From 3229e65886a04a33c906d15d10c1bf7e97910109 Mon Sep 17 00:00:00 2001 From: Jim Van Verth Date: Tue, 17 Jul 2018 20:22:39 +0000 Subject: Revert "Add some optimizations to PolyUtils" This reverts commit 8bb0db3d07450880d346d808018708416c928657. Reason for revert: Breaking Google3. Original change's description: > Add some optimizations to PolyUtils > > * Switch inset/offset code to use a linked list rather than an array > * Use std::set to store active edge list for IsSimplePolygon rather than array > * Pre-alloc the priority queue for IsSimplePolygon > * When adding radial curves, expand the array all at once rather than pushing > one at a time. > > Bug: skia: > Change-Id: I692f8c29c500c41ec1d1be39d924d8a752676bf4 > Reviewed-on: https://skia-review.googlesource.com/140787 > Reviewed-by: Robert Phillips > Commit-Queue: Jim Van Verth TBR=jvanverth@google.com,bsalomon@google.com,robertphillips@google.com Change-Id: Ie8afecd899fa9bd79d22fdf46ec82a0c9e94e893 No-Presubmit: true No-Tree-Checks: true No-Try: true Bug: skia: Reviewed-on: https://skia-review.googlesource.com/141980 Reviewed-by: Jim Van Verth Commit-Queue: Jim Van Verth --- bench/PolyUtilsBench.cpp | 102 ++-------- src/core/SkTDPQueue.h | 1 - src/utils/SkPolyUtils.cpp | 439 +++++++++++++++++++----------------------- tests/InsetConvexPolyTest.cpp | 2 +- 4 files changed, 219 insertions(+), 325 deletions(-) diff --git a/bench/PolyUtilsBench.cpp b/bench/PolyUtilsBench.cpp index e03c51cf8d..1b987fa038 100644 --- a/bench/PolyUtilsBench.cpp +++ b/bench/PolyUtilsBench.cpp @@ -9,12 +9,12 @@ #include "SkPolyUtils.h" class PolyUtilsBench : public Benchmark { -public: // Evaluate SkTriangulateSimplePolygon's performance (via derived classes) on: // a non-self-intersecting star, a circle of tiny line segments and a self-intersecting star - enum class Type { kConvexCheck, kSimpleCheck, kInsetConvex, kOffsetSimple, kTessellateSimple }; - PolyUtilsBench(Type type) : fType(type) {} + SkString fName; +public: + PolyUtilsBench() {} virtual void appendName(SkString*) = 0; virtual void makePoly(SkTDArray* poly) = 0; @@ -24,84 +24,32 @@ protected: const char* onGetName() override { fName = "poly_utils_"; this->appendName(&fName); - switch (fType) { - case Type::kConvexCheck: - fName.append("_c"); - break; - case Type::kSimpleCheck: - fName.append("_s"); - break; - case Type::kInsetConvex: - fName.append("_i"); - break; - case Type::kOffsetSimple: - fName.append("_o"); - break; - case Type::kTessellateSimple: - fName.append("_t"); - break; - } return fName.c_str(); } void onDraw(int loops, SkCanvas* canvas) override { SkTDArray poly; this->makePoly(&poly); - switch (fType) { - case Type::kConvexCheck: - for (int i = 0; i < loops; i++) { - (void)SkIsConvexPolygon(poly.begin(), poly.count()); - } - break; - case Type::kSimpleCheck: - for (int i = 0; i < loops; i++) { - (void)SkIsSimplePolygon(poly.begin(), poly.count()); - } - break; - case Type::kInsetConvex: - if (SkIsConvexPolygon(poly.begin(), poly.count())) { - SkTDArray result; - for (int i = 0; i < loops; i++) { - (void)SkInsetConvexPolygon(poly.begin(), poly.count(), 10, &result); - (void)SkInsetConvexPolygon(poly.begin(), poly.count(), 40, &result); - } - } - break; - case Type::kOffsetSimple: - if (SkIsSimplePolygon(poly.begin(), poly.count())) { - SkTDArray result; - for (int i = 0; i < loops; i++) { - (void)SkOffsetSimplePolygon(poly.begin(), poly.count(), 10, &result); - (void)SkOffsetSimplePolygon(poly.begin(), poly.count(), -10, &result); - } - } - break; - case Type::kTessellateSimple: - if (SkIsSimplePolygon(poly.begin(), poly.count())) { - SkAutoSTMalloc<64, uint16_t> indexMap(poly.count()); - for (int i = 0; i < poly.count(); ++i) { - indexMap[i] = i; - } - SkTDArray triangleIndices; - for (int i = 0; i < loops; i++) { - SkTriangulateSimplePolygon(poly.begin(), indexMap, poly.count(), - &triangleIndices); - } - } - break; + SkAutoSTMalloc<64, uint16_t> indexMap(poly.count()); + for (int i = 0; i < poly.count(); ++i) { + indexMap[i] = i; + } + SkTDArray triangleIndices; + for (int i = 0; i < loops; i++) { + if (SkIsSimplePolygon(poly.begin(), poly.count())) { + SkTriangulateSimplePolygon(poly.begin(), indexMap, poly.count(), + &triangleIndices); + } } } private: - SkString fName; - Type fType; - typedef Benchmark INHERITED; }; class StarPolyUtilsBench : public PolyUtilsBench { public: - StarPolyUtilsBench(PolyUtilsBench::Type type) : INHERITED(type) {} + StarPolyUtilsBench() {} void appendName(SkString* name) override { name->append("star"); @@ -129,7 +77,7 @@ private: class CirclePolyUtilsBench : public PolyUtilsBench { public: - CirclePolyUtilsBench(PolyUtilsBench::Type type) : INHERITED(type) {} + CirclePolyUtilsBench() {} void appendName(SkString* name) override { name->append("circle"); @@ -153,7 +101,7 @@ private: class IntersectingPolyUtilsBench : public PolyUtilsBench { public: - IntersectingPolyUtilsBench(PolyUtilsBench::Type type) : INHERITED(type) {} + IntersectingPolyUtilsBench() {} void appendName(SkString* name) override { name->append("intersecting"); @@ -177,18 +125,6 @@ private: typedef PolyUtilsBench INHERITED; }; -DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kConvexCheck);) -DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kSimpleCheck);) -DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kInsetConvex);) -DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kOffsetSimple);) -DEF_BENCH(return new StarPolyUtilsBench(PolyUtilsBench::Type::kTessellateSimple);) -DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kConvexCheck);) -DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kSimpleCheck);) -DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kInsetConvex);) -DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kOffsetSimple);) -DEF_BENCH(return new CirclePolyUtilsBench(PolyUtilsBench::Type::kTessellateSimple);) -DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kConvexCheck);) -DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kSimpleCheck);) -DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kInsetConvex);) -DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kOffsetSimple);) -DEF_BENCH(return new IntersectingPolyUtilsBench(PolyUtilsBench::Type::kTessellateSimple);) +DEF_BENCH(return new StarPolyUtilsBench();) +DEF_BENCH(return new CirclePolyUtilsBench();) +DEF_BENCH(return new IntersectingPolyUtilsBench();) diff --git a/src/core/SkTDPQueue.h b/src/core/SkTDPQueue.h index 6e2a09ca8a..5dca4910ed 100644 --- a/src/core/SkTDPQueue.h +++ b/src/core/SkTDPQueue.h @@ -30,7 +30,6 @@ template #include "SkPointPriv.h" #include "SkTArray.h" #include "SkTemplates.h" @@ -299,32 +298,34 @@ bool SkIsConvexPolygon(const SkPoint* polygonVerts, int polygonSize) { return true; } -struct OffsetEdge { - OffsetEdge* fPrev; - OffsetEdge* fNext; +struct EdgeData { OffsetSegment fInset; SkPoint fIntersection; SkScalar fTValue; + uint16_t fStart; uint16_t fEnd; uint16_t fIndex; + bool fValid; - void init(uint16_t start = 0, uint16_t end = 0) { + void init() { fIntersection = fInset.fP0; fTValue = SK_ScalarMin; + fStart = 0; + fEnd = 0; + fIndex = 0; + fValid = true; + } + + void init(uint16_t start, uint16_t end) { + fIntersection = fInset.fP0; + fTValue = SK_ScalarMin; + fStart = start; fEnd = end; fIndex = start; + fValid = true; } }; -static void