aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/pathops/SkOpAngle.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/pathops/SkOpAngle.cpp')
-rw-r--r--src/pathops/SkOpAngle.cpp745
1 files changed, 395 insertions, 350 deletions
diff --git a/src/pathops/SkOpAngle.cpp b/src/pathops/SkOpAngle.cpp
index b3a188c1e8..c13a51a8cc 100644
--- a/src/pathops/SkOpAngle.cpp
+++ b/src/pathops/SkOpAngle.cpp
@@ -4,26 +4,26 @@
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
-#include "SkIntersections.h"
#include "SkOpAngle.h"
#include "SkOpSegment.h"
#include "SkPathOpsCurve.h"
#include "SkTSort.h"
-#if DEBUG_ANGLE
-#include "SkString.h"
-#endif
-
/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
positive y. The largest angle has a positive x and a zero y. */
#if DEBUG_ANGLE
- static bool CompareResult(SkString* bugOut, int append, bool compare) {
+ static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
+ bool compare) {
SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
+ SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
+ SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
+ SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
return compare;
}
- #define COMPARE_RESULT(append, compare) CompareResult(&bugOut, append, compare)
+ #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
+ compare)
#else
#define COMPARE_RESULT(append, compare) compare
#endif
@@ -58,51 +58,50 @@
*/
// return true if lh < this < rh
-bool SkOpAngle::after(const SkOpAngle* test) const {
- const SkOpAngle& lh = *test;
- const SkOpAngle& rh = *lh.fNext;
- SkASSERT(&lh != &rh);
+bool SkOpAngle::after(SkOpAngle* test) {
+ SkOpAngle* lh = test;
+ SkOpAngle* rh = lh->fNext;
+ SkASSERT(lh != rh);
#if DEBUG_ANGLE
SkString bugOut;
bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
- lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd,
- lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd),
- fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart),
- fSegment->t(fEnd),
- rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd,
- rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
+ lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
+ lh->fStart->t(), lh->fEnd->t(),
+ segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
+ rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
+ rh->fStart->t(), rh->fEnd->t());
+ SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
#endif
- if (lh.fComputeSector && !const_cast<SkOpAngle&>(lh).computeSector()) {
+ if (lh->fComputeSector && !lh->computeSector()) {
return COMPARE_RESULT(1, true);
}
- if (fComputeSector && !const_cast<SkOpAngle*>(this)->computeSector()) {
+ if (fComputeSector && !this->computeSector()) {
return COMPARE_RESULT(2, true);
}
- if (rh.fComputeSector && !const_cast<SkOpAngle&>(rh).computeSector()) {
+ if (rh->fComputeSector && !rh->computeSector()) {
return COMPARE_RESULT(3, true);
}
#if DEBUG_ANGLE // reset bugOut with computed sectors
bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
" < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
- lh.fSegment->debugID(), lh.debugID(), lh.fSectorStart, lh.fSectorEnd,
- lh.fSegment->t(lh.fStart), lh.fSegment->t(lh.fEnd),
- fSegment->debugID(), debugID(), fSectorStart, fSectorEnd, fSegment->t(fStart),
- fSegment->t(fEnd),
- rh.fSegment->debugID(), rh.debugID(), rh.fSectorStart, rh.fSectorEnd,
- rh.fSegment->t(rh.fStart), rh.fSegment->t(rh.fEnd));
+ lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
+ lh->fStart->t(), lh->fEnd->t(),
+ segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
+ rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
+ rh->fStart->t(), rh->fEnd->t());
#endif
- bool ltrOverlap = (lh.fSectorMask | rh.fSectorMask) & fSectorMask;
- bool lrOverlap = lh.fSectorMask & rh.fSectorMask;
+ bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
+ bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
int lrOrder; // set to -1 if either order works
if (!lrOverlap) { // no lh/rh sector overlap
if (!ltrOverlap) { // no lh/this/rh sector overlap
- return COMPARE_RESULT(4, (lh.fSectorEnd > rh.fSectorStart)
- ^ (fSectorStart > lh.fSectorEnd) ^ (fSectorStart > rh.fSectorStart));
+ return COMPARE_RESULT(4, (lh->fSectorEnd > rh->fSectorStart)
+ ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
}
- int lrGap = (rh.fSectorStart - lh.fSectorStart + 32) & 0x1f;
+ int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
/* A tiny change can move the start +/- 4. The order can only be determined if
lr gap is not 12 to 20 or -12 to -20.
