/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "Benchmark.h" #include "SkPMFloat.h" // Used to prevent the compiler from optimizing away the whole loop. volatile uint32_t blackhole = 0; // Not a great random number generator, but it's very fast. // The code we're measuring is quite fast, so low overhead is essential. static uint32_t lcg_rand(uint32_t* seed) { *seed *= 1664525; *seed += 1013904223; return *seed; } // I'm having better luck getting these to constant-propagate away as template parameters. struct PMFloatRoundtripBench : public Benchmark { PMFloatRoundtripBench() {} const char* onGetName() override { return "SkPMFloat_roundtrip"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } void onDraw(const int loops, SkCanvas* canvas) override { // Unlike blackhole, junk can and probably will be a register. uint32_t junk = 0; uint32_t seed = 0; for (int i = 0; i < loops; i++) { SkPMColor color; #ifdef SK_DEBUG // Our SkASSERTs will remind us that it's technically required that we premultiply. color = SkPreMultiplyColor(lcg_rand(&seed)); #else // But it's a lot faster not to, and this code won't really mind the non-PM colors. color = lcg_rand(&seed); #endif auto f = SkPMFloat::FromPMColor(color); SkPMColor back = f.round(); junk ^= back; } blackhole ^= junk; } }; DEF_BENCH(return new PMFloatRoundtripBench;) struct PMFloatGradientBench : public Benchmark { const char* onGetName() override { return "PMFloat_gradient"; } bool isSuitableFor(Backend backend) override { return backend == kNonRendering_Backend; } SkPMColor fDevice[100]; void onDraw(const int loops, SkCanvas*) override { Sk4f c0 = SkPMFloat::FromARGB(1, 1, 0, 0), c1 = SkPMFloat::FromARGB(1, 0, 0, 1), dc = c1 - c0, fx(0.1f), dx(0.002f), dcdx(dc*dx), dcdx4(dcdx+dcdx+dcdx+dcdx); for (int n = 0; n < loops; n++) { Sk4f a = c0 + dc*fx, b = a + dcdx, c = b + dcdx, d = c + dcdx; for (size_t i = 0; i < SK_ARRAY_COUNT(fDevice); i += 4) { fDevice[i+0] = SkPMFloat(a).round(); fDevice[i+1] = SkPMFloat(b).round(); fDevice[i+2] = SkPMFloat(c).round(); fDevice[i+3] = SkPMFloat(d).round(); a = a + dcdx4; b = b + dcdx4; c = c + dcdx4; d = d + dcdx4; } } } }; DEF_BENCH(return new PMFloatGradientBench;)