| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Most changes stem from working on an examples bracketed
by #if DEBUG_UNDER_DEVELOPMENT // tiger
These exposed many problems with coincident curves,
as well as errors throughout the code.
Fixing these errors also fixed a number of fuzzer-inspired
bug reports.
* Line/Curve Intersections
Check to see if the end of the line nearly intersects
the curve. This was a FIXME in the old code.
* Performance
Use a central chunk allocator.
Plumb the allocator into the global variable state
so that it can be shared. (Note that 'SkGlobalState'
is allocated on the stack and is visible to children
functions but not other threads.)
* Refactor
Let SkOpAngle grow up from a structure to a class.
Let SkCoincidentSpans grow up from a structure to a class.
Rename enum Alias to AliasMatch.
* Coincidence Rewrite
Add more debugging to coincidence detection.
Parallel debugging routines have read-only logic to report
the current coincidence state so that steps through the
logic can expose whether things got better or worse.
More functions can error-out and cause the pathops
engine to non-destructively exit.
* Accuracy
Remove code that adjusted point locations. Instead,
offset the curve part so that sorted curves all use
the same origin.
Reduce the size (and influence) of magic numbers.
* Testing
The debug suite with verify and the full release suite
./out/Debug/pathops_unittest -v -V
./out/Release/pathops_unittest -v -V -x
expose one error. That error is captured as cubics_d3.
This error exists in the checked in code as well.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2128633003
Review-Url: https://codereview.chromium.org/2128633003
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace the implicit curve intersection with a geometric curve intersection. The implicit intersection proved mathematically unstable and took a long time to zero in on an answer.
Use pointers instead of indices to refer to parts of curves. Indices required awkward renumbering.
Unify t and point values so that small intervals can be eliminated in one pass.
Break cubics up front to eliminate loops and cusps.
Make the Simplify and Op code more regular and eliminate arbitrary differences.
Add a builder that takes an array of paths and operators.
Delete unused code.
BUG=skia:3588
R=reed@google.com
Review URL: https://codereview.chromium.org/1037573004
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
https://codereview.chromium.org/1002693002/)
Reason for revert:
ASAN investigation
Original issue's description:
> pathops version two
>
> R=reed@google.com
>
> marked 'no commit' to attempt to get trybots to run
>
> TBR=reed@google.com
>
> Committed: https://skia.googlesource.com/skia/+/ccec0f958ffc71a9986d236bc2eb335cb2111119
TBR=caryclark@google.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
Review URL: https://codereview.chromium.org/1029993002
|
|
|
|
|
|
|
|
|
|
| |
R=reed@google.com
marked 'no commit' to attempt to get trybots to run
TBR=reed@google.com
Review URL: https://codereview.chromium.org/1002693002
|
|
|
|
|
|
|
|
|
|
|
|
| |
Bail out if a very large value causes coincidence resolution to
fail.
TBR=
BUG=415866
Author: caryclark@google.com
Review URL: https://codereview.chromium.org/585913002
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace SkTDArray with SkTArray and use SkSTArray when
the probable array size is known.
In a couple of places (spans, chases) the arrays are
constructed using insert() so SkTArrays can't be used for
now.
Also, add an optimization to cubic subdivide if either end
is zero or one.
BUG=
Review URL: https://codereview.chromium.org/16951017
git-svn-id: http://skia.googlecode.com/svn/trunk@9635 2bbb7eff-a529-9590-31e7-b0007b416f81
|
|
|
|
| |
git-svn-id: http://skia.googlecode.com/svn/trunk@8568 2bbb7eff-a529-9590-31e7-b0007b416f81
|
|
Paths contain lines, quads, and cubics, which are
collectively curves.
To work with path intersections, intermediary curves
are constructed. For now, those intermediates use
doubles to guarantee sufficient precision.
The DVector, DPoint, DLine, DQuad, and DCubic
structs encapsulate these intermediate curves.
The DRect and DTriangle structs are created to
describe intersectable areas of interest.
The Bounds struct inherits from SkRect to create
a SkScalar-based rectangle that intersects shared
edges.
This also includes common math equalities and
debugging that the remainder of path ops builds on,
as well as a temporary top-level interface in
include/pathops/SkPathOps.h.
Review URL: https://codereview.chromium.org/12827020
git-svn-id: http://skia.googlecode.com/svn/trunk@8551 2bbb7eff-a529-9590-31e7-b0007b416f81
|