-31 ..-21 1
@@ -115,24 +114,24 @@ bool SkOpAngle::after(const SkOpAngle* test) const {
*/
lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
} else {
- lrOrder = (int) lh.orderable(rh);
+ lrOrder = (int) lh->orderable(rh);
if (!ltrOverlap) {
return COMPARE_RESULT(5, !lrOrder);
}
}
int ltOrder;
- SkASSERT((lh.fSectorMask & fSectorMask) || (rh.fSectorMask & fSectorMask));
- if (lh.fSectorMask & fSectorMask) {
- ltOrder = (int) lh.orderable(*this);
+ SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask));
+ if (lh->fSectorMask & fSectorMask) {
+ ltOrder = (int) lh->orderable(this);
} else {
- int ltGap = (fSectorStart - lh.fSectorStart + 32) & 0x1f;
+ int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
}
int trOrder;
- if (rh.fSectorMask & fSectorMask) {
+ if (rh->fSectorMask & fSectorMask) {
trOrder = (int) orderable(rh);
} else {
- int trGap = (rh.fSectorStart - fSectorStart + 32) & 0x1f;
+ int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
}
if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
@@ -145,20 +144,20 @@ bool SkOpAngle::after(const SkOpAngle* test) const {
if (ltOrder == 0 && lrOrder == 0) {
SkASSERT(trOrder < 0);
// FIXME : once this is verified to work, remove one opposite angle call
- SkDEBUGCODE(bool lrOpposite = lh.oppositePlanes(rh));
- bool ltOpposite = lh.oppositePlanes(*this);
+ SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
+ bool ltOpposite = lh->oppositePlanes(this);
SkASSERT(lrOpposite != ltOpposite);
return COMPARE_RESULT(8, ltOpposite);
} else if (ltOrder == 1 && trOrder == 0) {
SkASSERT(lrOrder < 0);
- SkDEBUGCODE(bool ltOpposite = lh.oppositePlanes(*this));
+ SkDEBUGCODE(bool ltOpposite = lh->oppositePlanes(this));
bool trOpposite = oppositePlanes(rh);
SkASSERT(ltOpposite != trOpposite);
return COMPARE_RESULT(9, trOpposite);
} else if (lrOrder == 1 && trOrder == 1) {
SkASSERT(ltOrder < 0);
SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
- bool lrOpposite = lh.oppositePlanes(rh);
+ bool lrOpposite = lh->oppositePlanes(rh);
SkASSERT(lrOpposite != trOpposite);
return COMPARE_RESULT(10, lrOpposite);
}
@@ -173,77 +172,50 @@ bool SkOpAngle::after(const SkOpAngle* test) const {
// given a line, see if the opposite curve's convex hull is all on one side
// returns -1=not on one side 0=this CW of test 1=this CCW of test
-int SkOpAngle::allOnOneSide(const SkOpAngle& test) const {
+int SkOpAngle::allOnOneSide(const SkOpAngle* test) {
SkASSERT(!fIsCurve);
- SkASSERT(test.fIsCurve);
- const SkDPoint& origin = test.fCurvePart[0];
+ SkASSERT(test->fIsCurve);
+ const SkDPoint& origin = test->fCurvePart[0];
SkVector line;
- if (fSegment->verb() == SkPath::kLine_Verb) {
- const SkPoint* linePts = fSegment->pts();
- int lineStart = fStart < fEnd ? 0 : 1;
+ if (segment()->verb() == SkPath::kLine_Verb) {
+ const SkPoint* linePts = segment()->pts();
+ int lineStart = fStart->t() < fEnd->t() ? 0 : 1;
line = linePts[lineStart ^ 1] - linePts[lineStart];
} else {
SkPoint shortPts[2] = { fCurvePart[0].asSkPoint(), fCurvePart[1].asSkPoint() };
line = shortPts[1] - shortPts[0];
}
float crosses[3];
- SkPath::Verb testVerb = test.fSegment->verb();
+ SkPath::Verb testVerb = test->segment()->verb();
int iMax = SkPathOpsVerbToPoints(testVerb);
// SkASSERT(origin == test.fCurveHalf[0]);
- const SkDCubic& testCurve = test.fCurvePart;
-// do {
- for (int index = 1; index <= iMax; ++index) {
- float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
- float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
- crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
- }
- if (crosses[0] * crosses[1] < 0) {
+ const SkDCubic& testCurve = test->fCurvePart;
+ for (int index = 1; index <= iMax; ++index) {
+ float xy1 = (float) (line.fX * (testCurve[index].fY - origin.fY));
+ float xy2 = (float) (line.fY * (testCurve[index].fX - origin.fX));
+ crosses[index - 1] = AlmostEqualUlps(xy1, xy2) ? 0 : xy1 - xy2;
+ }
+ if (crosses[0] * crosses[1] < 0) {
+ return -1;
+ }
+ if (SkPath::kCubic_Verb == testVerb) {
+ if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
return -1;
}
- if (SkPath::kCubic_Verb == testVerb) {
- if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
- return -1;
- }
- }
- if (crosses[0]) {
- return crosses[0] < 0;
- }
- if (crosses[1]) {
- return crosses[1] < 0;
- }
- if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
- return crosses[2] < 0;
- }
+ }
+ if (crosses[0]) {
+ return crosses[0] < 0;
+ }
+ if (crosses[1]) {
+ return crosses[1] < 0;
+ }
+ if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
+ return crosses[2] < 0;
+ }
fUnorderable = true;
return -1;
}
-bool SkOpAngle::calcSlop(double x, double y, double rx, double ry, bool* result) const {
- double absX = fabs(x);
- double absY = fabs(y);
- double length = absX < absY ? absX / 2 + absY : absX + absY / 2;
- int exponent;
- (void) frexp(length, &exponent);
- double epsilon = ldexp(FLT_EPSILON, exponent);
- SkPath::Verb verb = fSegment->verb();
- SkASSERT(verb == SkPath::kQuad_Verb || verb == SkPath::kCubic_Verb);
- // FIXME: the quad and cubic factors are made up ; determine actual values
- double slop = verb == SkPath::kQuad_Verb ? 4 * epsilon : 512 * epsilon;
- double xSlop = slop;
- double ySlop = x * y < 0 ? -xSlop : xSlop; // OPTIMIZATION: use copysign / _copysign ?
- double x1 = x - xSlop;
- double y1 = y + ySlop;
- double x_ry1 = x1 * ry;
- double rx_y1 = rx * y1;
- *result = x_ry1 < rx_y1;
- double x2 = x + xSlop;
- double y2 = y - ySlop;
- double x_ry2 = x2 * ry;
- double rx_y2 = rx * y2;
- bool less2 = x_ry2 < rx_y2;
- return *result == less2;
-}
-
bool SkOpAngle::checkCrossesZero() const {
int start = SkTMin(fSectorStart, fSectorEnd);
int end = SkTMax(fSectorStart, fSectorEnd);
@@ -251,31 +223,94 @@ bool SkOpAngle::checkCrossesZero() const {
return crossesZero;
}
-bool SkOpAngle::checkParallel(const SkOpAngle& rh) const {
+// loop looking for a pair of angle parts that are too close to be sorted
+/* This is called after other more simple intersection and angle sorting tests have been exhausted.
