diff options
Diffstat (limited to 'src/gpu/instanced/InstanceProcessor.cpp')
-rw-r--r-- | src/gpu/instanced/InstanceProcessor.cpp | 2102 |
1 files changed, 0 insertions, 2102 deletions
diff --git a/src/gpu/instanced/InstanceProcessor.cpp b/src/gpu/instanced/InstanceProcessor.cpp deleted file mode 100644 index 80437a110a..0000000000 --- a/src/gpu/instanced/InstanceProcessor.cpp +++ /dev/null @@ -1,2102 +0,0 @@ -/* - * Copyright 2016 Google Inc. - * - * Use of this source code is governed by a BSD-style license that can be - * found in the LICENSE file. - */ - -#include "InstanceProcessor.h" - -#include "GrContext.h" -#include "GrRenderTargetPriv.h" -#include "GrResourceCache.h" -#include "GrResourceProvider.h" -#include "glsl/GrGLSLGeometryProcessor.h" -#include "glsl/GrGLSLFragmentShaderBuilder.h" -#include "glsl/GrGLSLProgramBuilder.h" -#include "glsl/GrGLSLVarying.h" - -namespace gr_instanced { - -bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& caps, - AntialiasMode* lastSupportedAAMode) { - if (!glslCaps.canUseAnyFunctionInShader() || - !glslCaps.flatInterpolationSupport() || - !glslCaps.integerSupport() || - 0 == glslCaps.maxVertexSamplers() || - !caps.shaderCaps()->texelBufferSupport() || - caps.maxVertexAttributes() < kNumAttribs) { - return false; - } - if (caps.sampleLocationsSupport() && - glslCaps.sampleVariablesSupport() && - glslCaps.shaderDerivativeSupport()) { - if (0 != caps.maxRasterSamples() && - glslCaps.sampleMaskOverrideCoverageSupport()) { - *lastSupportedAAMode = AntialiasMode::kMixedSamples; - } else { - *lastSupportedAAMode = AntialiasMode::kMSAA; - } - } else { - *lastSupportedAAMode = AntialiasMode::kCoverage; - } - return true; -} - -InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer) - : fBatchInfo(batchInfo) { - this->initClassID<InstanceProcessor>(); - - this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision)); - this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType)); - this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType)); - this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType, - kHigh_GrSLPrecision)); - this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType, - kHigh_GrSLPrecision)); - this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrSLPrecision)); - this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision)); - - GR_STATIC_ASSERT(0 == (int)Attrib::kShapeCoords); - GR_STATIC_ASSERT(1 == (int)Attrib::kVertexAttrs); - GR_STATIC_ASSERT(2 == (int)Attrib::kInstanceInfo); - GR_STATIC_ASSERT(3 == (int)Attrib::kShapeMatrixX); - GR_STATIC_ASSERT(4 == (int)Attrib::kShapeMatrixY); - GR_STATIC_ASSERT(5 == (int)Attrib::kColor); - GR_STATIC_ASSERT(6 == (int)Attrib::kLocalRect); - GR_STATIC_ASSERT(7 == kNumAttribs); - - if (fBatchInfo.fHasParams) { - SkASSERT(paramsBuffer); - fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrShaderFlag); - this->addBufferAccess(&fParamsAccess); - } - - if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) { - if (!fBatchInfo.isSimpleRects() || - AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) { - this->setWillUseSampleLocations(); - } - } -} - -class GLSLInstanceProcessor : public GrGLSLGeometryProcessor { -public: - void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; - -private: - void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override {} - - class VertexInputs; - class Backend; - class BackendNonAA; - class BackendCoverage; - class BackendMultisample; - - typedef GrGLSLGeometryProcessor INHERITED; -}; - -GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps&) const { - return new GLSLInstanceProcessor(); -} - -class GLSLInstanceProcessor::VertexInputs { -public: - VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexBuilder) - : fInstProc(instProc), - fVertexBuilder(vertexBuilder) { - } - - void initParams(const SamplerHandle paramsBuffer) { - fParamsBuffer = paramsBuffer; - fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask); - fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision); - fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);", - this->attr(Attrib::kInstanceInfo)); - } - - const char* attr(Attrib attr) const { return fInstProc.getAttrib((int)attr).fName; } - - void fetchNextParam(GrSLType type = kVec4f_GrSLType) const { - SkASSERT(fParamsBuffer.isValid()); - if (type != kVec4f_GrSLType) { - fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type)); - } - fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++"); - if (type != kVec4f_GrSLType) { - fVertexBuilder->codeAppend(")"); - } - } - - void skipParams(unsigned n) const { - SkASSERT(fParamsBuffer.isValid()); - fVertexBuilder->codeAppendf("paramsIdx += %u;", n); - } - -private: - const InstanceProcessor& fInstProc; - GrGLSLVertexBuilder* fVertexBuilder; - SamplerHandle fParamsBuffer; -}; - -class GLSLInstanceProcessor::Backend { -public: - static Backend* SK_WARN_UNUSED_RESULT Create(const GrGLSLProgramBuilder*, BatchInfo, - const VertexInputs&); - virtual ~Backend() {} - - void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); - virtual void setupRect(GrGLSLVertexBuilder*) = 0; - virtual void setupOval(GrGLSLVertexBuilder*) = 0; - void setupRRect(GrGLSLVertexBuilder*); - - void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*); - virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0; - virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0; - void setupInnerRRect(GrGLSLVertexBuilder*); - - const char* outShapeCoords() { - return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(Attrib::kShapeCoords); - } - - void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, - const char* outColor); - -protected: - Backend(BatchInfo batchInfo, const VertexInputs& inputs) - : fBatchInfo(batchInfo), - fInputs(inputs), - fModifiesCoverage(false), - fModifiesColor(false), - fNeedsNeighborRadii(false), - fColor(kVec4f_GrSLType), - fTriangleIsArc(kInt_GrSLType), - fArcCoords(kVec2f_GrSLType), - fInnerShapeCoords(kVec2f_GrSLType), - fInnerRRect(kVec4f_GrSLType), - fModifiedShapeCoords(nullptr) { - if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { - fModifiedShapeCoords = "adjustedShapeCoords"; - } - } - - virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; - virtual void adjustRRectVertices(GrGLSLVertexBuilder*); - virtual void onSetupRRect(GrGLSLVertexBuilder*) {} - - virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0; - virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0; - - virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, - const char* outCoverage, const char* outColor) = 0; - - void setupSimpleRadii(GrGLSLVertexBuilder*); - void setupNinePatchRadii(GrGLSLVertexBuilder*); - void setupComplexRadii(GrGLSLVertexBuilder*); - - const BatchInfo fBatchInfo; - const VertexInputs& fInputs; - bool fModifiesCoverage; - bool fModifiesColor; - bool fNeedsNeighborRadii; - GrGLSLVertToFrag fColor; - GrGLSLVertToFrag fTriangleIsArc; - GrGLSLVertToFrag fArcCoords; - GrGLSLVertToFrag fInnerShapeCoords; - GrGLSLVertToFrag fInnerRRect; - const char* fModifiedShapeCoords; -}; - -void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { - const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>(); - GrGLSLUniformHandler* uniHandler = args.fUniformHandler; - GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; - GrGLSLVertexBuilder* v = args.fVertBuilder; - GrGLSLPPFragmentBuilder* f = args.fFragBuilder; - - varyingHandler->emitAttributes(ip); - - VertexInputs inputs(ip, v); - if (ip.batchInfo().fHasParams) { - SkASSERT(1 == ip.numBuffers()); - inputs.initParams(args.fBufferSamplers[0]); - } - - if (!ip.batchInfo().fHasPerspective) { - v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);", - inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); - } else { - v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag); - v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));", - inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY)); - v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {", - inputs.attr(Attrib::kInstanceInfo)); - v->codeAppend ( "shapeMatrix[2] = "); - inputs.fetchNextParam(kVec3f_GrSLType); - v->codeAppend ( ";"); - v->codeAppend ("}"); - } - - int usedShapeTypes = 0; - - bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes); - if (!hasSingleShapeType) { - usedShapeTypes |= ip.batchInfo().fShapeTypes; - v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit); - v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;", - inputs.attr(Attrib::kInstanceInfo)); - } - - SkAutoTDelete<Backend> backend(Backend::Create(v->getProgramBuilder(), ip.batchInfo(), inputs)); - backend->init(varyingHandler, v); - - if (hasSingleShapeType) { - if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) { - backend->setupRect(v); - } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) { - backend->setupOval(v); - } else { - backend->setupRRect(v); - } - } else { - v->codeAppend ("switch (shapeType) {"); - if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) { - v->codeAppend ("case RECT_SHAPE_TYPE: {"); - backend->setupRect(v); - v->codeAppend ("} break;"); - } - if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) { - v->codeAppend ("case OVAL_SHAPE_TYPE: {"); - backend->setupOval(v); - v->codeAppend ("} break;"); - } - if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) { - v->codeAppend ("default: {"); - backend->setupRRect(v); - v->codeAppend ("} break;"); - } - v->codeAppend ("}"); - } - - if (ip.batchInfo().fInnerShapeTypes) { - bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes); - if (!hasSingleInnerShapeType) { - usedShapeTypes |= ip.batchInfo().fInnerShapeTypes; - v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMask); - v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit); - v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK) >> " - "INNER_SHAPE_TYPE_BIT);", - inputs.attr(Attrib::kInstanceInfo)); - } - // Here we take advantage of the fact that outerRect == localRect in recordDRRect. - v->codeAppendf("vec4 outer = %s;", inputs.attr(Attrib::kLocalRect)); - v->codeAppend ("vec4 inner = "); - inputs.fetchNextParam(); - v->codeAppend (";"); - // outer2Inner is a transform from shape coords to inner shape coords: - // e.g. innerShapeCoords = shapeCoords * outer2Inner.xy + outer2Inner.zw - v->codeAppend ("vec4 outer2Inner = vec4(outer.zw - outer.xy, " - "outer.xy + outer.zw - inner.xy - inner.zw) / " - "(inner.zw - inner.xy).xyxy;"); - v->codeAppendf("vec2 innerShapeCoords = %s * outer2Inner.xy + outer2Inner.zw;", - backend->outShapeCoords()); - - backend->initInnerShape(varyingHandler, v); - - if (hasSingleInnerShapeType) { - if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { - backend->setupInnerRect(v); - } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) { - backend->setupInnerOval(v); - } else { - backend->setupInnerRRect(v); - } - } else { - v->codeAppend("switch (innerShapeType) {"); - if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) { - v->codeAppend("case RECT_SHAPE_TYPE: {"); - backend->setupInnerRect(v); - v->codeAppend("} break;"); - } - if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) { - v->codeAppend("case OVAL_SHAPE_TYPE: {"); - backend->setupInnerOval(v); - v->codeAppend("} break;"); - } - if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) { - v->codeAppend("default: {"); - backend->setupInnerRRect(v); - v->codeAppend("} break;"); - } - v->codeAppend("}"); - } - } - - if (usedShapeTypes & kRect_ShapeFlag) { - v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect); - } - if (usedShapeTypes & kOval_ShapeFlag) { - v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval); - } - - backend->emitCode(v, f, args.fOutputCoverage, args.fOutputColor); - - const char* localCoords = nullptr; - if (ip.batchInfo().fUsesLocalCoords) { - localCoords = "localCoords"; - v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords()); - v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;", - inputs.attr(Attrib::kLocalRect), inputs.attr(Attrib::kLocalRect)); - } - if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) { - v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag); - v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {", - inputs.attr(Attrib::kInstanceInfo)); - if (!ip.batchInfo().fUsesLocalCoords) { - inputs.skipParams(2); - } else { - v->codeAppendf( "mat2x3 localMatrix;"); - v->codeAppend ( "localMatrix[0] = "); - inputs.fetchNextParam(kVec3f_GrSLType); - v->codeAppend ( ";"); - v->codeAppend ( "localMatrix[1] = "); - inputs.fetchNextParam(kVec3f_GrSLType); - v->codeAppend ( ";"); - v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatrix).xy;"); - } - v->codeAppend("}"); - } - - GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : kVec2f_GrSLType; - v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;", - GrGLSLTypeString(positionType), backend->outShapeCoords()); - gpArgs->fPositionVar.set(positionType, "deviceCoords"); - - this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, localCoords, - args.fTransformsIn, args.fTransformsOut); -} - -//////////////////////////////////////////////////////////////////////////////////////////////////// - -void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder* v) { - if (fModifiedShapeCoords) { - v->codeAppendf("vec2 %s = %s;", fModifiedShapeCoords, fInputs.attr(Attrib::kShapeCoords)); - } - - this->onInit(varyingHandler, v); - - if (!fColor.vsOut()) { - varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision); - v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(Attrib::kColor)); - } -} - -void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) { - v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);", - fInputs.attr(Attrib::kVertexAttrs), fInputs.attr(Attrib::kVertexAttrs)); - v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;"); - v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : ""); - v->codeAppend ("mat2 p = "); - fInputs.fetchNextParam(kMat22f_GrSLType); - v->codeAppend (";"); - uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask; - if (0 == (types & (types - 1))) { - if (kSimpleRRect_ShapeFlag == types) { - this->setupSimpleRadii(v); - } else if (kNinePatch_ShapeFlag == types) { - this->setupNinePatchRadii(v); - } else if (kComplexRRect_ShapeFlag == types) { - this->setupComplexRadii(v); - } - } else { - v->codeAppend("switch (shapeType) {"); - if (types & kSimpleRRect_ShapeFlag) { - v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpleRRect); - v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {"); - this->setupSimpleRadii(v); - v->codeAppend ("} break;"); - } - if (types & kNinePatch_ShapeFlag) { - v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatch); - v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {"); - this->setupNinePatchRadii(v); - v->codeAppend ("} break;"); - } - if (types & kComplexRRect_ShapeFlag) { - v->codeAppend ("default: {"); - this->setupComplexRadii(v); - v->codeAppend ("} break;"); - } - v->codeAppend("}"); - } - - this->adjustRRectVertices(v); - - if (fArcCoords.vsOut()) { - v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;", - fArcCoords.vsOut(), fModifiedShapeCoords); - } - if (fTriangleIsArc.vsOut()) { - v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));", - fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kShapeCoords)); - } - - this->onSetupRRect(v); -} - -void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) { - if (fNeedsNeighborRadii) { - v->codeAppend ("neighborRadii = "); - } - v->codeAppend("radii = p[0] * 2.0 / p[1];"); -} - -void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v) { - v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);"); - if (fNeedsNeighborRadii) { - v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corner.y]);"); - } -} - -void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) { - /** - * The x and y radii of each arc are stored in separate vectors, - * in the following order: - * - * __x1 _ _ _ x3__ - * - * y1 | | y2 - * - * | | - * - * y3 |__ _ _ _ __| y4 - * x2 x4 - * - */ - v->codeAppend("mat2 p2 = "); - fInputs.fetchNextParam(kMat22f_GrSLType); - v->codeAppend(";"); - v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);"); - if (fNeedsNeighborRadii) { - v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], " - "p2[1u - corner.y][corner.x]);"); - } -} - -void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v) { - // Resize the 4 triangles that arcs are drawn into so they match their corresponding radii. - // 0.5 is a special value that indicates the edge of an arc triangle. - v->codeAppendf("if (abs(%s.x) == 0.5)" - "%s.x = cornerSign.x * (1.0 - radii.x);", - fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); - v->codeAppendf("if (abs(%s.y) == 0.5) " - "%s.y = cornerSign.y * (1.0 - radii.y);", - fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); -} - -void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder* v) { - SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRect_ShapeFlag))); - - this->onInitInnerShape(varyingHandler, v); - - if (fInnerShapeCoords.vsOut()) { - v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut()); - } -} - -void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) { - v->codeAppend("mat2 innerP = "); - fInputs.fetchNextParam(kMat22f_GrSLType); - v->codeAppend(";"); - v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];"); - this->onSetupInnerRRect(v); -} - -void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFragmentBuilder* f, - const char* outCoverage, const char* outColor) { - this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr, - fModifiesColor ? outColor : nullptr); - if (!fModifiesCoverage) { - // Even though the subclass doesn't use coverage, we are expected to assign some value. - f->codeAppendf("%s = vec4(1);", outCoverage); - } - if (!fModifiesColor) { - // The subclass didn't assign a value to the output color. - f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); - } -} - -//////////////////////////////////////////////////////////////////////////////////////////////////// - -class GLSLInstanceProcessor::BackendNonAA : public Backend { -public: - BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs) - : INHERITED(batchInfo, inputs) { - if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) { - fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage; - fModifiesCoverage = !fModifiesColor; - } - } - -private: - void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; - void setupRect(GrGLSLVertexBuilder*) override; - void setupOval(GrGLSLVertexBuilder*) override; - - void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; - void setupInnerRect(GrGLSLVertexBuilder*) override; - void setupInnerOval(GrGLSLVertexBuilder*) override; - void onSetupInnerRRect(GrGLSLVertexBuilder*) override; - - void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, - const char*) override; - - typedef Backend INHERITED; -}; - -void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder*) { - if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { - varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision); - varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecision); - } -} - -void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) { - if (fTriangleIsArc.vsOut()) { - v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) { - SkASSERT(fArcCoords.vsOut()); - SkASSERT(fTriangleIsArc.vsOut()); - v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords()); - v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); -} - -void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder*) { - varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_GrSLPrecision); - if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes && - kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) { - varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision); - } -} - -void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v) { - if (fInnerRRect.vsOut()) { - v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v) { - if (fInnerRRect.vsOut()) { - v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder* v) { - v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); -} - -void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*, - GrGLSLPPFragmentBuilder* f, - const char* outCoverage, - const char* outColor) { - const char* dropFragment = nullptr; - if (!fBatchInfo.fCannotDiscard) { - dropFragment = "discard"; - } else if (fModifiesCoverage) { - f->appendPrecisionModifier(kLow_GrSLPrecision); - f->codeAppend ("float covered = 1.0;"); - dropFragment = "covered = 0.0"; - } else if (fModifiesColor) { - f->appendPrecisionModifier(kLow_GrSLPrecision); - f->codeAppendf("vec4 color = %s;", fColor.fsIn()); - dropFragment = "color = vec4(0)"; - } - if (fTriangleIsArc.fsIn()) { - SkASSERT(dropFragment); - f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;", - fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn(), dropFragment); - } - if (fBatchInfo.fInnerShapeTypes) { - SkASSERT(dropFragment); - f->codeAppendf("// Inner shape.\n"); - if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { - f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;", - fInnerShapeCoords.fsIn(), dropFragment); - } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { - f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;", - fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), dropFragment); - } else { - f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShapeCoords.fsIn()); - f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;", - fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); - f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); - f->codeAppendf( "%s;", dropFragment); - f->codeAppend ( "} else {"); - f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw;", - fInnerRRect.fsIn()); - f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {"); - f->codeAppendf( "%s;", dropFragment); - f->codeAppend ( "}"); - f->codeAppend ( "}"); - f->codeAppend ("}"); - } - } - if (fModifiesCoverage) { - f->codeAppendf("%s = vec4(covered);", outCoverage); - } else if (fModifiesColor) { - f->codeAppendf("%s = color;", outColor); - } -} - -//////////////////////////////////////////////////////////////////////////////////////////////////// - -class GLSLInstanceProcessor::BackendCoverage : public Backend { -public: - BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs) - : INHERITED(batchInfo, inputs), - fColorTimesRectCoverage(kVec4f_GrSLType), - fRectCoverage(kFloat_GrSLType), - fEllipseCoords(kVec2f_GrSLType), - fEllipseName(kVec2f_GrSLType), - fBloatedRadius(kFloat_GrSLType), - fDistanceToInnerEdge(kVec2f_GrSLType), - fInnerShapeBloatedHalfSize(kVec2f_GrSLType), - fInnerEllipseCoords(kVec2f_GrSLType), - fInnerEllipseName(kVec2f_GrSLType) { - fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kRRect_ShapesMask); - fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage && - !fBatchInfo.fInnerShapeTypes; - fModifiesCoverage = !fTweakAlphaForCoverage; - fModifiesColor = fTweakAlphaForCoverage; - fModifiedShapeCoords = "bloatedShapeCoords"; - } - -private: - void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; - void setupRect(GrGLSLVertexBuilder*) override; - void setupOval(GrGLSLVertexBuilder*) override; - void adjustRRectVertices(GrGLSLVertexBuilder*) override; - void onSetupRRect(GrGLSLVertexBuilder*) override; - - void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; - void setupInnerRect(GrGLSLVertexBuilder*) override; - void setupInnerOval(GrGLSLVertexBuilder*) override; - void onSetupInnerRRect(GrGLSLVertexBuilder*) override; - - void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage, - const char* outColor) override; - - void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char* outColor); - void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage); - void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const char* ellipseName, - bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative, - const char* outCoverage); - void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage); - - GrGLSLVertToFrag fColorTimesRectCoverage; - GrGLSLVertToFrag fRectCoverage; - GrGLSLVertToFrag fEllipseCoords; - GrGLSLVertToFrag fEllipseName; - GrGLSLVertToFrag fBloatedRadius; - GrGLSLVertToFrag fDistanceToInnerEdge; - GrGLSLVertToFrag fInnerShapeBloatedHalfSize; - GrGLSLVertToFrag fInnerEllipseCoords; - GrGLSLVertToFrag fInnerEllipseName; - bool fShapeIsCircle; - bool fTweakAlphaForCoverage; - - typedef Backend INHERITED; -}; - -void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder* v) { - v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));"); - v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), " - "length(shapeTransposeMatrix[1]));"); - v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;"); - v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", fInputs.attr(Attrib::kShapeCoords)); - - if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) { - if (fTweakAlphaForCoverage) { - varyingHandler->addVarying("colorTimesRectCoverage", &fColorTimesRectCoverage, - kLow_GrSLPrecision); - if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) { - fColor = fColorTimesRectCoverage; - } - } else { - varyingHandler->addVarying("rectCoverage", &fRectCoverage, kLow_GrSLPrecision); - } - v->codeAppend("float rectCoverage = 0.0;"); - } - if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { - varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision); - if (!fShapeIsCircle) { - varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_GrSLPrecision); - varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_GrSLPrecision); - } else { - varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_GrSLPrecision); - varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMedium_GrSLPrecision); - } - } -} - -void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) { - // Make the border one pixel wide. Inner vs outer is indicated by coordAttrs. - v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;", - fInputs.attr(Attrib::kVertexAttrs)); - // Here we use the absolute value, because when the rect is thinner than a pixel, this makes it - // mark the spot where pixel center is within half a pixel of the *opposite* edge. This, - // combined with the "maxCoverage" logic below gives us mathematically correct coverage even for - // subpixel rectangles. - v->codeAppendf("bloatedShapeCoords = %s * abs(vec2(1.0 + rectBloat));", - fInputs.attr(Attrib::kShapeCoords)); - - // Determine coverage at the vertex. Coverage naturally ramps from 0 to 1 unless the rect is - // narrower than a pixel. - v->codeAppend ("float maxCoverage = 4.0 * min(0.5, shapeHalfSize.x) *" - "min(0.5, shapeHalfSize.y);"); - v->codeAppendf("rectCoverage = (%s != 0) ? 