aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/gpu/instanced/InstanceProcessor.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/gpu/instanced/InstanceProcessor.cpp')
-rw-r--r--src/gpu/instanced/InstanceProcessor.cpp2102
1 files changed, 0 insertions, 2102 deletions
diff --git a/src/gpu/instanced/InstanceProcessor.cpp b/src/gpu/instanced/InstanceProcessor.cpp
deleted file mode 100644
index 80437a110a..0000000000
--- a/src/gpu/instanced/InstanceProcessor.cpp
+++ /dev/null
@@ -1,2102 +0,0 @@
-/*
- * Copyright 2016 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "InstanceProcessor.h"
-
-#include "GrContext.h"
-#include "GrRenderTargetPriv.h"
-#include "GrResourceCache.h"
-#include "GrResourceProvider.h"
-#include "glsl/GrGLSLGeometryProcessor.h"
-#include "glsl/GrGLSLFragmentShaderBuilder.h"
-#include "glsl/GrGLSLProgramBuilder.h"
-#include "glsl/GrGLSLVarying.h"
-
-namespace gr_instanced {
-
-bool InstanceProcessor::IsSupported(const GrGLSLCaps& glslCaps, const GrCaps& caps,
- AntialiasMode* lastSupportedAAMode) {
- if (!glslCaps.canUseAnyFunctionInShader() ||
- !glslCaps.flatInterpolationSupport() ||
- !glslCaps.integerSupport() ||
- 0 == glslCaps.maxVertexSamplers() ||
- !caps.shaderCaps()->texelBufferSupport() ||
- caps.maxVertexAttributes() < kNumAttribs) {
- return false;
- }
- if (caps.sampleLocationsSupport() &&
- glslCaps.sampleVariablesSupport() &&
- glslCaps.shaderDerivativeSupport()) {
- if (0 != caps.maxRasterSamples() &&
- glslCaps.sampleMaskOverrideCoverageSupport()) {
- *lastSupportedAAMode = AntialiasMode::kMixedSamples;
- } else {
- *lastSupportedAAMode = AntialiasMode::kMSAA;
- }
- } else {
- *lastSupportedAAMode = AntialiasMode::kCoverage;
- }
- return true;
-}
-
-InstanceProcessor::InstanceProcessor(BatchInfo batchInfo, GrBuffer* paramsBuffer)
- : fBatchInfo(batchInfo) {
- this->initClassID<InstanceProcessor>();
-
- this->addVertexAttrib(Attribute("shapeCoords", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision));
- this->addVertexAttrib(Attribute("vertexAttrs", kInt_GrVertexAttribType));
- this->addVertexAttrib(Attribute("instanceInfo", kUint_GrVertexAttribType));
- this->addVertexAttrib(Attribute("shapeMatrixX", kVec3f_GrVertexAttribType,
- kHigh_GrSLPrecision));
- this->addVertexAttrib(Attribute("shapeMatrixY", kVec3f_GrVertexAttribType,
- kHigh_GrSLPrecision));
- this->addVertexAttrib(Attribute("color", kVec4f_GrVertexAttribType, kLow_GrSLPrecision));
- this->addVertexAttrib(Attribute("localRect", kVec4f_GrVertexAttribType, kHigh_GrSLPrecision));
-
- GR_STATIC_ASSERT(0 == (int)Attrib::kShapeCoords);
- GR_STATIC_ASSERT(1 == (int)Attrib::kVertexAttrs);
- GR_STATIC_ASSERT(2 == (int)Attrib::kInstanceInfo);
- GR_STATIC_ASSERT(3 == (int)Attrib::kShapeMatrixX);
- GR_STATIC_ASSERT(4 == (int)Attrib::kShapeMatrixY);
- GR_STATIC_ASSERT(5 == (int)Attrib::kColor);
- GR_STATIC_ASSERT(6 == (int)Attrib::kLocalRect);
- GR_STATIC_ASSERT(7 == kNumAttribs);
-
- if (fBatchInfo.fHasParams) {
- SkASSERT(paramsBuffer);
- fParamsAccess.reset(kRGBA_float_GrPixelConfig, paramsBuffer, kVertex_GrShaderFlag);
- this->addBufferAccess(&fParamsAccess);
- }
-
- if (fBatchInfo.fAntialiasMode >= AntialiasMode::kMSAA) {
- if (!fBatchInfo.isSimpleRects() ||
- AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode) {
- this->setWillUseSampleLocations();
- }
- }
-}
-
-class GLSLInstanceProcessor : public GrGLSLGeometryProcessor {
-public:
- void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override;
-
-private:
- void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override {}
-
- class VertexInputs;
- class Backend;
- class BackendNonAA;
- class BackendCoverage;
- class BackendMultisample;
-
- typedef GrGLSLGeometryProcessor INHERITED;
-};
-
-GrGLSLPrimitiveProcessor* InstanceProcessor::createGLSLInstance(const GrGLSLCaps&) const {
- return new GLSLInstanceProcessor();
-}
-
-class GLSLInstanceProcessor::VertexInputs {
-public:
- VertexInputs(const InstanceProcessor& instProc, GrGLSLVertexBuilder* vertexBuilder)
- : fInstProc(instProc),
- fVertexBuilder(vertexBuilder) {
- }
-
- void initParams(const SamplerHandle paramsBuffer) {