+ This should be rarely called -- the test below is thorough and time consuming.
+ This checks the distance between start points; the distance between
+*/
+void SkOpAngle::checkNearCoincidence() {
+ SkOpAngle* test = this;
+ do {
+ SkOpSegment* testSegment = test->segment();
+ double testStartT = test->start()->t();
+ SkDPoint testStartPt = testSegment->dPtAtT(testStartT);
+ double testEndT = test->end()->t();
+ SkDPoint testEndPt = testSegment->dPtAtT(testEndT);
+ double testLenSq = testStartPt.distanceSquared(testEndPt);
+ if (0) {
+ SkDebugf("%s testLenSq=%1.9g id=%d\n", __FUNCTION__, testLenSq, testSegment->debugID());
+ }
+ double testMidT = (testStartT + testEndT) / 2;
+ SkOpAngle* next = test;
+ while ((next = next->fNext) != this) {
+ SkOpSegment* nextSegment = next->segment();
+ double testMidDistSq = testSegment->distSq(testMidT, next);
+ double testEndDistSq = testSegment->distSq(testEndT, next);
+ double nextStartT = next->start()->t();
+ SkDPoint nextStartPt = nextSegment->dPtAtT(nextStartT);
+ double distSq = testStartPt.distanceSquared(nextStartPt);
+ double nextEndT = next->end()->t();
+ double nextMidT = (nextStartT + nextEndT) / 2;
+ double nextMidDistSq = nextSegment->distSq(nextMidT, test);
+ double nextEndDistSq = nextSegment->distSq(nextEndT, test);
+ if (0) {
+ SkDebugf("%s distSq=%1.9g testId=%d nextId=%d\n", __FUNCTION__, distSq,
+ testSegment->debugID(), nextSegment->debugID());
+ SkDebugf("%s testMidDistSq=%1.9g\n", __FUNCTION__, testMidDistSq);
+ SkDebugf("%s testEndDistSq=%1.9g\n", __FUNCTION__, testEndDistSq);
+ SkDebugf("%s nextMidDistSq=%1.9g\n", __FUNCTION__, nextMidDistSq);
+ SkDebugf("%s nextEndDistSq=%1.9g\n", __FUNCTION__, nextEndDistSq);
+ SkDPoint nextEndPt = nextSegment->dPtAtT(nextEndT);
+ double nextLenSq = nextStartPt.distanceSquared(nextEndPt);
+ SkDebugf("%s nextLenSq=%1.9g\n", __FUNCTION__, nextLenSq);
+ SkDebugf("\n");
+ }
+ }
+ test = test->fNext;
+ } while (test->fNext != this);
+}
+
+bool SkOpAngle::checkParallel(SkOpAngle* rh) {
SkDVector scratch[2];
const SkDVector* sweep, * tweep;
- if (!fUnorderedSweep) {
- sweep = fSweep;
+ if (!this->fUnorderedSweep) {
+ sweep = this->fSweep;
} else {
- scratch[0] = fCurvePart[1] - fCurvePart[0];
+ scratch[0] = this->fCurvePart[1] - this->fCurvePart[0];
sweep = &scratch[0];
}
- if (!rh.fUnorderedSweep) {
- tweep = rh.fSweep;
+ if (!rh->fUnorderedSweep) {
+ tweep = rh->fSweep;
} else {
- scratch[1] = rh.fCurvePart[1] - rh.fCurvePart[0];
+ scratch[1] = rh->fCurvePart[1] - rh->fCurvePart[0];
tweep = &scratch[1];
}
double s0xt0 = sweep->crossCheck(*tweep);
if (tangentsDiverge(rh, s0xt0)) {
return s0xt0 < 0;
}
- SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0];
- SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0];
+ // compute the perpendicular to the endpoints and see where it intersects the opposite curve
+ // if the intersections within the t range, do a cross check on those
+ bool inside;
+ if (this->endToSide(rh, &inside)) {
+ return inside;
+ }
+ if (rh->endToSide(this, &inside)) {
+ return !inside;
+ }
+ if (this->midToSide(rh, &inside)) {
+ return inside;
+ }
+ if (rh->midToSide(this, &inside)) {
+ return !inside;
+ }
+ // compute the cross check from the mid T values (last resort)
+ SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
+ SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
double m0xm1 = m0.crossCheck(m1);
if (m0xm1 == 0) {
- fUnorderable = true;
- rh.fUnorderable = true;
+ this->fUnorderable = true;
+ rh->fUnorderable = true;
return true;
}
return m0xm1 < 0;
@@ -288,48 +323,51 @@ bool SkOpAngle::computeSector() {
if (fComputedSector) {
return !fUnorderable;
}
-// SkASSERT(fSegment->verb() != SkPath::kLine_Verb && small());
fComputedSector = true;
- int step = fStart < fEnd ? 1 : -1;
- int limit = step > 0 ? fSegment->count() : -1;
- int checkEnd = fEnd;
+ bool stepUp = fStart->t() < fEnd->t();
+ const SkOpSpanBase* checkEnd = fEnd;
+ if (checkEnd->final() && stepUp) {
+ fUnorderable = true;
+ return false;
+ }
do {
// advance end
- const SkOpSpan& span = fSegment->span(checkEnd);
- const SkOpSegment* other = span.fOther;
- int oCount = other->count();
- for (int oIndex = 0; oIndex < oCount; ++oIndex) {
- const SkOpSpan& oSpan = other->span(oIndex);
- if (oSpan.fOther != fSegment) {
+ const SkOpSegment* other = checkEnd->segment();
+ const SkOpSpanBase* oSpan = other->head();
+ do {
+ if (oSpan->segment() != segment()) {
continue;
}
- if (oSpan.fOtherIndex == checkEnd) {
+ if (oSpan == checkEnd) {
continue;
}
- if (!approximately_equal(oSpan.fOtherT, span.fT)) {
+ if (!approximately_equal(oSpan->t(), checkEnd->t())) {
continue;
}
goto recomputeSector;
- }
- checkEnd += step;
- } while (checkEnd != limit);
+ } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
+ checkEnd = stepUp ? !checkEnd->final()
+ ? checkEnd->upCast()->next() : NULL
+ : checkEnd->prev();
+ } while (checkEnd);
recomputeSector:
- if (checkEnd == fEnd || checkEnd - step == fEnd) {
+ SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
+ : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
+ if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
fUnorderable = true;
return false;
}
- int saveEnd = fEnd;
- fComputedEnd = fEnd = checkEnd - step;
+ SkOpSpanBase* saveEnd = fEnd;
+ fComputedEnd = fEnd = computedEnd;
setSpans();
setSector();
fEnd = saveEnd;
return !fUnorderable;
}
-// returns -1 if overlaps 0 if no overlap cw 1 if no overlap ccw
-int SkOpAngle::convexHullOverlaps(const SkOpAngle& rh) const {
- const SkDVector* sweep = fSweep;
- const SkDVector* tweep = rh.fSweep;
+int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) const {
+ const SkDVector* sweep = this->fSweep;
+ const SkDVector* tweep = rh->fSweep;
double s0xs1 = sweep[0].crossCheck(sweep[1]);
double s0xt0 = sweep[0].crossCheck(tweep[0]);
double s1xt0 = sweep[1].crossCheck(tweep[0]);
@@ -359,8 +397,8 @@ int SkOpAngle::convexHullOverlaps(const SkOpAngle& rh) const {
// if the outside sweeps are greater than 180 degress:
// first assume the inital tangents are the ordering
// if the midpoint direction matches the inital order, that is enough
- SkDVector m0 = fSegment->dPtAtT(midT()) - fCurvePart[0];
- SkDVector m1 = rh.fSegment->dPtAtT(rh.midT()) - rh.fCurvePart[0];
+ SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fCurvePart[0];
+ SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fCurvePart[0];
double m0xm1 = m0.crossCheck(m1);
if (s0xt0 > 0 && m0xm1 > 0) {
return 0;
@@ -394,34 +432,30 @@ double SkOpAngle::distEndRatio(double dist) const {
return sqrt(longest) / dist;
}
-bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
- SkPath::Verb lVerb = fSegment->verb();
- SkPath::Verb rVerb = rh.fSegment->verb();
+bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
+ SkPath::Verb lVerb = this->segment()->verb();
+ SkPath::Verb rVerb = rh->segment()->verb();
int lPts = SkPathOpsVerbToPoints(lVerb);
int rPts = SkPathOpsVerbToPoints(rVerb);
- SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}},
- {{fCurvePart[0], fCurvePart[lPts]}}};
+ SkDLine rays[] = {{{this->fCurvePart[0], rh->fCurvePart[rPts]}},
+ {{this->fCurvePart[0], this->fCurvePart[lPts]}}};
if (rays[0][1] == rays[1][1]) {
return checkParallel(rh);
}
double smallTs[2] = {-1, -1};
bool limited[2] = {false, false};
for (int index = 0; index < 2; ++index) {
- const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
- SkIntersections i;
int cPts = index ? rPts : lPts;
- (*CurveIntersectRay[cPts])(segment.pts(), rays[index], &i);
// if the curve is a line, then the line and the ray intersect only at their crossing
if (cPts == 1) { // line
continue;
}
-// SkASSERT(i.used() >= 1);
-// if (i.used() <= 1) {
-// continue;
-// }
- double tStart = segment.t(index ? rh.fStart : fStart);
- double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd);
- bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd;
+ const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
+ SkIntersections i;
+ (*CurveIntersectRay[cPts])(segment.pts(), rays[index], &i);
+ double tStart = index ? rh->fStart->t() : this->fStart->t();
+ double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
+ bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
double t = testAscends ? 0 : 1;
for (int idx2 = 0; idx2 < i.used(); ++idx2) {
double testT = i[0][idx2];
@@ -435,29 +469,6 @@ bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
limited[index] = approximately_equal_orderable(t, tEnd);
}
}
-#if 0
- if (smallTs[0] < 0 && smallTs[1] < 0) { // if neither ray intersects, do endpoint sort
- double m0xm1 = 0;
- if (lVerb == SkPath::kLine_Verb) {
- SkASSERT(rVerb != SkPath::kLine_Verb);
- SkDVector m0 = rays[1][1] - fCurvePart[0];
- SkDPoint endPt;
- endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]);
- SkDVector m1 = endPt - fCurvePart[0];
- m0xm1 = m0.crossCheck(m1);
- }
- if (rVerb == SkPath::kLine_Verb) {
- SkDPoint endPt;
- endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]);
- SkDVector m0 = endPt - fCurvePart[0];
- SkDVector m1 = rays[0][1] - fCurvePart[0];
- m0xm1 = m0.crossCheck(m1);
- }
- if (m0xm1 != 0) {
- return m0xm1 < 0;
- }
- }
-#endif
bool sRayLonger = false;
SkDVector sCept = {0, 0};
double sCeptT = -1;
@@ -467,7 +478,7 @@ bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
if (smallTs[index] < 0) {
continue;
}
- const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
+ const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
SkDVector cept = dPt - rays[index][0];
// If this point is on the curve, it should have been detected earlier by ordinary
@@ -498,7 +509,7 @@ bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
double minX, minY, maxX, maxY;
minX = minY = SK_ScalarInfinity;
maxX = maxY = -SK_ScalarInfinity;
- const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart;
+ const SkDCubic& curve = index ? rh->fCurvePart : this->fCurvePart;
int ptCount = index ? rPts : lPts;
