value fWallStr.appendf(perIterTimeformat.c_str(), timer.fWall); fCpuStr.appendf(perIterTimeformat.c_str(), timer.fCpu); fGpuStr.appendf(perIterTimeformat.c_str(), timer.fGpu); } else { fWallStr.appendf(perIterTimeformat.c_str(), timer.fWall); fWallStr.appendf(","); fCpuStr.appendf(perIterTimeformat.c_str(), timer.fCpu); fCpuStr.appendf(","); fGpuStr.appendf(perIterTimeformat.c_str(), timer.fGpu); fGpuStr.appendf(","); } fWallSum += timer.fWall; fCpuSum += timer.fCpu; fGpuSum += timer.fGpu; } #if SK_SUPPORT_GPU if (glHelper) { SK_GL(*glHelper->glContext(), Finish()); } #endif if (repeatDraw > 1) { // output each repeat (no average) if logPerIter is set, // otherwise output only the average if (!logPerIter) { fWallStr.set(" msecs = "); fWallStr.appendf(normalTimeFormat.c_str(), fWallSum / repeatDraw); fCpuStr.set(" cmsecs = "); fCpuStr.appendf(normalTimeFormat.c_str(), fCpuSum / repeatDraw); fGpuStr.set(" gmsecs = "); fGpuStr.appendf(normalTimeFormat.c_str(), fGpuSum / repeatDraw); } SkString str; str.printf(" %4s:", configName); if (timerWall) { str += fWallStr; } if (timerCpu) { str += fCpuStr; } if (timerGpu && glHelper && fGpuSum > 0) { str += fGpuStr; } logger.logProgress(str); } if (outDir.size() > 0) { saveFile(bench->getName(), configName, outDir.c_str(), device->accessBitmap(false)); } } logger.logProgress(SkString("\n")); } #if SK_SUPPORT_GPU // need to clean up here rather than post-main to allow leak detection to work gDebugGLHelper.cleanup(); #endif return 0; }