#include "SkBenchmark.h" #include "SkMatrix.h" #include "SkRandom.h" #include "SkString.h" class MatrixBench : public SkBenchmark { SkString fName; enum { N = 100000 }; public: MatrixBench(void* param, const char name[]) : INHERITED(param) { fName.printf("matrix_%s", name); } virtual void performTest() = 0; protected: virtual int mulLoopCount() const { return 1; } virtual const char* onGetName() { return fName.c_str(); } virtual void onDraw(SkCanvas* canvas) { int n = N * this->mulLoopCount(); for (int i = 0; i < n; i++) { this->performTest(); } } private: typedef SkBenchmark INHERITED; }; // we want to stop the compiler from eliminating code that it thinks is a no-op // so we have a non-static global we increment, hoping that will convince the // compiler to execute everything int gMatrixBench_NonStaticGlobal; #define always_do(pred) \ do { \ if (pred) { \ ++gMatrixBench_NonStaticGlobal; \ } \ } while (0) class EqualsMatrixBench : public MatrixBench { public: EqualsMatrixBench(void* param) : INHERITED(param, "equals") {} protected: virtual void performTest() { SkMatrix m0, m1, m2; m0.reset(); m1.reset(); m2.reset(); always_do(m0 == m1); always_do(m1 == m2); always_do(m2 == m0); } private: typedef MatrixBench INHERITED; }; class ScaleMatrixBench : public MatrixBench { public: ScaleMatrixBench(void* param) : INHERITED(param, "scale") { fSX = fSY = SkFloatToScalar(1.5f); fM0.reset(); fM1.setScale(fSX, fSY); fM2.setTranslate(fSX, fSY); } protected: virtual void performTest() { SkMatrix m; m = fM0; m.preScale(fSX, fSY); m = fM1; m.preScale(fSX, fSY); m = fM2; m.preScale(fSX, fSY); } private: SkMatrix fM0, fM1, fM2; SkScalar fSX, fSY; typedef MatrixBench INHERITED; }; // having unknown values in our arrays can throw off the timing a lot, perhaps // handling NaN values is a lot slower. Anyway, this guy is just meant to put // reasonable values in our arrays. template void init9(T array[9]) { SkRandom rand; for (int i = 0; i < 9; i++) { array[i] = rand.nextSScalar1(); } } // Test the performance of setConcat() non-perspective case: // using floating point precision only. class FloatConcatMatrixBench : public MatrixBench { public: FloatConcatMatrixBench(void* p) : INHERITED(p, "concat_floatfloat") { init9(mya); init9(myb); init9(myr); } protected: virtual int mulLoopCount() const { return 4; } static inline void muladdmul(float a, float b, float c, float d, float* result) { *result = a * b + c * d; } virtual void performTest() { const float* a = mya; const float* b = myb; float* r = myr; muladdmul(a[0], b[0], a[1], b[3], &r[0]); muladdmul(a[0], b[1], a[1], b[4], &r[1]); muladdmul(a[0], b[2], a[1], b[5], &r[2]); r[2] += a[2]; muladdmul(a[3], b[0], a[4], b[3], &r[3]); muladdmul(a[3], b[1], a[4], b[4], &r[4]); muladdmul(a[3], b[2], a[4], b[5], &r[5]); r[5] += a[5]; r[6] = r[7] = 0.0f; r[8] = 1.0f; } private: float mya [9]; float myb [9]; float myr [9]; typedef MatrixBench INHERITED; }; static inline float SkDoubleToFloat(double x) { return static_cast(x); } // Test the performance of setConcat() non-perspective case: // using floating point precision but casting up to float for // intermediate results during computations. class FloatDoubleConcatMatrixBench : public MatrixBench { public: FloatDoubleConcatMatrixBench(void* p) : INHERITED(p, "concat_floatdouble") { init9(mya); init9(myb); init9(myr); } protected: virtual int mulLoopCount() const { return 4; } static inline void muladdmul(float a, float b, float c, float d, float* result) { *result = SkDoubleToFloat((double)a * b + (double)c * d); } virtual void performTest() { const float* a = mya; const float* b = myb; float* r = myr; muladdmul(a[0], b[0], a[1], b[3], &r[0]); muladdmul(a[0], b[1], a[1], b[4], &r[1]); muladdmul(a[0], b[2], a[1], b[5], &r[2]); r[2] += a[2]; muladdmul(a[3], b[0], a[4], b[3], &r[3]); muladdmul(a[3], b[1], a[4], b[4], &r[4]); muladdmul(a[3], b[2], a[4], b[5], &r[5]); r[5] += a[5]; r[6] = r[7] = 0.0f; r[8] = 1.0f; } private: float mya [9]; float myb [9]; float myr [9]; typedef MatrixBench INHERITED; }; // Test the performance of setConcat() non-perspective case: // using double precision only. class DoubleConcatMatrixBench : public MatrixBench { public: DoubleConcatMatrixBench(void* p) : INHERITED(p, "concat_double") { init9(mya); init9(myb); init9(myr); } protected: virtual int mulLoopCount() const { return 4; } static inline void muladdmul(double a, double b, double c, double d, double* result) { *result = a * b + c * d; } virtual void