remove_node(const OffsetEdge* node, OffsetEdge** head) { - // remove from linked list - node->fPrev->fNext = node->fNext; - node->fNext->fPrev = node->fPrev; - if (node == *head) { - *head = (node->fNext == node) ? nullptr : node->fNext; - } -} - ////////////////////////////////////////////////////////////////////////////////// // The objective here is to inset all of the edges by the given distance, and then @@ -353,118 +354,116 @@ bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize } // set up - SkAutoSTMalloc<64, OffsetEdge> edgeData(inputPolygonSize); - int prev = inputPolygonSize - 1; - for (int curr = 0; curr < inputPolygonSize; prev = curr, ++curr) { - int next = (curr + 1) % inputPolygonSize; - if (!inputPolygonVerts[curr].isFinite()) { + SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize); + for (int i = 0; i < inputPolygonSize; ++i) { + int j = (i + 1) % inputPolygonSize; + int k = (i + 2) % inputPolygonSize; + if (!inputPolygonVerts[i].isFinite()) { return false; } // check for convexity just to be sure - if (compute_side(inputPolygonVerts[prev], inputPolygonVerts[curr], - inputPolygonVerts[next])*winding < 0) { + if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j], + inputPolygonVerts[k])*winding < 0) { return false; } - edgeData[curr].fPrev = &edgeData[prev]; - edgeData[curr].fNext = &edgeData[next]; - if (!SkOffsetSegment(inputPolygonVerts[curr], inputPolygonVerts[next], - insetDistanceFunc(inputPolygonVerts[curr]), - insetDistanceFunc(inputPolygonVerts[next]), + if (!SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j], + insetDistanceFunc(inputPolygonVerts[i]), + insetDistanceFunc(inputPolygonVerts[j]), winding, - &edgeData[curr].fInset.fP0, &edgeData[curr].fInset.fP1)) { + &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1)) { return false; } - edgeData[curr].init(); + edgeData[i].init(); } - OffsetEdge* head = &edgeData[0]; - OffsetEdge* currEdge = head; - OffsetEdge* prevEdge = currEdge->fPrev; + int prevIndex = inputPolygonSize - 1; + int currIndex = 0; int insetVertexCount = inputPolygonSize; int iterations = 0; - while (head && prevEdge != currEdge) { + while (prevIndex != currIndex) { ++iterations; // we should check each edge against each other edge at most once if (iterations > inputPolygonSize*inputPolygonSize) { return false; } + if (!edgeData[prevIndex].fValid) { + prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; + continue; + } + SkScalar s, t; SkPoint intersection; - if (compute_intersection(prevEdge->fInset, currEdge->fInset, + if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset, &intersection, &s, &t)) { // if new intersection is further back on previous inset from the prior intersection - if (s < prevEdge->fTValue) { + if (s < edgeData[prevIndex].fTValue) { // no point in considering this one again - remove_node(prevEdge, &head); + edgeData[prevIndex].fValid = false; --insetVertexCount; // go back one segment - prevEdge = prevEdge->fPrev; + prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; // we've already considered this intersection, we're done - } else if (currEdge->fTValue > SK_ScalarMin && + } else if (edgeData[currIndex].fTValue > SK_ScalarMin && SkPointPriv::EqualsWithinTolerance(intersection, - currEdge->fIntersection, + edgeData[currIndex].fIntersection, 1.0e-6f)) { break; } else { // add intersection - currEdge->fIntersection = intersection; - currEdge->fTValue = t; + edgeData[currIndex].fIntersection = intersection; + edgeData[currIndex].fTValue = t; // go to next segment - prevEdge = currEdge; - currEdge = currEdge->fNext; + prevIndex = currIndex; + currIndex = (currIndex + 1) % inputPolygonSize; } } else { // if prev to right side of curr - int side = winding*compute_side(currEdge->fInset.fP0, - currEdge->fInset.fP1, - prevEdge->fInset.fP1); - if (side < 0 && side == winding*compute_side(currEdge->fInset.fP0, - currEdge->fInset.fP1, - prevEdge->fInset.fP0)) { + int side = winding*compute_side(edgeData[currIndex].fInset.fP0, + edgeData[currIndex].fInset.fP1, + edgeData[prevIndex].fInset.fP1); + if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0, + edgeData[currIndex].fInset.fP1, + edgeData[prevIndex].fInset.fP0)) { // no point in considering this one again - remove_node(prevEdge, &head); + edgeData[prevIndex].fValid = false; --insetVertexCount; // go back one segment - prevEdge = prevEdge->fPrev; + prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize; } else { // move to next segment - remove_node(currEdge, &head); + edgeData[currIndex].fValid = false; --insetVertexCount; - currEdge = currEdge->fNext; + currIndex = (currIndex + 1) % inputPolygonSize; } } } // store all the valid intersections that aren't nearly coincident // TODO: look at the main algorithm and see if we can detect these better + static constexpr SkScalar kCleanupTolerance = 0.01f; + insetPolygon->reset(); - if (head) { - static constexpr SkScalar kCleanupTolerance = 0.01f; - if (insetVertexCount >= 0) { - insetPolygon->setReserve(insetVertexCount); - } - int currIndex = 0; - OffsetEdge* currEdge = head; - *insetPolygon->push() = currEdge->fIntersection; - currEdge = currEdge->fNext; - while (currEdge != head) { - if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, - (*insetPolygon)[currIndex], - kCleanupTolerance)) { - *insetPolygon->push() = currEdge->fIntersection; - currIndex++; - } - currEdge = currEdge->fNext; - } - // make sure the first and last points aren't coincident - if (currIndex >= 1 && - SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex], - kCleanupTolerance)) { - insetPolygon->pop(); + if (insetVertexCount >= 0) { + insetPolygon->setReserve(insetVertexCount); + } + currIndex = -1; + for (int i = 0; i < inputPolygonSize; ++i) { + if (edgeData[i].fValid && (currIndex == -1 || + !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection, + (*insetPolygon)[currIndex], + kCleanupTolerance))) { + *insetPolygon->push() = edgeData[i].fIntersection; + currIndex++; } } + // make sure the first and last points aren't coincident + if (currIndex >= 1 && + SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex], + kCleanupTolerance)) { + insetPolygon->pop(); + } return SkIsConvexPolygon(insetPolygon->begin(), insetPolygon->count()); } @@ -505,7 +504,6 @@ struct Vertex { static bool Left(const Vertex& qv0, const Vertex& qv1) { return left(qv0.fPosition, qv1.fPosition); } - // packed to fit into 16 bytes (one cache line) SkPoint fPosition; uint16_t fIndex; // index in unsorted polygon @@ -519,14 +517,9 @@ enum VertexFlags { kNextLeft_VertexFlag = 0x2, }; -struct ActiveEdge { - ActiveEdge(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1) - : fSegment({p0, p1}) - , fIndex0(index0) - , fIndex1(index1) {} - +struct Edge { // returns true if "this" is above "that" - bool above(const ActiveEdge& that, SkScalar tolerance = SK_ScalarNearlyZero) const { + bool above(const Edge& that, SkScalar tolerance = SK_ScalarNearlyZero) { SkASSERT(this->fSegment.fP0.fX < that.fSegment.fP0.fX || SkScalarNearlyEqual(this->fSegment.fP0.fX, that.fSegment.fP0.fX, tolerance)); // The idea here is that if the vector between the origins of the two segments (dv) @@ -544,26 +537,10 @@ struct ActiveEdge { // lies on dv. So then we try the same for the vector from the tail of "this" // to the head of "that". Again, ccw means "this" is