aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkPathOpsQuad.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/pathops/SkPathOpsQuad.cpp')
-rw-r--r--src/pathops/SkPathOpsQuad.cpp75
1 files changed, 61 insertions, 14 deletions
diff --git a/src/pathops/SkPathOpsQuad.cpp b/src/pathops/SkPathOpsQuad.cpp
index c1d068af34..4913c9f9f3 100644
--- a/src/pathops/SkPathOpsQuad.cpp
+++ b/src/pathops/SkPathOpsQuad.cpp
@@ -8,7 +8,61 @@
#include "SkLineParameters.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsQuad.h"
-#include "SkPathOpsTriangle.h"
+
+/* started with at_most_end_pts_in_common from SkDQuadIntersection.cpp */
+// Do a quick reject by rotating all points relative to a line formed by
+// a pair of one quad's points. If the 2nd quad's points
+// are on the line or on the opposite side from the 1st quad's 'odd man', the
+// curves at most intersect at the endpoints.
+/* if returning true, check contains true if quad's hull collapsed, making the cubic linear
+ if returning false, check contains true if the the quad pair have only the end point in common
+*/
+bool SkDQuad::hullIntersects(const SkDQuad& q2, bool* isLinear) const {
+ bool linear = true;
+ for (int oddMan = 0; oddMan < kPointCount; ++oddMan) {
+ const SkDPoint* endPt[2];
+ this->otherPts(oddMan, endPt);
+ double origX = endPt[0]->fX;
+ double origY = endPt[0]->fY;
+ double adj = endPt[1]->fX - origX;
+ double opp = endPt[1]->fY - origY;
+ double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
+ if (approximately_zero(sign)) {
+ continue;
+ }
+ linear = false;
+ bool foundOutlier = false;
+ for (int n = 0; n < kPointCount; ++n) {
+ double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp;
+ if (test * sign > 0 && !precisely_zero(test)) {
+ foundOutlier = true;
+ break;
+ }
+ }
+ if (!foundOutlier) {
+ return false;
+ }
+ }
+ *isLinear = linear;
+ return true;
+}
+
+/* bit twiddling for finding the off curve index (x&~m is the pair in [0,1,2] excluding oddMan)
+oddMan opp x=oddMan^opp x=x-oddMan m=x>>2 x&~m
+ 0 1 1 1 0 1
+ 2 2 2 0 2
+ 1 1 0 -1 -1 0
+ 2 3 2 0 2
+ 2 1 3 1 0 1
+ 2 0 -2 -1 0
+*/
+void SkDQuad::otherPts(int oddMan, const SkDPoint* endPt[2]) const {
+ for (int opp = 1; opp < kPointCount; ++opp) {
+ int end = (oddMan ^ opp) - oddMan; // choose a value not equal to oddMan
+ end &= ~(end >> 2); // if the value went negative, set it to zero
+ endPt[opp - 1] = &fPts[end];
+ }
+}
// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
// (currently only used by testing)
@@ -43,10 +97,6 @@ double SkDQuad::nearestT(const SkDPoint& pt) const {
return d0 < d2 ? 0 : 1;
}
-bool SkDQuad::pointInHull(const SkDPoint& pt) const {
- return ((const SkDTriangle&) fPts).contains(pt);
-}
-
SkDPoint SkDQuad::top(double startT, double endT) const {
SkDQuad sub = subDivide(startT, endT);
SkDPoint topPt = sub[0];
@@ -140,7 +190,12 @@ bool SkDQuad::isLinear(int startIndex, int endIndex) const {
// FIXME: maybe it's possible to avoid this and compare non-normalized
lineParameters.normalize();
double distance = lineParameters.controlPtDistance(*this);
- return approximately_zero(distance);
+ double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY),
+ fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
+ double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY),
+ fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY);
+ largest = SkTMax(largest, -tiniest);
+ return approximately_zero_when_compared_to(distance, largest);
}
SkDCubic SkDQuad::toCubic() const {
@@ -240,13 +295,6 @@ void SkDQuad::align(int endIndex, SkDPoint* dstPt) const {
SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
SkASSERT(t1 != t2);
SkDPoint b;
-#if 0
- // this approach assumes that the control point computed directly is accurate enough
- double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
- double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
- b.fX = 2 * dx - (a.fX + c.fX) / 2;
- b.fY = 2 * dy - (a.fY + c.fY) / 2;
-#else
SkDQuad sub = subDivide(t1, t2);
SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
@@ -258,7 +306,6 @@ SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, dou
SkASSERT(i.used() <= 2);
b = SkDPoint::Mid(b0[1], b1[1]);
}
-#endif
if (t1 == 0 || t2 == 0) {
align(0, &b);
}