for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
minX = SkTMin(minX, curve[idx2].fX);
@@ -508,7 +519,7 @@ bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
}
double maxWidth = SkTMax(maxX - minX, maxY - minY);
delta /= maxWidth;
- if (delta > 1e-4 && (useIntersect ^= true)) { // FIXME: move this magic number
+ if (delta > 1e-3 && (useIntersect ^= true)) { // FIXME: move this magic number
sRayLonger = rayLonger;
sCept = cept;
sCeptT = smallTs[index];
@@ -516,9 +527,9 @@ bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
}
}
if (useIntersect) {
- const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart;
- const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment;
- double tStart = segment.t(sIndex ? rh.fStart : fStart);
+ const SkDCubic& curve = sIndex ? rh->fCurvePart : this->fCurvePart;
+ const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
+ double tStart = sIndex ? rh->fStart->t() : fStart->t();
SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
double septDir = mid.crossCheck(sCept);
if (!septDir) {
@@ -530,12 +541,65 @@ bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
}
}
+bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
+ const SkOpSegment* segment = this->segment();
+ SkPath::Verb verb = segment->verb();
+ int pts = SkPathOpsVerbToPoints(verb);
+ SkDLine rayEnd;
+ rayEnd[0].set(this->fEnd->pt());
+ rayEnd[1] = rayEnd[0];
+ SkDVector slopeAtEnd = (*CurveDSlopeAtT[pts])(segment->pts(), this->fEnd->t());
+ rayEnd[1].fX += slopeAtEnd.fY;
+ rayEnd[1].fY -= slopeAtEnd.fX;
+ SkIntersections iEnd;
+ const SkOpSegment* oppSegment = rh->segment();
+ SkPath::Verb oppVerb = oppSegment->verb();
+ int oppPts = SkPathOpsVerbToPoints(oppVerb);
+ (*CurveIntersectRay[oppPts])(oppSegment->pts(), rayEnd, &iEnd);
+ double endDist;
+ int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
+ if (closestEnd < 0) {
+ return false;
+ }
+ if (!endDist) {
+ return false;
+ }
+ SkDPoint start;
+ start.set(this->fStart->pt());
+ // OPTIMIZATION: multiple times in the code we find the max scalar
+ double minX, minY, maxX, maxY;
+ minX = minY = SK_ScalarInfinity;
+ maxX = maxY = -SK_ScalarInfinity;
+ const SkDCubic& curve = rh->fCurvePart;
+ for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
+ minX = SkTMin(minX, curve[idx2].fX);
+ minY = SkTMin(minY, curve[idx2].fY);
+ maxX = SkTMax(maxX, curve[idx2].fX);
+ maxY = SkTMax(maxY, curve[idx2].fY);
+ }
+ double maxWidth = SkTMax(maxX - minX, maxY - minY);
+ endDist /= maxWidth;
+ if (endDist < 5e-11) { // empirically found
+ return false;
+ }
+ const SkDPoint* endPt = &rayEnd[0];
+ SkDPoint oppPt = iEnd.pt(closestEnd);
+ SkDVector vLeft = *endPt - start;
+ SkDVector vRight = oppPt - start;
+ double dir = vLeft.crossCheck(vRight);
+ if (!dir) {
+ return false;
+ }
+ *inside = dir < 0;
+ return true;
+}
+
// Most of the time, the first one can be found trivially by detecting the smallest sector value.
// If all angles have the same sector value, actual sorting is required.
-const SkOpAngle* SkOpAngle::findFirst() const {
- const SkOpAngle* best = this;
+SkOpAngle* SkOpAngle::findFirst() {
+ SkOpAngle* best = this;
int bestStart = SkTMin(fSectorStart, fSectorEnd);
- const SkOpAngle* angle = this;
+ SkOpAngle* angle = this;
while ((angle = angle->fNext) != this) {
int angleEnd = SkTMax(angle->fSectorStart, angle->fSectorEnd);
if (angleEnd < bestStart) {
@@ -548,7 +612,7 @@ const SkOpAngle* SkOpAngle::findFirst() const {
}
}
// back up to the first possible angle
- const SkOpAngle* firstBest = best;
+ SkOpAngle* firstBest = best;
angle = best;
int bestEnd = SkTMax(best->fSectorStart, best->fSectorEnd);
while ((angle = angle->previous()) != firstBest) {
@@ -572,7 +636,7 @@ const SkOpAngle* SkOpAngle::findFirst() const {
if (angle->fStop) {
return firstBest;
}
- bool orderable = best->orderable(*angle); // note: may return an unorderable angle
+ bool orderable = best->orderable(angle); // note: may return an unorderable angle
if (orderable == 0) {
return angle;
}
@@ -639,6 +703,11 @@ int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
return sector;
}
+SkOpGlobalState* SkOpAngle::globalState() const {
+ return this->segment()->globalState();
+}
+
+
// OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
// OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
void SkOpAngle::insert(SkOpAngle* angle) {
@@ -662,9 +731,6 @@ void SkOpAngle::insert(SkOpAngle* angle) {
}
SkOpAngle* next = fNext;
if (next->fNext == this) {
- if (angle->overlap(*this)) { // angles are essentially coincident
- return;
- }
if (singleton || angle->after(this)) {
this->fNext = angle;
angle->fNext = next;
@@ -678,9 +744,6 @@ void SkOpAngle::insert(SkOpAngle* angle) {
SkOpAngle* last = this;
do {
SkASSERT(last->fNext == next);
- if (angle->overlap(*last) || angle->overlap(*next)) {
- return;
- }
if (angle->after(last)) {
last->fNext = angle;
angle->fNext = next;
@@ -689,48 +752,49 @@ void SkOpAngle::insert(SkOpAngle* angle) {