above "that". dv = that.fSegment.fP1 - this->fSegment.fP0; - if (dv.cross(u) > tolerance) { - return true; - } - // If the previous check fails, the two segments are nearly collinear - // If this segment starts to the left of that one, - // just need to check y-coord of 1st endpoint - if (this->fSegment.fP0.fX < that.fSegment.fP0.fX) { - return (this->fSegment.fP0.fY >= that.fSegment.fP0.fY); - } else if (this->fSegment.fP0.fY > that.fSegment.fP0.fY) { - return true; - } - // Otherwise the first endpoints are effectively the same, so check the other endpoint - if (this->fSegment.fP1.fX < that.fSegment.fP1.fX) { - return (this->fSegment.fP1.fY >= that.fSegment.fP1.fY); - } else { - return (this->fSegment.fP1.fY > that.fSegment.fP1.fY); - } + return (dv.cross(u) > tolerance); } - bool intersect(const ActiveEdge& that) const { + bool intersect(const Edge& that) const { SkPoint intersection; SkScalar s, t; // check first to see if these edges are neighbors in the polygon @@ -574,73 +551,78 @@ struct ActiveEdge { return compute_intersection(this->fSegment, that.fSegment, &intersection, &s, &t); } - bool operator==(const ActiveEdge& that) const { + bool operator==(const Edge& that) const { return (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1); } - bool operator!=(const ActiveEdge& that) const { + bool operator!=(const Edge& that) const { return !operator==(that); } - bool operator<(const ActiveEdge& that) const { - // this may not be necessary - if (this->fIndex0 == that.fIndex0 && this->fIndex1 == that.fIndex1) { - return false; - } - if (this->fSegment.fP0.fX > that.fSegment.fP0.fX) { - return !that.above(*this); - } - return this->above(that); - } - OffsetSegment fSegment; int32_t fIndex0; // indices for previous and next vertex int32_t fIndex1; }; -class ActiveEdgeList { +class EdgeList { public: - void reserve(int count) { } + void reserve(int count) { fEdges.reserve(count); } - bool insert(const SkPoint& p0, const SkPoint& p1, int32_t index0, int32_t index1) { - std::pair result = fEdgeTree.emplace(p0, p1, index0, index1); - if (!result.second) { - return false; + bool insert(const Edge& newEdge) { + // linear search for now (expected case is very few active edges) + int insertIndex = 0; + while (insertIndex < fEdges.count() && fEdges[insertIndex].above(newEdge)) { + ++insertIndex; } - - Iterator& curr = result.first; - if (curr != fEdgeTree.begin() && curr->intersect(*std::prev(curr))) { + // if we intersect with the existing edge above or below us + // then we know this polygon is not simple, so don't insert, just fail + if (insertIndex > 0 && newEdge.intersect(fEdges[insertIndex - 1])) { return false; } - Iterator next = std::next(curr); - if (next != fEdgeTree.end() && curr->intersect(*next)) { + if (insertIndex < fEdges.count() && newEdge.intersect(fEdges[insertIndex])) { return false; } + fEdges.push_back(); + for (int i = fEdges.count() - 1; i > insertIndex; --i) { + fEdges[i] = fEdges[i - 1]; + } + fEdges[insertIndex] = newEdge; + return true; } - bool remove(const ActiveEdge& edge) { - auto element = fEdgeTree.find(edge); - // this better not happen - if (element == fEdgeTree.end()) { - return false; + bool remove(const Edge& edge) { + SkASSERT(fEdges.count() > 0); + + // linear search for now (expected case is very few active edges) + int removeIndex = 0; + while (removeIndex < fEdges.count() && fEdges[removeIndex] != edge) { + ++removeIndex; } - if (element != fEdgeTree.begin() && element->intersect(*std::prev(element))) { + // we'd better find it or something is wrong + SkASSERT(removeIndex < fEdges.count()); + + // if we intersect with the edge above or below us + // then