0.0 : maxCoverage;", - fInputs.attr(Attrib::kVertexAttrs)); - - if (fTriangleIsArc.vsOut()) { - v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) { - // Offset the inner and outer octagons by one pixel. Inner vs outer is indicated by coordAttrs. - v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;", - fInputs.attr(Attrib::kVertexAttrs)); - v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0));", - fInputs.attr(Attrib::kShapeCoords)); - v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vsOut()); - if (fEllipseName.vsOut()) { - v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseName.vsOut()); - } - if (fBloatedRadius.vsOut()) { - SkASSERT(fShapeIsCircle); - v->codeAppendf("%s = shapeHalfSize.x + 0.5;", fBloatedRadius.vsOut()); - } - if (fTriangleIsArc.vsOut()) { - v->codeAppendf("%s = int(%s != 0);", - fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); - } - if (fColorTimesRectCoverage.vsOut() || fRectCoverage.vsOut()) { - v->codeAppendf("rectCoverage = 1.0;"); - } -} - -void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBuilder* v) { - // We try to let the AA borders line up with the arc edges on their particular side, but we - // can't allow them to get closer than one half pixel to the edge or they might overlap with - // their neighboring border. - v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));"); - v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge, innerEdge);"); - // 0.5 is a special value that indicates this vertex is an arc edge. - v->codeAppendf("if (abs(%s.x) == 0.5)" - "bloatedShapeCoords.x = borderEdge.x;", fInputs.attr(Attrib::kShapeCoords)); - v->codeAppendf("if (abs(%s.y) == 0.5)" - "bloatedShapeCoords.y = borderEdge.y;", fInputs.attr(Attrib::kShapeCoords)); - - // Adjust the interior border vertices to make the border one pixel wide. 0.75 is a special - // value to indicate these points. - v->codeAppendf("if (abs(%s.x) == 0.75) " - "bloatedShapeCoords.x = cornerSign.x * innerEdge.x;", - fInputs.attr(Attrib::kShapeCoords)); - v->codeAppendf("if (abs(%s.y) == 0.75) " - "bloatedShapeCoords.y = cornerSign.y * innerEdge.y;", - fInputs.attr(Attrib::kShapeCoords)); -} - -void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v) { - // The geometry is laid out in such a way that rectCoverage will be 0 and 1 on the vertices, but - // we still need to recompute this value because when the rrect gets thinner than one pixel, the - // interior edge of the border will necessarily clamp, and we need to match the AA behavior of - // the arc segments (i.e. distance from bloated edge only; ignoring the fact that the pixel - // actully has less coverage because it's not completely inside the opposite edge.) - v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;"); - v->codeAppend("rectCoverage = min(d.x, d.y);"); - - SkASSERT(!fShapeIsCircle); - // The AA border does not get closer than one half pixel to the edge of the rect, so to get a - // smooth transition from flat edge to arc, we don't allow the radii to be smaller than one half - // pixel. (We don't worry about the transition on the opposite side when a radius is so large - // that the border clamped on that side.) - v->codeAppendf("vec2 clampedRadii = max(radii, bloat);"); - v->codeAppendf("%s = (cornerSign * bloatedShapeCoords + clampedRadii - vec2(1)) * " - "shapeHalfSize;", fEllipseCoords.vsOut()); - v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * shapeHalfSize);", - fEllipseName.vsOut()); -} - -void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder* v) { - v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / outer2Inner.xy;"); - - if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { - varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords, - kMedium_GrSLPrecision); - varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, - kMedium_GrSLPrecision); - } else { - varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge, - kMedium_GrSLPrecision); - varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShapeBloatedHalfSize, - kMedium_GrSLPrecision); - if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { - varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision); - varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName, - kMedium_GrSLPrecision); - varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision); - } - } -} - -void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder* v) { - if (fInnerRRect.vsOut()) { - // The fragment shader will generalize every inner shape as a round rect. Since this one - // is a rect, we simply emit bogus parameters for the round rect (effectively negative - // radii) that ensure the fragment shader always takes the "emitRect" codepath. - v->codeAppendf("%s.xy = abs(outer2Inner.xy) * (1.0 + bloat) + abs(outer2Inner.zw);", - fInnerRRect.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder* v) { - v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);", - fInnerEllipseName.vsOut()); - if (fInnerEllipseCoords.vsOut()) { - v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerEllipseCoords.vsOut()); - } - if (fInnerRRect.vsOut()) { - v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuilder* v) { - // The distance to ellipse formula doesn't work well when the radii are less than half a pixel. - v->codeAppend ("innerRadii = max(innerRadii, bloat);"); - v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * " - "innerShapeHalfSize);", - fInnerEllipseName.vsOut()); - v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRect.vsOut()); -} - -void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v, - GrGLSLPPFragmentBuilder* f, - const char* outCoverage, - const char* outColor) { - if (fColorTimesRectCoverage.vsOut()) { - SkASSERT(!fRectCoverage.vsOut()); - v->codeAppendf("%s = %s * rectCoverage;", - fColorTimesRectCoverage.vsOut(), fInputs.attr(Attrib::kColor)); - } - if (fRectCoverage.vsOut()) { - SkASSERT(!fColorTimesRectCoverage.vsOut()); - v->codeAppendf("%s = rectCoverage;", fRectCoverage.vsOut()); - } - - SkString coverage("float coverage"); - if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { - coverage.prependf("lowp "); - } - if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsArc.fsIn())) { - f->codeAppendf("%s;", coverage.c_str()); - coverage = "coverage"; - } - if (fTriangleIsArc.fsIn()) { - f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); - this->emitRect(f, coverage.c_str(), outColor); - f->codeAppend ("} else {"); - if (fShapeIsCircle) { - this->emitCircle(f, coverage.c_str()); - } else { - bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes & kOval_ShapeFlag); - this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(), - true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNegative, - coverage.c_str()); - } - if (fTweakAlphaForCoverage) { - f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn()); - } - f->codeAppend ("}"); - } else { - this->emitRect(f, coverage.c_str(), outColor); - } - - if (fBatchInfo.fInnerShapeTypes) { - f->codeAppendf("// Inner shape.\n"); - SkString innerCoverageDecl("float innerCoverage"); - if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) { - innerCoverageDecl.prependf("lowp "); - } - if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { - this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(), - true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsMayBeNegative*/, - innerCoverageDecl.c_str()); - } else { - v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", - fDistanceToInnerEdge.vsOut()); - v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedHalfSize.vsOut()); - - if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { - this->emitInnerRect(f, innerCoverageDecl.c_str()); - } else { - f->codeAppendf("%s = 0.0;", innerCoverageDecl.c_str()); - f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", - fInnerShapeCoords.fsIn(), fInnerRRect.fsIn()); - f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))) {"); - this->emitInnerRect(f, "innerCoverage"); - f->codeAppend ("} else {"); - f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.zw;", - fInnerRRect.fsIn()); - this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(), - false /*ellipseCoordsNeedClamp*/, - false /*ellipseCoordsMayBeNegative*/, "innerCoverage"); - f->codeAppend ("}"); - } - } - f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0.0));", outCoverage); - } else if (!fTweakAlphaForCoverage) { - f->codeAppendf("%s = vec4(coverage);", outCoverage); - } -} - -void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f, - const char* outCoverage, - const char* outColor) { - if (fColorTimesRectCoverage.fsIn()) { - f->codeAppendf("%s = %s;", outColor, fColorTimesRectCoverage.fsIn()); - } else if (fTweakAlphaForCoverage) { - // We are drawing just ovals. The interior rect always has 100% coverage. - f->codeAppendf("%s = %s;", outColor, fColor.fsIn()); - } else if (fRectCoverage.fsIn()) { - f->codeAppendf("%s = %s;", outCoverage, fRectCoverage.fsIn()); - } else { - f->codeAppendf("%s = 1.0;", outCoverage); - } -} - -void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder* f, - const char* outCoverage) { - // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimization on rrects. - SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes)); - f->codeAppendf("float distanceToEdge = %s - length(%s);", - fBloatedRadius.fsIn(), fEllipseCoords.fsIn()); - f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage); -} - -void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f, - const char* ellipseCoords, - const char* ellipseName, - bool ellipseCoordsNeedClamp, - bool ellipseCoordsMayBeNegative, - const char* outCoverage) { - SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp); - if (ellipseCoordsNeedClamp) { - // This serves two purposes: - // - To restrict the arcs of rounded rects to their positive quadrants. - // - To avoid inversesqrt(0) in the ellipse formula. - if (ellipseCoordsMayBeNegative) { - f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4));", ellipseCoords); - } else { - f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", ellipseCoords); - } - ellipseCoords = "ellipseClampedCoords"; - } - // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2. - f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName); - // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1. - f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords); - // gradDot is the squared length of the gradient of the implicit. - f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);"); - f->appendPrecisionModifier(kLow_GrSLPrecision); - f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);"); - f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage); -} - -void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuilder* f, - const char* outCoverage) { - f->appendPrecisionModifier(kLow_GrSLPrecision); - f->codeAppendf("vec2 c = %s - abs(%s);", - fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn()); - f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage); -} - -//////////////////////////////////////////////////////////////////////////////////////////////////// - -class GLSLInstanceProcessor::BackendMultisample : public Backend { -public: - BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effectiveSampleCnt) - : INHERITED(batchInfo, inputs), - fEffectiveSampleCnt(effectiveSampleCnt), - fShapeCoords(kVec2f_GrSLType), - fShapeInverseMatrix(kMat22f_GrSLType), - fFragShapeHalfSpan(kVec2f_GrSLType), - fArcTest(kVec2f_GrSLType), - fArcInverseMatrix(kMat22f_GrSLType), - fFragArcHalfSpan(kVec2f_GrSLType), - fEarlyAccept(kInt_GrSLType), - fInnerShapeInverseMatrix(kMat22f_GrSLType), - fFragInnerShapeHalfSpan(kVec2f_GrSLType) { - fRectTrianglesMaySplit = fBatchInfo.fHasPerspective; - fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspective; - } - -private: - bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode; } - - void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; - void setupRect(GrGLSLVertexBuilder*) override; - void setupOval(GrGLSLVertexBuilder*) override; - void adjustRRectVertices(GrGLSLVertexBuilder*) override; - void onSetupRRect(GrGLSLVertexBuilder*) override; - - void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override; - void setupInnerRect(GrGLSLVertexBuilder*) override; - void setupInnerOval(GrGLSLVertexBuilder*) override; - void onSetupInnerRRect(GrGLSLVertexBuilder*) override; - - void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*, - const char*) override; - - struct EmitShapeCoords { - const GrGLSLVarying* fVarying; - const char* fInverseMatrix; - const char* fFragHalfSpan; - }; - - struct EmitShapeOpts { - bool fIsTightGeometry; - bool fResolveMixedSamples; - bool fInvertCoverage; - }; - - void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitShapeOpts&); - void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMayBeNegative, - bool clampCoords, const EmitShapeOpts&); - void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const char* rrect, - const EmitShapeOpts&); - void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, const char* sampleIdx, - const char* interpolationMatrix); - void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, const EmitShapeOpts&); - void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, const EmitShapeOpts&, - bool maybeSharedEdge = true); - - int fEffectiveSampleCnt; - bool fRectTrianglesMaySplit; - GrGLSLVertToFrag fShapeCoords; - GrGLSLVertToFrag fShapeInverseMatrix; - GrGLSLVertToFrag fFragShapeHalfSpan; - GrGLSLVertToFrag fArcTest; - GrGLSLVertToFrag fArcInverseMatrix; - GrGLSLVertToFrag fFragArcHalfSpan; - GrGLSLVertToFrag fEarlyAccept; - GrGLSLVertToFrag fInnerShapeInverseMatrix; - GrGLSLVertToFrag fFragInnerShapeHalfSpan; - SkString fSquareFun; - - typedef Backend INHERITED; -}; - -void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder* v) { - if (!this->isMixedSampled()) { - if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { - varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, - kHigh_GrSLPrecision); - varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); - if (!fBatchInfo.fHasPerspective) { - varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, - kHigh_GrSLPrecision); - varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, - kHigh_GrSLPrecision); - } - } else if (!fBatchInfo.fInnerShapeTypes) { - return; - } - } else { - varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPrecision); - if (!fBatchInfo.fHasPerspective) { - varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseMatrix, - kHigh_GrSLPrecision); - varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfSpan, - kHigh_GrSLPrecision); - } - if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) { - varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision); - varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision); - if (!fBatchInfo.fHasPerspective) { - varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix, - kHigh_GrSLPrecision); - varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan, - kHigh_GrSLPrecision); - } - } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) { - fArcCoords = fShapeCoords; - fArcInverseMatrix = fShapeInverseMatrix; - fFragArcHalfSpan = fFragShapeHalfSpan; - if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) { - varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, - kHigh_GrSLPrecision); - } - } - if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) { - v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); - varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_GrSLPrecision); - } - } - if (!fBatchInfo.fHasPerspective) { - v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));"); - v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + " - "abs(vec4(shapeInverseMatrix).yw);"); - } -} - -void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v) { - if (fShapeCoords.vsOut()) { - v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); - } - if (fShapeInverseMatrix.vsOut()) { - v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); - } - if (fFragShapeHalfSpan.vsOut()) { - v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); - } - if (fArcTest.vsOut()) { - // Pick a value that is not > 0. - v->codeAppendf("%s = vec2(0);", fArcTest.vsOut()); - } - if (fTriangleIsArc.vsOut()) { - v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut()); - } - if (fEarlyAccept.vsOut()) { - v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v) { - v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords()); - if (fArcInverseMatrix.vsOut()) { - v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords()); - v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);", - fArcInverseMatrix.vsOut()); - } - if (fFragArcHalfSpan.vsOut()) { - v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut()); - } - if (fArcTest.vsOut()) { - // Pick a value that is > 0. - v->codeAppendf("%s = vec2(1);", fArcTest.vsOut()); - } - if (fTriangleIsArc.vsOut()) { - if (!this->isMixedSampled()) { - v->codeAppendf("%s = %s & 1;", - fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); - } else { - v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut()); - } - } - if (fEarlyAccept.vsOut()) { - v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;", - fEarlyAccept.vsOut(), fInputs.attr(Attrib::kVertexAttrs)); - } -} - -void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertexBuilder* v) { - if (!this->isMixedSampled()) { - INHERITED::adjustRRectVertices(v); - return; - } - - if (!fBatchInfo.fHasPerspective) { - // For the mixed samples algorithm it's best to bloat the corner triangles a bit so that - // more of the pixels that cross into the arc region are completely inside the shared edges. - // We also snap to a regular rect if the radii shrink smaller than a pixel. - v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);"); - v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ? " - "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - midpt);"); - } else { - // TODO: We could still bloat the corner triangle in the perspective case; we would just - // need to find the screen-space derivative of shape coords at this particular point. - v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec2(0) : radii;"); - } - - v->codeAppendf("if (abs(%s.x) == 0.5)" - "%s.x = cornerSign.x * (1.0 - cornerSize.x);", - fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); - v->codeAppendf("if (abs(%s.y) == 0.5)" - "%s.y = cornerSign.y * (1.0 - cornerSize.y);", - fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords); -} - -void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder* v) { - if (fShapeCoords.vsOut()) { - v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords()); - } - if (fShapeInverseMatrix.vsOut()) { - v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut()); - } - if (fFragShapeHalfSpan.vsOut()) { - v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut()); - } - if (fArcInverseMatrix.vsOut()) { - v->codeAppend ("vec2 s = cornerSign / radii;"); - v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);", - fArcInverseMatrix.vsOut()); - } - if (fFragArcHalfSpan.vsOut()) { - v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));", - fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(), - fArcInverseMatrix.vsOut()); - } - if (fArcTest.vsOut()) { - // The interior triangles are laid out as a fan. fArcTest is both distances from shared - // edges of a fan triangle to a point within that triangle. fArcTest is used to check if a - // fragment is too close to either shared edge, in which case we point sample the shape as a - // rect at that point in order to guarantee the mixed samples discard logic works correctly. - v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : " - "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize.y - 1.0, 1);", - fArcTest.vsOut(), fModifiedShapeCoords); - if (!fBatchInfo.fHasPerspective) { - // Shift the point at which distances to edges are measured from the center of the pixel - // to the corner. This way the sign of fArcTest will quickly tell us whether a pixel - // is completely inside the shared edge. Perspective mode will accomplish this same task - // by finding the derivatives in the fragment shader. - v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + fragShapeSpan);", - fArcTest.vsOut()); - } - } - if (fEarlyAccept.vsOut()) { - SkASSERT(this->isMixedSampled()); - v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;", - fEarlyAccept.vsOut(), fInputs.attr(Attrib::kShapeCoords)); - } -} - -void -GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler, - GrGLSLVertexBuilder* v) { - varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision); - if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes && - kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) { - varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision); - } - if (!fBatchInfo.fHasPerspective) { - varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeInverseMatrix, - kHigh_GrSLPrecision); - v->codeAppendf("%s = shapeInverseMatrix * mat2(outer2Inner.x, 0, 0, outer2Inner.y);", - fInnerShapeInverseMatrix.vsOut()); - varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShapeHalfSpan, - kHigh_GrSLPrecision); - v->codeAppendf("%s = 0.5 * fragShapeSpan * outer2Inner.xy;", - fFragInnerShapeHalfSpan.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuilder* v) { - if (fInnerRRect.vsOut()) { - // The fragment shader will generalize every inner shape as a round rect. Since this one - // is a rect, we simply emit bogus parameters for the round rect (negative radii) that - // ensure the fragment shader always takes the "sample as rect" codepath. - v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));", - fInnerRRect.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuilder* v) { - if (fInnerRRect.vsOut()) { - v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut()); - } -} - -void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBuilder* v) { - // Avoid numeric instability by not allowing the inner radii to get smaller than 1/10th pixel. - if (fFragInnerShapeHalfSpan.vsOut()) { - v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerShapeHalfSpan.vsOut()); - } else { - v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));"); - } - v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut()); -} - -void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*, - GrGLSLPPFragmentBuilder* f, - const char*, const char*) { - f->define("SAMPLE_COUNT", fEffectiveSampleCnt); - if (this->isMixedSampled()) { - f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1); - f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1)); - } - - if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes)) { - GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHigh_GrSLPrecision); - f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &fSquareFun); - } - - EmitShapeCoords shapeCoords; - shapeCoords.fVarying = &fShapeCoords; - shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn(); - shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn(); - - EmitShapeCoords arcCoords; - arcCoords.fVarying = &fArcCoords; - arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn(); - arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn(); - bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kRRect_ShapesMask); - - EmitShapeOpts opts; - opts.fIsTightGeometry = true; - opts.fResolveMixedSamples = this->isMixedSampled(); - opts.fInvertCoverage = false; - - if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) { - // This determines if the fragment should consider the inner shape in its sample mask. - // We take the derivative early in case discards may occur before we get to the inner shape. - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);", - fInnerShapeCoords.fsIn()); - } - - if (!this->isMixedSampled()) { - SkASSERT(!fArcTest.fsIn()); - if (fTriangleIsArc.fsIn()) { - f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn()); - this->emitArc(f, arcCoords, false, clampArcCoords, opts); - - f->codeAppend ("}"); - } - } else { - const char* arcTest = fArcTest.fsIn(); - SkASSERT(arcTest); - if (fBatchInfo.fHasPerspective) { - // The non-perspective version accounts for fwith() in the vertex shader. - // We make sure to take the derivative here, before a neighbor pixel may early accept. - f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLFeature); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);", - fArcTest.fsIn(), fArcTest.fsIn()); - arcTest = "arcTest"; - } - const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "SAMPLE_MASK_ALL"; - f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept); - f->overrideSampleCoverage(earlyAccept); - f->codeAppend ("} else {"); - if (arcTest) { - // At this point, if the sample mask is all set it means we are inside an arc triangle. - f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || " - "all(greaterThan(%s, vec2(0)))) {", arcTest); - this->emitArc(f, arcCoords, false, clampArcCoords, opts); - f->codeAppend ("} else {"); - this->emitRect(f, shapeCoords, opts); - f->codeAppend ("}"); - } else if (fTriangleIsArc.fsIn()) { - f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn()); - this->emitRect(f, shapeCoords, opts); - f->codeAppend ("} else {"); - this->emitArc(f, arcCoords, false, clampArcCoords, opts); - f->codeAppend ("}"); - } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) { - this->emitArc(f, arcCoords, false, clampArcCoords, opts); - } else { - SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag); - this->emitRect(f, shapeCoords, opts); - } - f->codeAppend ("}"); - } - - if (fBatchInfo.fInnerShapeTypes) { - f->codeAppendf("// Inner shape.\n"); - - EmitShapeCoords innerShapeCoords; - innerShapeCoords.fVarying = &fInnerShapeCoords; - if (!fBatchInfo.fHasPerspective) { - innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn(); - innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn(); - } - - EmitShapeOpts innerOpts; - innerOpts.fIsTightGeometry = false; - innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in the outer shape. - innerOpts.fInvertCoverage = true; - - if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) { - this->emitArc(f, innerShapeCoords, true, false, innerOpts); - } else { - f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShapeCoords.fsIn(), - !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragHalfSpan - : "fragInnerShapeApproxHalfSpan"); // Above. - if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) { - this->emitRect(f, innerShapeCoords, innerOpts); - } else { - this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), innerOpts); - } - f->codeAppend ("}"); - } - } -} - -void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder* f, - const EmitShapeCoords& coords, - const EmitShapeOpts& opts) { - // Full MSAA doesn't need to do anything to draw a rect. - SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples); - if (coords.fFragHalfSpan) { - f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {", - coords.fVarying->fsIn(), coords.fFragHalfSpan); - // The entire pixel is inside the rect. - this->acceptOrRejectWholeFragment(f, true, opts); - f->codeAppend ("} else "); - if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) { - f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {", - coords.fVarying->fsIn(), coords.fFragHalfSpan); - // The pixel falls on an edge of the rectangle and is known to not be on a shared edge. - this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false); - f->codeAppend ("} else"); - } - f->codeAppend ("{"); - } - f->codeAppend ("int rectMask = 0;"); - f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppend ( "vec2 pt = "); - this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); - f->codeAppend ( ";"); - f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i);"); - f->codeAppend ("}"); - this->acceptCoverageMask(f, "rectMask", opts); - if (coords.fFragHalfSpan) { - f->codeAppend ("}"); - } -} - -void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder* f, - const EmitShapeCoords& coords, - bool coordsMayBeNegative, bool clampCoords, - const EmitShapeOpts& opts) { - if (coords.fFragHalfSpan) { - SkString absArcCoords; - absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVarying->fsIn()); - if (clampCoords) { - f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {", - fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); - } else { - f->codeAppendf("if (%s(%s + %s) < 1.0) {", - fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); - } - // The entire pixel is inside the arc. - this->acceptOrRejectWholeFragment(f, true, opts); - f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {", - fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan); - // The entire pixel is outside the arc. - this->acceptOrRejectWholeFragment(f, false, opts); - f->codeAppend ("} else {"); - } - f->codeAppend ( "int arcMask = 0;"); - f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppend ( "vec2 pt = "); - this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix); - f->codeAppend ( ";"); - if (clampCoords) { - SkASSERT(!coordsMayBeNegative); - f->codeAppend ( "pt = max(pt, vec2(0));"); - } - f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.c_str()); - f->codeAppend ( "}"); - this->acceptCoverageMask(f, "arcMask", opts); - if (coords.fFragHalfSpan) { - f->codeAppend ("}"); - } -} - -void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragmentBuilder* f, - const EmitShapeCoords& coords, - const char* rrect, - const EmitShapeOpts& opts) { - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying->fsIn(), rrect); - f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {"); - this->emitRect(f, coords, opts); - f->codeAppend ("} else {"); - if (coords.fInverseMatrix && coords.fFragHalfSpan) { - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfSpan, rrect); - f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSquareFun.c_str()); - // The entire pixel is inside the round rect. - this->acceptOrRejectWholeFragment(f, true, opts); - f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(0))) >= 1.0) {", - fSquareFun.c_str()); - // The entire pixel is outside the round rect. - this->acceptOrRejectWholeFragment(f, false, opts); - f->codeAppend ("} else {"); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying->fsIn()); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0, s.y);", - coords.fInverseMatrix); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppend ( "int rrectMask = 0;"); - f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {"); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppend ( "vec2 pt = rrectCoords + "); - f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); - f->codeAppend ( "* innerRRectInverseMatrix;"); - f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1 << i);", - fSquareFun.c_str()); - f->codeAppend ( "}"); - this->acceptCoverageMask(f, "rrectMask", opts); - f->codeAppend ("}"); - } else { - f->codeAppend ("int rrectMask = 0;"); - f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {"); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppend ( "vec2 shapePt = "); - this->interpolateAtSample(f, *coords.fVarying, "i", nullptr); - f->codeAppend ( ";"); - f->appendPrecisionModifier(kHigh_GrSLPrecision); - f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) * %s.zw;", - rrect, rrect); - f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSquareFun.c_str()); - f->codeAppend ("}"); - this->acceptCoverageMask(f, "rrectMask", opts); - } - f->codeAppend ("}"); -} - -void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFragmentBuilder* f, - const GrGLSLVarying& varying, - const char* sampleIdx, - const char* interpolationMatrix) { - if (interpolationMatrix) { - f->codeAppendf("(%s + ", varying.fsIn()); - f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); - f->codeAppendf(" * %s)", interpolationMatrix); - } else { - SkAssertResult( - f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GLSLFeature)); - f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn()); - f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates); - f->codeAppend(")"); - } -} - -void -GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder* f, - bool inside, - const EmitShapeOpts& opts) { - if (inside != opts.fInvertCoverage) { // Accept the entire fragment. - if (opts.fResolveMixedSamples) { - // This is a mixed sampled fragment in the interior of the shape. Reassign 100% coverage - // to one fragment, and drop all other fragments that may fall on this same pixel. Since - // our geometry is water tight and non-overlapping, we can take advantage of the - // properties that (1) the incoming sample masks will be disjoint across fragments that - // fall on a common pixel, and (2) since the entire fragment is inside the shape, each - // sample's corresponding bit will be set in the incoming sample mask of exactly one - // fragment. - f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {"); - // Drop this fragment. - if (!fBatchInfo.fCannotDiscard) { - f->codeAppend("discard;"); - } else { - f->overrideSampleCoverage("0"); - } - f->codeAppend("} else {"); - // Override the lone surviving fragment to full coverage. - f->overrideSampleCoverage("-1"); - f->codeAppend("}"); - } - } else { // Reject the entire fragment. - if (!fBatchInfo.fCannotDiscard) { - f->codeAppend("discard;"); - } else if (opts.fResolveMixedSamples) { - f->overrideSampleCoverage("0"); - } else { - f->maskSampleCoverage("0"); - } - } -} - -void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragmentBuilder* f, - const char* shapeMask, - const EmitShapeOpts& opts, - bool maybeSharedEdge) { - if (opts.fResolveMixedSamples) { - if (maybeSharedEdge) { - // This is a mixed sampled fragment, potentially on the outer edge of the shape, with - // only partial shape coverage. Override the coverage of one fragment to "shapeMask", - // and drop all other fragments that may fall on this same pixel. Since our geometry is - // water tight, non-overlapping, and completely contains the shape, this means that each - // "on" bit from shapeMask is guaranteed to be set in the incoming sample mask of one, - // and only one, fragment that falls on this same pixel. - SkASSERT(!opts.fInvertCoverage); - f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0) {", shapeMask); - // Drop this fragment. - if (!fBatchInfo.fCannotDiscard) { - f->codeAppend ("discard;"); - } else { - f->overrideSampleCoverage("0"); - } - f->codeAppend ("} else {"); - // Override the coverage of the lone surviving fragment to "shapeMask". - f->overrideSampleCoverage(shapeMask); - f->codeAppend ("}"); - } else { - f->overrideSampleCoverage(shapeMask); - } - } else { - f->maskSampleCoverage(shapeMask, opts.fInvertCoverage); - } -} - -//////////////////////////////////////////////////////////////////////////////////////////////////// - -GLSLInstanceProcessor::Backend* -GLSLInstanceProcessor::Backend::Create(const GrGLSLProgramBuilder* p, BatchInfo batchInfo, - const VertexInputs& inputs) { - switch (batchInfo.fAntialiasMode) { - default: - SkFAIL("Unexpected antialias mode."); - case AntialiasMode::kNone: - return new BackendNonAA(batchInfo, inputs); - case AntialiasMode::kCoverage: - return new BackendCoverage(batchInfo, inputs); - case AntialiasMode::kMSAA: - case AntialiasMode::kMixedSamples: { - const GrPipeline& pipeline = p->pipeline(); - const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv(); - const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline.getStencil()); - return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSampleCnt); - } - } -} - -//////////////////////////////////////////////////////////////////////////////////////////////////// - -const ShapeVertex kVertexData[] = { - // Rectangle. - {+1, +1, ~0}, /*0*/ - {-1, +1, ~0}, /*1*/ - {-1, -1, ~0}, /*2*/ - {+1, -1, ~0}, /*3*/ - // The next 4 are for the bordered version. - {+1, +1, 0}, /*4*/ - {-1, +1, 0}, /*5*/ - {-1, -1, 0}, /*6*/ - {+1, -1, 0}, /*7*/ - - // Octagon that inscribes the unit circle, cut by an interior unit octagon. - {+1.000000f, 0.000000f, 0}, /* 8*/ - {+1.000000f, +0.414214f, ~0}, /* 9*/ - {+0.707106f, +0.707106f, 0}, /*10*/ - {+0.414214f, +1.000000f, ~0}, /*11*/ - { 0.000000f, +1.000000f, 0}, /*12*/ - {-0.414214f, +1.000000f, ~0}, /*13*/ - {-0.707106f, +0.707106f, 0}, /*14*/ - {-1.000000f, +0.414214f, ~0}, /*15*/ - {-1.000000f, 0.000000f, 0}, /*16*/ - {-1.000000f, -0.414214f, ~0}, /*17*/ - {-0.707106f, -0.707106f, 0}, /*18*/ - {-0.414214f, -1.000000f, ~0}, /*19*/ - { 0.000000f, -1.000000f, 0}, /*20*/ - {+0.414214f, -1.000000f, ~0}, /*21*/ - {+0.707106f, -0.707106f, 0}, /*22*/ - {+1.000000f, -0.414214f, ~0}, /*23*/ - // This vertex is for the fanned versions. - { 0.000000f, 0.000000f, ~0}, /*24*/ - - // Rectangle with disjoint corner segments. - {+1.0, +0.5, 0x3}, /*25*/ - {+1.0, +1.0, 0x3}, /*26*/ - {+0.5, +1.0, 0x3}, /*27*/ - {-0.5, +1.0, 0x2}, /*28*/ - {-1.0, +1.0, 0x2}, /*29*/ - {-1.0, +0.5, 0x2}, /*30*/ - {-1.0, -0.5, 0x0}, /*31*/ - {-1.0, -1.0, 0x0}, /*32*/ - {-0.5, -1.0, 0x0}, /*33*/ - {+0.5, -1.0, 0x1}, /*34*/ - {+1.0, -1.0, 0x1}, /*35*/ - {+1.0, -0.5, 0x1}, /*36*/ - // The next 4 are for the fanned version. - { 0.0, 0.0, 0x3}, /*37*/ - { 0.0, 0.0, 0x2}, /*38*/ - { 0.0, 0.0, 0x0}, /*39*/ - { 0.0, 0.0, 0x1}, /*40*/ - // The next 8 are for the bordered version. - {+0.75, +0.50, 0x3}, /*41*/ - {+0.50, +0.75, 0x3}, /*42*/ - {-0.50, +0.75, 0x2}, /*43*/ - {-0.75, +0.50, 0x2}, /*44*/ - {-0.75, -0.50, 0x0}, /*45*/ - {-0.50, -0.75, 0x0}, /*46*/ - {+0.50, -0.75, 0x1}, /*47*/ - {+0.75, -0.50, 0x1}, /*48*/ - - // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon. - {+1.000000f, +0.000000f, 0}, /*49*/ - {+1.000000f, +0.198913f, ~0}, /*50*/ - {+0.923879f, +0.382683f, 0}, /*51*/ - {+0.847760f, +0.566455f, ~0}, /*52*/ - {+0.707106f, +0.707106f, 0}, /*53*/ - {+0.566455f, +0.847760f, ~0}, /*54*/ - {+0.382683f, +0.923879f, 0}, /*55*/ - {+0.198913f, +1.000000f, ~0}, /*56*/ - {+0.000000f, +1.000000f, 0}, /*57*/ - {-0.198913f, +1.000000f, ~0}, /*58*/ - {-0.382683f, +0.923879f, 0}, /*59*/ - {-0.566455f, +0.847760f, ~0}, /*60*/ - {-0.707106f, +0.707106f, 0}, /*61*/ - {-0.847760f, +0.566455f, ~0}, /*62*/ - {-0.923879f, +0.382683f, 0}, /*63*/ - {-1.000000f, +0.198913f, ~0}, /*64*/ - {-1.000000f, +0.000000f, 0}, /*65*/ - {-1.000000f, -0.198913f, ~0}, /*66*/ - {-0.923879f, -0.382683f, 0}, /*67*/ - {-0.847760f, -0.566455f, ~0}, /*68*/ - {-0.707106f, -0.707106f, 0}, /*69*/ - {-0.566455f, -0.847760f, ~0}, /*70*/ - {-0.382683f, -0.923879f, 0}, /*71*/ - {-0.198913f, -1.000000f, ~0}, /*72*/ - {-0.000000f, -1.000000f, 0}, /*73*/ - {+0.198913f, -1.000000f, ~0}, /*74*/ - {+0.382683f, -0.923879f, 0}, /*75*/ - {+0.566455f, -0.847760f, ~0}, /*76*/ - {+0.707106f, -0.707106f, 0}, /*77*/ - {+0.847760f, -0.566455f, ~0}, /*78*/ - {+0.923879f, -0.382683f, 0}, /*79*/ - {+1.000000f, -0.198913f, ~0}, /*80*/ -}; - -const uint8_t kIndexData[] = { - // Rectangle. - 0, 1, 2, - 0, 2, 3, - - // Rectangle with a border. - 0, 1, 5, - 5, 4, 0, - 1, 2, 6, - 6, 5, 1, - 2, 3, 7, - 7, 6, 2, - 3, 0, 4, - 4, 7, 3, - 4, 5, 6, - 6, 7, 4, - - // Octagon that inscribes the unit circle, cut by an interior unit octagon. - 10, 8, 9, - 12, 10, 11, - 14, 12, 13, - 16, 14, 15, - 18, 16, 17, - 20, 18, 19, - 22, 20, 21, - 8, 22, 23, - 8, 10, 12, - 12, 14, 16, - 16, 18, 20, - 20, 22, 8, - 8, 12, 16, - 16, 20, 8, - - // Same octagons, but with the interior arranged as a fan. Used by mixed samples. - 10, 8, 9, - 12, 10, 11, - 14, 12, 13, - 16, 14, 15, - 18, 16, 17, - 20, 18, 19, - 22, 20, 21, - 8, 22, 23, - 24, 8, 10, - 12, 24, 10, - 24, 12, 14, - 16, 24, 14, - 24, 16, 18, - 20, 24, 18, - 24, 20, 22, - 8, 24, 22, - - // Same octagons, but with the inner and outer disjoint. Used by coverage AA. - 8, 22, 23, - 9, 8, 23, - 10, 8, 9, - 11, 10, 9, - 12, 10, 11, - 13, 12, 11, - 14, 12, 13, - 15, 14, 13, - 16, 14, 15, - 17, 16, 15, - 18, 16, 17, - 19, 18, 17, - 20, 18, 19, - 21, 20, 19, - 22, 20, 21, - 23, 22, 21, - 22, 8, 10, - 10, 12, 14, - 14, 16, 18, - 18, 20, 22, - 22, 10, 14, - 14, 18, 22, - - // Rectangle with disjoint corner segments. - 27, 25, 26, - 30, 28, 29, - 33, 31, 32, - 36, 34, 35, - 25, 27, 28, - 28, 30, 31, - 31, 33, 34, - 34, 36, 25, - 25, 28, 31, - 31, 34, 25, - - // Same rectangle with disjoint corners, but with the interior arranged as a fan. Used by - // mixed samples. - 27, 25, 26, - 30, 28, 29, - 33, 31, 32, - 36, 34, 35, - 27, 37, 25, - 28, 37, 27, - 30, 38, 28, - 31, 38, 30, - 33, 39, 31, - 34, 39, 33, - 36, 40, 34, - 25, 40, 36, - - // Same rectangle with disjoint corners, with a border as well. Used by coverage AA. - 41, 25, 26, - 42, 41, 26, - 27, 42, 26, - 43, 28, 29, - 44, 43, 29, - 30, 44, 29, - 45, 31, 32, - 46, 45, 32, - 33, 46, 32, - 47, 34, 35, - 48, 47, 35, - 36, 48, 35, - 27, 28, 42, - 42, 28, 43, - 30, 31, 44, - 44, 31, 45, - 33, 34, 46, - 46, 34, 47, - 36, 25, 48, - 48, 25, 41, - 41, 42, 43, - 43, 44, 45, - 45, 46, 47, - 47, 48, 41, - 41, 43, 45, - 45, 47, 41, - - // Same as the disjoint octagons, but with 16-gons instead. Used by coverage AA when the oval is - // sufficiently large. - 49, 79, 80, - 50, 49, 80, - 51, 49, 50, - 52, 51, 50, - 53, 51, 52, - 54, 53, 52, - 55, 53, 54, - 56, 55, 54, - 57, 55, 56, - 58, 57, 56, - 59, 57, 58, - 60, 59, 58, - 61, 59, 60, - 62, 61, 60, - 63, 61, 62, - 64, 63, 62, - 65, 63, 64, - 66, 65, 64, - 67, 65, 66, - 68, 67, 66, - 69, 67, 68, - 70, 69, 68, - 71, 69, 70, - 72, 71, 70, - 73, 71, 72, - 74, 73, 72, - 75, 73, 74, - 76, 75, 74, - 77, 75, 76, - 78, 77, 76, - 79, 77, 78, - 80, 79, 78, - 49, 51, 53, - 53, 55, 57, - 57, 59, 61, - 61, 63, 65, - 65, 67, 69, - 69, 71, 73, - 73, 75, 77, - 77, 79, 49, - 49, 53, 57, - 57, 61, 65, - 65, 69, 73, - 73, 77, 49, - 49, 57, 65, - 65, 73, 49, -}; - -enum { - kRect_FirstIndex = 0, - kRect_TriCount = 2, - - kFramedRect_FirstIndex = 6, - kFramedRect_TriCount = 10, - - kOctagons_FirstIndex = 36, - kOctagons_TriCount = 14, - - kOctagonsFanned_FirstIndex = 78, - kOctagonsFanned_TriCount = 16, - - kDisjointOctagons_FirstIndex = 126, - kDisjointOctagons_TriCount = 22, - - kCorneredRect_FirstIndex = 192, - kCorneredRect_TriCount = 10, - - kCorneredRectFanned_FirstIndex = 222, - kCorneredRectFanned_TriCount = 12, - - kCorneredFramedRect_FirstIndex = 258, - kCorneredFramedRect_TriCount = 26, - - kDisjoint16Gons_FirstIndex = 336, - kDisjoint16Gons_TriCount = 46, -}; - -static const GrUniqueKey::Domain kShapeBufferDomain = GrUniqueKey::GenerateDomain(); - -template<GrBufferType Type> static const GrUniqueKey& get_shape_buffer_key() { - static GrUniqueKey* kKey; - if (!kKey) { - kKey = new GrUniqueKey; - GrUniqueKey::Builder builder(kKey, kShapeBufferDomain, 1); - builder[0] = Type; - } - return *kKey; -} - -const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) { - GrResourceCache* cache = gpu->getContext()->getResourceCache(); - const GrUniqueKey& key = get_shape_buffer_key<kVertex_GrBufferType>(); - if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { - return static_cast<GrBuffer*>(cached); - } - if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBufferType, - kStatic_GrAccessPattern, kVertexData)) { - buffer->resourcePriv().setUniqueKey(key); - return buffer; - } - return nullptr; -} - -const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) { - GrResourceCache* cache = gpu->getContext()->getResourceCache(); - const GrUniqueKey& key = get_shape_buffer_key<kIndex_GrBufferType>(); - if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) { - return static_cast<GrBuffer*>(cached); - } - if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBufferType, - kStatic_GrAccessPattern, kIndexData)) { - buffer->resourcePriv().setUniqueKey(key); - return buffer; - } - return nullptr; -} - -IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) { - static constexpr IndexRange kRectRanges[kNumAntialiasModes] = { - {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone - {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage - {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA - {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples - }; - - SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); - return kRectRanges[(int)aa]; - - GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); - GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); - GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); - GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); -} - -IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRect& devBounds) { - if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width() >= 256 * 256) { - // This threshold was chosen quasi-scientifically on Tegra X1. - return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount}; - } - - static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = { - {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNone - {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCoverage - {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMSAA - {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMixedSamples - }; - - SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); - return kOvalRanges[(int)aa]; - - GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); - GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); - GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); - GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); -} - -IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) { - static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = { - {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kNone - {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, // kCoverage - {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kMSAA - {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} // kMixedSamples - }; - - SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples); - return kRRectRanges[(int)aa]; - - GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone); - GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage); - GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA); - GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples); -} - -const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) { - switch (range.fStart) { - case kRect_FirstIndex: return "basic_rect"; - case kFramedRect_FirstIndex: return "coverage_rect"; - - case kOctagons_FirstIndex: return "basic_oval"; - case kDisjointOctagons_FirstIndex: return "coverage_oval"; - case kOctagonsFanned_FirstIndex: return "mixed_samples_oval"; - - case kCorneredRect_FirstIndex: return "basic_round_rect"; - case kCorneredFramedRect_FirstIndex: return "coverage_round_rect"; - case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect"; - - default: return "unknown"; - } -} - -} |