}
last = next;
next = next->fNext;
- if (last == this && next->fUnorderable) {
- fUnorderable = true;
+ if (last == this) {
+ if (next->fUnorderable) {
+ fUnorderable = true;
+ } else {
+ globalState()->setAngleCoincidence();
+ this->fNext = angle;
+ angle->fNext = next;
+ angle->fCheckCoincidence = true;
+ }
return;
}
- SkASSERT(last != this);
} while (true);
}
-bool SkOpAngle::isHorizontal() const {
- return !fIsCurve && fSweep[0].fY == 0;
-}
-
-SkOpSpan* SkOpAngle::lastMarked() const {
+SkOpSpanBase* SkOpAngle::lastMarked() const {
if (fLastMarked) {
- if (fLastMarked->fChased) {
+ if (fLastMarked->chased()) {
return NULL;
}
- fLastMarked->fChased = true;
+ fLastMarked->setChased(true);
}
return fLastMarked;
}
-bool SkOpAngle::loopContains(const SkOpAngle& test) const {
+bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
if (!fNext) {
return false;
}
const SkOpAngle* first = this;
const SkOpAngle* loop = this;
- const SkOpSegment* tSegment = test.fSegment;
- double tStart = tSegment->span(test.fStart).fT;
- double tEnd = tSegment->span(test.fEnd).fT;
+ const SkOpSegment* tSegment = angle->fStart->segment();
+ double tStart = angle->fStart->t();
+ double tEnd = angle->fEnd->t();
do {
- const SkOpSegment* lSegment = loop->fSegment;
- // FIXME : use precisely_equal ? or compare points exactly ?
+ const SkOpSegment* lSegment = loop->fStart->segment();
if (lSegment != tSegment) {
continue;
}
- double lStart = lSegment->span(loop->fStart).fT;
+ double lStart = loop->fStart->t();
if (lStart != tEnd) {
continue;
}
- double lEnd = lSegment->span(loop->fEnd).fT;
+ double lEnd = loop->fEnd->t();
if (lEnd == tStart) {
return true;
}
@@ -782,39 +846,65 @@ bool SkOpAngle::merge(SkOpAngle* angle) {
working = next;
} while (working != angle);
// it's likely that a pair of the angles are unorderable
-#if 0 && DEBUG_ANGLE
- SkOpAngle* last = angle;
- working = angle->fNext;
- do {
- SkASSERT(last->fNext == working);
- last->fNext = working->fNext;
- SkASSERT(working->after(last));
- last->fNext = working;
- last = working;
- working = working->fNext;
- } while (last != angle);
-#endif
debugValidateNext();
return true;
}
double SkOpAngle::midT() const {
- return (fSegment->t(fStart) + fSegment->t(fEnd)) / 2;
+ return (fStart->t() + fEnd->t()) / 2;
+}
+
+bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
+ const SkOpSegment* segment = this->segment();
+ SkPath::Verb verb = segment->verb();
+ int pts = SkPathOpsVerbToPoints(verb);
+ const SkPoint& startPt = this->fStart->pt();
+ const SkPoint& endPt = this->fEnd->pt();
+ SkDPoint dStartPt;
+ dStartPt.set(startPt);
+ SkDLine rayMid;
+ rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
+ rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
+ rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
+ rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
+ SkIntersections iMid;
+ (*CurveIntersectRay[pts])(segment->pts(), rayMid, &iMid);
+ int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
+ if (iOutside < 0) {
+ return false;
+ }
+ const SkOpSegment* oppSegment = rh->segment();
+ SkPath::Verb oppVerb = oppSegment->verb();
+ int oppPts = SkPathOpsVerbToPoints(oppVerb);
+ SkIntersections oppMid;
+ (*CurveIntersectRay[oppPts])(oppSegment->pts(), rayMid, &oppMid);
+ int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
+ if (oppOutside < 0) {
+ return false;
+ }
+ SkDVector iSide = iMid.pt(iOutside) - dStartPt;
+ SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
+ double dir = iSide.crossCheck(oppSide);
+ if (!dir) {
+ return false;
+ }
+ *inside = dir < 0;
+ return true;
}
-bool SkOpAngle::oppositePlanes(const SkOpAngle& rh) const {
- int startSpan = abs(rh.fSectorStart - fSectorStart);
+bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
+ int startSpan = abs(rh->fSectorStart - fSectorStart);
return startSpan >= 8;
}
-bool SkOpAngle::orderable(const SkOpAngle& rh) const {
+bool SkOpAngle::orderable(SkOpAngle* rh) {
int result;
if (!fIsCurve) {
- if (!rh.fIsCurve) {
+ if (!rh->fIsCurve) {
double leftX = fTangentHalf.dx();
double leftY = fTangentHalf.dy();
- double rightX = rh.fTangentHalf.dx();
- double rightY = rh.fTangentHalf.dy();
+ double rightX = rh->fTangentHalf.dx();
+ double rightY = rh->fTangentHalf.dy();
double x_ry = leftX * rightY;
double rx_y = rightX * leftY;
if (x_ry == rx_y) {
@@ -829,14 +919,14 @@ bool SkOpAngle::orderable(const SkOpAngle& rh) const {
if ((result = allOnOneSide(rh)) >= 0) {
return result;
}
- if (fUnorderable || approximately_zero(rh.fSide)) {
+ if (fUnorderable || approximately_zero(rh->fSide)) {
goto unorderable;
}
- } else if (!rh.fIsCurve) {
- if ((result = rh.allOnOneSide(*this)) >= 0) {
+ } else if (!rh->fIsCurve) {
+ if ((result = rh->allOnOneSide(this)) >= 0) {
return !result;
}
- if (rh.fUnorderable || approximately_zero(fSide)) {
+ if (rh->fUnorderable || approximately_zero(fSide)) {
goto unorderable;
}
}
@@ -846,27 +936,10 @@ bool SkOpAngle::orderable(const SkOpAngle& rh) const {