performTest() { const double* a = mya; const double* b = myb; double* r = myr; muladdmul(a[0], b[0], a[1], b[3], &r[0]); muladdmul(a[0], b[1], a[1], b[4], &r[1]); muladdmul(a[0], b[2], a[1], b[5], &r[2]); r[2] += a[2]; muladdmul(a[3], b[0], a[4], b[3], &r[3]); muladdmul(a[3], b[1], a[4], b[4], &r[4]); muladdmul(a[3], b[2], a[4], b[5], &r[5]); r[5] += a[5]; r[6] = r[7] = 0.0; r[8] = 1.0; } private: double mya [9]; double myb [9]; double myr [9]; typedef MatrixBench INHERITED; }; class GetTypeMatrixBench : public MatrixBench { public: GetTypeMatrixBench(void* param) : INHERITED(param, "gettype") { fArray[0] = fRnd.nextS(); fArray[1] = fRnd.nextS(); fArray[2] = fRnd.nextS(); fArray[3] = fRnd.nextS(); fArray[4] = fRnd.nextS(); fArray[5] = fRnd.nextS(); fArray[6] = fRnd.nextS(); fArray[7] = fRnd.nextS(); fArray[8] = fRnd.nextS(); } protected: // Putting random generation of the matrix inside performTest() // would help us avoid anomalous runs, but takes up 25% or // more of the function time. virtual void performTest() { fMatrix.setAll(fArray[0], fArray[1], fArray[2], fArray[3], fArray[4], fArray[5], fArray[6], fArray[7], fArray[8]); always_do(fMatrix.getType()); fMatrix.dirtyMatrixTypeCache(); always_do(fMatrix.getType()); fMatrix.dirtyMatrixTypeCache(); always_do(fMatrix.getType()); fMatrix.dirtyMatrixTypeCache(); always_do(fMatrix.getType()); fMatrix.dirtyMatrixTypeCache(); always_do(fMatrix.getType()); fMatrix.dirtyMatrixTypeCache(); always_do(fMatrix.getType()); fMatrix.dirtyMatrixTypeCache(); always_do(fMatrix.getType()); fMatrix.dirtyMatrixTypeCache(); always_do(fMatrix.getType()); } private: SkMatrix fMatrix; float fArray[9]; SkRandom fRnd; typedef MatrixBench INHERITED; }; #ifdef SK_SCALAR_IS_FLOAT class ScaleTransMixedMatrixBench : public MatrixBench { public: ScaleTransMixedMatrixBench(void* p) : INHERITED(p, "scaletrans_mixed"), fCount (16) { fMatrix.setAll(fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), fRandom.nextS(), fRandom.nextS()); int i; for (i = 0; i < fCount; i++) { fSrc[i].fX = fRandom.nextS(); fSrc[i].fY = fRandom.nextS(); fDst[i].fX = fRandom.nextS(); fDst[i].fY = fRandom.nextS(); } } protected: virtual void performTest() { SkPoint* dst = fDst; const SkPoint* src = fSrc; int count = fCount; float mx = fMatrix[SkMatrix::kMScaleX]; float my = fMatrix[SkMatrix::kMScaleY]; float tx = fMatrix[SkMatrix::kMTransX]; float ty = fMatrix[SkMatrix::kMTransY]; do { dst->fY = SkScalarMulAdd(src->fY, my, ty); dst->fX = SkScalarMulAdd(src->fX, mx, tx); src += 1; dst += 1; } while (--count); } private: SkMatrix fMatrix; SkPoint fSrc [16]; SkPoint fDst [16]; int fCount; SkRandom fRandom; typedef MatrixBench INHERITED; }; class ScaleTransDoubleMatrixBench : public MatrixBench { public: ScaleTransDoubleMatrixBench(void* p) : INHERITED(p, "scaletrans_double"), fCount (16) { init9(fMatrix); int i; for (i = 0; i < fCount; i++) { fSrc[i].fX = fRandom.nextS(); fSrc[i].fY = fRandom.nextS(); fDst[i].fX = fRandom.nextS(); fDst[i].fY = fRandom.nextS(); } } protected: virtual void performTest() { SkPoint* dst = fDst; const SkPoint* src = fSrc; int count = fCount; // As doubles, on Z600 Linux systems this is 2.5x as expensive as mixed mode float mx = fMatrix[SkMatrix::kMScaleX]; float my = fMatrix[SkMatrix::kMScaleY]; float tx = fMatrix[SkMatrix::kMTransX]; float ty = fMatrix[SkMatrix::kMTransY]; do { dst->fY = src->fY * my + ty; dst->fX = src->fX * mx + tx; src += 1; dst += 1; } while (--count); } private: double fMatrix [9]; SkPoint fSrc [16]; SkPoint fDst [16]; int fCount; SkRandom fRandom; typedef MatrixBench INHERITED; }; #endif static SkBenchmark* M0(void* p) { return new EqualsMatrixBench(p); } static SkBenchmark* M1(void* p) { return new ScaleMatrixBench(p); } static SkBenchmark* M2(void* p) { return new FloatConcatMatrixBench(p); } static SkBenchmark* M3(void* p) { return new FloatDoubleConcatMatrixBench(p); } static SkBenchmark* M4(void* p) { return new DoubleConcatMatrixBench(p); } static SkBenchmark* M5(void* p) { return new GetTypeMatrixBench(p); } static BenchRegistry gReg0(M0); static BenchRegistry gReg1(M1); static BenchRegistry gReg2(M2); static BenchRegistry gReg3(M3); static BenchRegistry gReg4(M4); static BenchRegistry gReg5(M5); #ifdef SK_SCALAR_IS_FLOAT static SkBenchmark* FlM0(void* p) { return new ScaleTransMixedMatrixBench(p); } static SkBenchmark* FlM1(void* p) { return new ScaleTransDoubleMatrixBench(p); } static BenchRegistry gFlReg5(FlM0); static BenchRegistry gFlReg6(FlM1); #endif