we know this polygon is not simple, so don't remove, just fail + if (removeIndex > 0 && fEdges[removeIndex].intersect(fEdges[removeIndex - 1])) { return false; } - Iterator next = std::next(element); - if (next != fEdgeTree.end() && element->intersect(*next)) { - return false; + if (removeIndex < fEdges.count() - 1) { + if (fEdges[removeIndex].intersect(fEdges[removeIndex + 1])) { + return false; + } + // copy over the old entry + memmove(&fEdges[removeIndex], &fEdges[removeIndex + 1], + sizeof(Edge)*(fEdges.count() - removeIndex - 1)); } - fEdgeTree.erase(element); + fEdges.pop_back(); return true; } private: - std::set fEdgeTree; - typedef std::set::iterator Iterator; + SkSTArray<1, Edge> fEdges; }; // Here we implement a sweep line algorithm to determine whether the provided points @@ -654,7 +636,10 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) { return false; } - SkTDPQueue vertexQueue(polygonSize); + SkTDPQueue vertexQueue; + EdgeList sweepLine; + + sweepLine.reserve(polygonSize); for (int i = 0; i < polygonSize; ++i) { Vertex newVertex; if (!polygon[i].isFinite()) { @@ -676,31 +661,31 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) { // pop each vertex from the queue and generate events depending on // where it lies relative to its neighboring edges - ActiveEdgeList sweepLine; - sweepLine.reserve(polygonSize); while (vertexQueue.count() > 0) { const Vertex& v = vertexQueue.peek(); // check edge to previous vertex if (v.fFlags & kPrevLeft_VertexFlag) { - ActiveEdge edge(polygon[v.fPrevIndex], v.fPosition, v.fPrevIndex, v.fIndex); + Edge edge{ { polygon[v.fPrevIndex], v.fPosition }, v.fPrevIndex, v.fIndex }; if (!sweepLine.remove(edge)) { break; } } else { - if (!sweepLine.insert(v.fPosition, polygon[v.fPrevIndex], v.fIndex, v.fPrevIndex)) { + Edge edge{ { v.fPosition, polygon[v.fPrevIndex] }, v.fIndex, v.fPrevIndex }; + if (!sweepLine.insert(edge)) { break; } } // check edge to next vertex if (v.fFlags & kNextLeft_VertexFlag) { - ActiveEdge edge(polygon[v.fNextIndex], v.fPosition, v.fNextIndex, v.fIndex); + Edge edge{ { polygon[v.fNextIndex], v.fPosition }, v.fNextIndex, v.fIndex }; if (!sweepLine.remove(edge)) { break; } } else { - if (!sweepLine.insert(v.fPosition, polygon[v.fNextIndex], v.fIndex, v.fNextIndex)) { + Edge edge{ { v.fPosition, polygon[v.fNextIndex] }, v.fIndex, v.fNextIndex }; + if (!sweepLine.insert(edge)) { break; } } @@ -713,15 +698,6 @@ bool SkIsSimplePolygon(const SkPoint* polygon, int polygonSize) { /////////////////////////////////////////////////////////////////////////////////////////// -// helper function for SkOffsetSimplePolygon -static void setup_offset_edge(OffsetEdge* currEdge, - const SkPoint& endpoint0, const SkPoint& endpoint1, - int startIndex, int endIndex) { - currEdge->fInset.fP0 = endpoint0; - currEdge->fInset.fP1 = endpoint1; - currEdge->init(startIndex, endIndex); -} - bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize, std::function offsetDistanceFunc, SkTDArray* offsetPolygon, SkTDArray* polygonIndices) { @@ -760,7 +736,7 @@ bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSiz } // build initial offset edge list - SkSTArray<64, OffsetEdge> edgeData(inputPolygonSize); + SkSTArray<64, EdgeData> edgeData(inputPolygonSize); int prevIndex = inputPolygonSize - 1; int currIndex = 0; int nextIndex = 1; @@ -778,143 +754,126 @@ bool SkOffsetSimplePolygon(const SkPoint* inputPolygonVerts, int inputPolygonSiz &rotSin, &rotCos, &numSteps)) { return false; } - auto currEdge = edgeData.push_back_n(SkTMax(numSteps, 1)); for (int i = 0; i < numSteps - 1; ++i) { SkVector currNormal = SkVector::Make(prevNormal.fX*rotCos - prevNormal.fY*rotSin, prevNormal.fY*rotCos + prevNormal.fX*rotSin); - setup_offset_edge(currEdge, - inputPolygonVerts[currIndex] + prevNormal, - inputPolygonVerts[currIndex] + currNormal, - currIndex, currIndex); + EdgeData& edge = edgeData.push_back(); + edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal; + edge.fInset.fP1 = inputPolygonVerts[currIndex] + currNormal; + edge.init(currIndex, currIndex); prevNormal = currNormal; - ++currEdge; } - setup_offset_edge(currEdge, - inputPolygonVerts[currIndex] + prevNormal, - inputPolygonVerts[currIndex] + normal0[currIndex], - currIndex, currIndex); - ++currEdge; - + EdgeData& edge = edgeData.push_back(); + edge.fInset.fP0 = inputPolygonVerts[currIndex] + prevNormal; + edge.fInset.fP1 = inputPolygonVerts[currIndex] + normal0[currIndex]; + edge.init(currIndex, currIndex); } // Add the edge - auto edge = edgeData.push_back_n(1); - setup_offset_edge(edge, - inputPolygonVerts[currIndex] + normal0[currIndex], - inputPolygonVerts[nextIndex] + normal1[nextIndex], - currIndex, nextIndex); + EdgeData& edge = edgeData.push_back(); + edge.fInset.fP0 = inputPolygonVerts[currIndex] + normal0[currIndex]; + edge.fInset.fP1 = inputPolygonVerts[nextIndex] + normal1[nextIndex]; + edge.init(currIndex, nextIndex); prevIndex = currIndex; currIndex++; nextIndex = (nextIndex + 1) % inputPolygonSize; } - // build linked list - // we have to do this as a post-process step because we might have reallocated - // the array when adding fans for reflex verts - prevIndex = edgeData.count()-1; - for (int currIndex = 0; currIndex < edgeData.count(); prevIndex = currIndex, ++currIndex) { - int nextIndex = (currIndex + 1) % edgeData.count(); - edgeData[currIndex].fPrev = &edgeData[prevIndex]; - edgeData[currIndex].fNext = &edgeData[nextIndex]; - } - - // now clip edges int edgeDataSize = edgeData.count(); - auto head = &edgeData[0]; - auto currEdge = head; - auto prevEdge = currEdge->fPrev; - int offsetVertexCount = edgeDataSize; + prevIndex = edgeDataSize - 1; + currIndex = 0; + int insetVertexCount = edgeDataSize; int iterations = 0; - while (head && prevEdge != currEdge) { + while (prevIndex != currIndex) { ++iterations; // we should check each edge against each other edge at most once if (iterations > edgeDataSize*edgeDataSize) { return false; } + if (!edgeData[prevIndex].fValid) { + prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize; + continue; + } + if (!edgeData[currIndex].fValid) { + currIndex = (currIndex + 1) % edgeDataSize; + continue; + } + SkScalar s, t; SkPoint intersection; - if (compute_intersection(prevEdge->fInset, currEdge->fInset, + if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset, &intersection, &s, &t)) { // if new intersection is further back on previous inset from the prior intersection - if (s < prevEdge->fTValue) { + if (s < edgeData[prevIndex].fTValue) { // no point in considering this one again - remove_node(prevEdge, &head); - --offsetVertexCount; + edgeData[prevIndex].fValid = false; + --insetVertexCount; // go back one segment - prevEdge = prevEdge->fPrev; + prevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize; // we've already considered this intersection, we're done - } else if (currEdge->fTValue > SK_ScalarMin && + } else if (edgeData[currIndex].fTValue > SK_ScalarMin && SkPointPriv::EqualsWithinTolerance(intersection, - currEdge->fIntersection, + edgeData[currIndex].fIntersection, 1.0e-6f)) { break; } else { // add intersection - currEdge->fIntersection = intersection; - currEdge->fTValue = t; - currEdge->fIndex = prevEdge->fEnd; + edgeData[currIndex].fIntersection = intersection; + edgeData[currIndex].fTValue = t; + edgeData[currIndex].fIndex = edgeData[prevIndex].fEnd; // go to next segment - prevEdge = currEdge; - currEdge = currEdge->fNext; + prevIndex = currIndex; + currIndex = (currIndex + 1) % edgeDataSize; } } else { // If there is no intersection, we want to minimize the distance between // the point where the segment lines cross and the segments themselves. - OffsetEdge* prevPrevEdge = prevEdge->fPrev; - OffsetEdge* currNextEdge = currEdge->fNext; - SkScalar dist0 = compute_crossing_distance(currEdge->fInset, - prevPrevEdge->fInset); - SkScalar dist1 = compute_crossing_distance(prevEdge->fInset, - currNextEdge->fInset); + SkScalar prevPrevIndex = (prevIndex + edgeDataSize - 1) % edgeDataSize; + SkScalar currNextIndex = (currIndex + 1) % edgeDataSize; + SkScalar dist0 = compute_crossing_distance(edgeData[currIndex].fInset, + edgeData[prevPrevIndex].fInset); + SkScalar dist1 = compute_crossing_distance(edgeData[prevIndex].fInset, + edgeData[currNextIndex].fInset); if (dist0 < dist1) { - remove_node(prevEdge, &head); - prevEdge = prevPrevEdge; + edgeData[prevIndex].fValid = false; + prevIndex = prevPrevIndex; } else { - remove_node(currEdge, &head); - currEdge = currNextEdge; + edgeData[currIndex].fValid = false; + currIndex = currNextIndex; } - --offsetVertexCount; + --insetVertexCount; } } // store all the valid intersections that aren't nearly coincident // TODO: look at the main algorithm and see if we can detect these better + static constexpr SkScalar kCleanupTolerance = 0.01f; + offsetPolygon->reset(); - if (head) { - static constexpr SkScalar kCleanupTolerance = 0.01f; - if (offsetVertexCount >= 0) { - offsetPolygon->setReserve(offsetVertexCount); - } - int currIndex = 0; - OffsetEdge* currEdge = head; - *offsetPolygon->push() = currEdge->fIntersection; - if (polygonIndices) { - *polygonIndices->push() = currEdge->fIndex; - } - currEdge = currEdge->fNext; - while (currEdge != head) { - if (!SkPointPriv::EqualsWithinTolerance(currEdge->fIntersection, - (*offsetPolygon)[currIndex], - kCleanupTolerance)) { - *offsetPolygon->push() = currEdge->fIntersection; - if (polygonIndices) { - *polygonIndices->push() = currEdge->fIndex; - } - currIndex++; - } - currEdge = currEdge->fNext; - } - // make sure the first and last points aren't coincident - if (currIndex >= 1 && - SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex], - kCleanupTolerance)) { - offsetPolygon->pop(); + offsetPolygon->setReserve(insetVertexCount); + currIndex = -1; + for (int i = 0; i < edgeData.count(); ++i) { + if (edgeData[i].fValid && (currIndex == -1 || + !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection, + (*offsetPolygon)[currIndex], + kCleanupTolerance))) { + *offsetPolygon->push() = edgeData[i].fIntersection; if (polygonIndices) { - polygonIndices->pop(); + *polygonIndices->push() = edgeData[i].fIndex; } + currIndex++; + } + } + // make sure the first and last points aren't coincident + if (currIndex >= 1 && + SkPointPriv::EqualsWithinTolerance((*offsetPolygon)[0], (*offsetPolygon)[currIndex], + kCleanupTolerance)) { + offsetPolygon->pop(); + if (polygonIndices) { + polygonIndices->pop(); } } diff --git a/tests/InsetConvexPolyTest.cpp b/tests/InsetConvexPolyTest.cpp index aaaf591620..facabb76fa 100644 --- a/tests/InsetConvexPolyTest.cpp +++ b/tests/InsetConvexPolyTest.cpp @@ -65,7 +65,7 @@ DEF_TEST(InsetConvexPoly, reporter) { // past full inset result = SkInsetConvexPolygon(rrectPoly.begin(), rrectPoly.count(), 75, &insetPoly); REPORTER_ASSERT(reporter, !result); - REPORTER_ASSERT(reporter, insetPoly.count() == 1); + REPORTER_ASSERT(reporter, insetPoly.count() == 0); // troublesome case SkTDArray clippedRRectPoly; -- cgit v1.2.3