return endsIntersect(rh);
unorderable:
fUnorderable = true;
- rh.fUnorderable = true;
+ rh->fUnorderable = true;
return true;
}
-bool SkOpAngle::overlap(const SkOpAngle& other) const {
- int min = SkTMin(fStart, fEnd);
- const SkOpSpan& span = fSegment->span(min);
- const SkOpSegment* oSeg = other.fSegment;
- int oMin = SkTMin(other.fStart, other.fEnd);
- const SkOpSpan& oSpan = oSeg->span(oMin);
- if (!span.fSmall && !oSpan.fSmall) {
- return false;
- }
- if (fSegment->span(fStart).fPt != oSeg->span(other.fStart).fPt) {
- return false;
- }
- // see if small span is contained by opposite span
- return span.fSmall ? oSeg->containsPt(fSegment->span(fEnd).fPt, other.fEnd, other.fStart)
- : fSegment->containsPt(oSeg->span(other.fEnd).fPt, fEnd, fStart);
-}
-
// OPTIMIZE: if this shows up in a profile, add a previous pointer
// as is, this should be rarely called
SkOpAngle* SkOpAngle::previous() const {
@@ -880,26 +953,32 @@ SkOpAngle* SkOpAngle::previous() const {
} while (true);
}
-void SkOpAngle::set(const SkOpSegment* segment, int start, int end) {
- fSegment = segment;
+SkOpSegment* SkOpAngle::segment() const {
+ return fStart->segment();
+}
+
+void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
fStart = start;
fComputedEnd = fEnd = end;
+ SkASSERT(start != end);
fNext = NULL;
- fComputeSector = fComputedSector = false;
+ fComputeSector = fComputedSector = fCheckCoincidence = false;
fStop = false;
setSpans();
setSector();
+ PATH_OPS_DEBUG_CODE(fID = start->globalState()->nextAngleID());
}
void SkOpAngle::setCurveHullSweep() {
fUnorderedSweep = false;
fSweep[0] = fCurvePart[1] - fCurvePart[0];
- if (SkPath::kLine_Verb == fSegment->verb()) {
+ const SkOpSegment* segment = fStart->segment();
+ if (SkPath::kLine_Verb == segment->verb()) {
fSweep[1] = fSweep[0];
return;
}
fSweep[1] = fCurvePart[2] - fCurvePart[0];
- if (SkPath::kCubic_Verb != fSegment->verb()) {
+ if (SkPath::kCubic_Verb != segment->verb()) {
if (!fSweep[0].fX && !fSweep[0].fY) {
fSweep[0] = fSweep[1];
}
@@ -933,64 +1012,16 @@ void SkOpAngle::setCurveHullSweep() {
fSweep[1] = thirdSweep;
}
-void SkOpAngle::setSector() {
- SkPath::Verb verb = fSegment->verb();
- if (SkPath::kLine_Verb != verb && small()) {
- goto deferTilLater;
- }
- fSectorStart = findSector(verb, fSweep[0].fX, fSweep[0].fY);
- if (fSectorStart < 0) {
- goto deferTilLater;
- }
- if (!fIsCurve) { // if it's a line or line-like, note that both sectors are the same
- SkASSERT(fSectorStart >= 0);
- fSectorEnd = fSectorStart;
- fSectorMask = 1 << fSectorStart;
- return;
- }
- SkASSERT(SkPath::kLine_Verb != verb);
- fSectorEnd = findSector(verb, fSweep[1].fX, fSweep[1].fY);
- if (fSectorEnd < 0) {
-deferTilLater:
- fSectorStart = fSectorEnd = -1;
- fSectorMask = 0;
- fComputeSector = true; // can't determine sector until segment length can be found
- return;
- }
- if (fSectorEnd == fSectorStart) {
- SkASSERT((fSectorStart & 3) != 3); // if the sector has no span, it can't be an exact angle
- fSectorMask = 1 << fSectorStart;
- return;
- }
- bool crossesZero = checkCrossesZero();
- int start = SkTMin(fSectorStart, fSectorEnd);
- bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
- // bump the start and end of the sector span if they are on exact compass points
- if ((fSectorStart & 3) == 3) {
- fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
- }
- if ((fSectorEnd & 3) == 3) {
- fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
- }
- crossesZero = checkCrossesZero();
- start = SkTMin(fSectorStart, fSectorEnd);
- int end = SkTMax(fSectorStart, fSectorEnd);
- if (!crossesZero) {
- fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
- } else {
- fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end);
- }
-}
-
void SkOpAngle::setSpans() {
- fUnorderable = fSegment->isTiny(this);
+ fUnorderable = false;
fLastMarked = NULL;
- const SkPoint* pts = fSegment->pts();
+ const SkOpSegment* segment = fStart->segment();
+ const SkPoint* pts = segment->pts();
SkDEBUGCODE(fCurvePart[2].fX = fCurvePart[2].fY = fCurvePart[3].fX = fCurvePart[3].fY
= SK_ScalarNaN);
- fSegment->subDivide(fStart, fEnd, &fCurvePart);
+ segment->subDivide(fStart, fEnd, &fCurvePart);
setCurveHullSweep();
- const SkPath::Verb verb = fSegment->verb();
+ const SkPath::Verb verb = segment->verb();
if (verb != SkPath::kLine_Verb
&& !(fIsCurve = fSweep[0].crossCheck(fSweep[1]) != 0)) {
SkDLine lineHalf;
@@ -1002,9 +1033,9 @@ void SkOpAngle::setSpans() {
switch (verb) {
case SkPath::kLine_Verb: {
SkASSERT(fStart != fEnd);
- const SkPoint& cP1 = pts[fStart < fEnd];
+ const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
SkDLine lineHalf;
- lineHalf[0].set(fSegment->span(fStart).fPt);
+ lineHalf[0].set(fStart->pt());
lineHalf[1].set(cP1);
fTangentHalf.lineEndPoints(lineHalf);
fSide = 0;
@@ -1023,8 +1054,8 @@ void SkOpAngle::setSpans() {
double testTs[4];
// OPTIMIZATION: keep inflections precomputed with cubic segment?
int testCount = SkDCubic::FindInflections(pts, testTs);
- double startT = fSegment->t(fStart);
- double endT = fSegment->t(fEnd);
+ double startT = fStart->t();
+ double endT = fEnd->t();
double limitT = endT;
int index;
for (index = 0; index < testCount; ++index) {
@@ -1064,19 +1095,63 @@ void SkOpAngle::setSpans() {
}
}
-bool SkOpAngle::small() const {
- int min = SkMin32(fStart, fEnd);
- int max = SkMax32(fStart, fEnd);
- for (int index = min; index < max; ++index) {
- const SkOpSpan& mSpan = fSegment->span(index);
- if (!mSpan.fSmall) {
- return false;
- }
+void SkOpAngle::setSector() {
+ const SkOpSegment* segment = fStart->segment();
+ SkPath::Verb verb = segment->verb();
+ fSectorStart = this->findSector(verb, fSweep[0].fX, fSweep[0].fY);
+ if (fSectorStart < 0) {
+ goto deferTilLater;
}
- return true;
+ if (!fIsCurve) { // if it's a line or line-like, note that both sectors are the same
+ SkASSERT(fSectorStart >= 0);
+ fSectorEnd = fSectorStart;
+ fSectorMask = 1 << fSectorStart;
+ return;
+ }
+ SkASSERT(SkPath::kLine_Verb != verb);
+ fSectorEnd = this->findSector(verb, fSweep[1].fX, fSweep[1].fY);
+ if (fSectorEnd < 0) {
+deferTilLater:
+ fSectorStart = fSectorEnd = -1;
+ fSectorMask = 0;
+ fComputeSector = true; // can't determine sector until segment length can be found
+ return;
+ }
+ if (fSectorEnd == fSectorStart
+ && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
+ fSectorMask = 1 << fSectorStart;
+ return;
+ }
+ bool crossesZero = this->checkCrossesZero();
+ int start = SkTMin(fSectorStart, fSectorEnd);
+ bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
+ // bump the start and end of the sector span if they are on exact compass points
+ if ((fSectorStart & 3) == 3) {
+ fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
+ }
+ if ((fSectorEnd & 3) == 3) {
+ fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
+ }
+ crossesZero = this->checkCrossesZero();
+ start = SkTMin(fSectorStart, fSectorEnd);
+ int end = SkTMax(fSectorStart, fSectorEnd);
+ if (!crossesZero) {
+ fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
+ } else {
+ fSectorMask = (unsigned) -1 >> (31 - start) | (-1 << end);
+ }
+}
+
+int SkOpAngle::sign() const {
+ SkASSERT(fStart->t() != fEnd->t());
+ return fStart->t() < fEnd->t() ? -1 : 1;
+}
+
+SkOpSpan* SkOpAngle::starter() {
+ return fStart->starter(fEnd);
}
-bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const {
+bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) const {
if (s0xt0 == 0) {
return false;
}
@@ -1090,7 +1165,7 @@ bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const {
// m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
// m = v1.cross(v2) / v1.dot(v2)
const SkDVector* sweep = fSweep;
- const SkDVector* tweep = rh.fSweep;
+ const SkDVector* tweep = rh->fSweep;
double s0dt0 = sweep[0].dot(tweep[0]);
if (!s0dt0) {
return true;
@@ -1100,36 +1175,6 @@ bool SkOpAngle::tangentsDiverge(const SkOpAngle& rh, double s0xt0) const {
double sDist = sweep[0].length() * m;
double tDist = tweep[0].length() * m;
bool useS = fabs(sDist) < fabs(tDist);
- double mFactor = fabs(useS ? distEndRatio(sDist) : rh.distEndRatio(tDist));
+ double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
return mFactor < 5000; // empirically found limit
}
-
-SkOpAngleSet::SkOpAngleSet()
- : fAngles(NULL)
-#if DEBUG_ANGLE
- , fCount(0)
-#endif
-{
-}
-
-SkOpAngleSet::~SkOpAngleSet() {
- SkDELETE(fAngles);
-}
-
-SkOpAngle& SkOpAngleSet::push_back() {
- if (!fAngles) {
- fAngles = SkNEW_ARGS(SkChunkAlloc, (2));
- }
- void* ptr = fAngles->allocThrow(sizeof(SkOpAngle));
- SkOpAngle* angle = (SkOpAngle*) ptr;
-#if DEBUG_ANGLE
- angle->setID(++fCount);
-#endif
- return *angle;
-}
-
-void SkOpAngleSet::reset() {
- if (fAngles) {
- fAngles->reset();
- }
-}