- fParamsBuffer = paramsBuffer;
- fVertexBuilder->definef("PARAMS_IDX_MASK", "0x%xu", kParamsIdx_InfoMask);
- fVertexBuilder->appendPrecisionModifier(kHigh_GrSLPrecision);
- fVertexBuilder->codeAppendf("int paramsIdx = int(%s & PARAMS_IDX_MASK);",
- this->attr(Attrib::kInstanceInfo));
- }
-
- const char* attr(Attrib attr) const { return fInstProc.getAttrib((int)attr).fName; }
-
- void fetchNextParam(GrSLType type = kVec4f_GrSLType) const {
- SkASSERT(fParamsBuffer.isValid());
- if (type != kVec4f_GrSLType) {
- fVertexBuilder->codeAppendf("%s(", GrGLSLTypeString(type));
- }
- fVertexBuilder->appendTexelFetch(fParamsBuffer, "paramsIdx++");
- if (type != kVec4f_GrSLType) {
- fVertexBuilder->codeAppend(")");
- }
- }
-
- void skipParams(unsigned n) const {
- SkASSERT(fParamsBuffer.isValid());
- fVertexBuilder->codeAppendf("paramsIdx += %u;", n);
- }
-
-private:
- const InstanceProcessor& fInstProc;
- GrGLSLVertexBuilder* fVertexBuilder;
- SamplerHandle fParamsBuffer;
-};
-
-class GLSLInstanceProcessor::Backend {
-public:
- static Backend* SK_WARN_UNUSED_RESULT Create(const GrGLSLProgramBuilder*, BatchInfo,
- const VertexInputs&);
- virtual ~Backend() {}
-
- void init(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*);
- virtual void setupRect(GrGLSLVertexBuilder*) = 0;
- virtual void setupOval(GrGLSLVertexBuilder*) = 0;
- void setupRRect(GrGLSLVertexBuilder*);
-
- void initInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*);
- virtual void setupInnerRect(GrGLSLVertexBuilder*) = 0;
- virtual void setupInnerOval(GrGLSLVertexBuilder*) = 0;
- void setupInnerRRect(GrGLSLVertexBuilder*);
-
- const char* outShapeCoords() {
- return fModifiedShapeCoords ? fModifiedShapeCoords : fInputs.attr(Attrib::kShapeCoords);
- }
-
- void emitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage,
- const char* outColor);
-
-protected:
- Backend(BatchInfo batchInfo, const VertexInputs& inputs)
- : fBatchInfo(batchInfo),
- fInputs(inputs),
- fModifiesCoverage(false),
- fModifiesColor(false),
- fNeedsNeighborRadii(false),
- fColor(kVec4f_GrSLType),
- fTriangleIsArc(kInt_GrSLType),
- fArcCoords(kVec2f_GrSLType),
- fInnerShapeCoords(kVec2f_GrSLType),
- fInnerRRect(kVec4f_GrSLType),
- fModifiedShapeCoords(nullptr) {
- if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) {
- fModifiedShapeCoords = "adjustedShapeCoords";
- }
- }
-
- virtual void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0;
- virtual void adjustRRectVertices(GrGLSLVertexBuilder*);
- virtual void onSetupRRect(GrGLSLVertexBuilder*) {}
-
- virtual void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) = 0;
- virtual void onSetupInnerRRect(GrGLSLVertexBuilder*) = 0;
-
- virtual void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*,
- const char* outCoverage, const char* outColor) = 0;
-
- void setupSimpleRadii(GrGLSLVertexBuilder*);
- void setupNinePatchRadii(GrGLSLVertexBuilder*);
- void setupComplexRadii(GrGLSLVertexBuilder*);
-
- const BatchInfo fBatchInfo;
- const VertexInputs& fInputs;
- bool fModifiesCoverage;
- bool fModifiesColor;
- bool fNeedsNeighborRadii;
- GrGLSLVertToFrag fColor;
- GrGLSLVertToFrag fTriangleIsArc;
- GrGLSLVertToFrag fArcCoords;
- GrGLSLVertToFrag fInnerShapeCoords;
- GrGLSLVertToFrag fInnerRRect;
- const char* fModifiedShapeCoords;
-};
-
-void GLSLInstanceProcessor::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
- const InstanceProcessor& ip = args.fGP.cast<InstanceProcessor>();
- GrGLSLUniformHandler* uniHandler = args.fUniformHandler;
- GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler;
- GrGLSLVertexBuilder* v = args.fVertBuilder;
- GrGLSLPPFragmentBuilder* f = args.fFragBuilder;
-
- varyingHandler->emitAttributes(ip);
-
- VertexInputs inputs(ip, v);
- if (ip.batchInfo().fHasParams) {
- SkASSERT(1 == ip.numBuffers());
- inputs.initParams(args.fBufferSamplers[0]);
- }
-
- if (!ip.batchInfo().fHasPerspective) {
- v->codeAppendf("mat2x3 shapeMatrix = mat2x3(%s, %s);",
- inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY));
- } else {
- v->definef("PERSPECTIVE_FLAG", "0x%xu", kPerspective_InfoFlag);
- v->codeAppendf("mat3 shapeMatrix = mat3(%s, %s, vec3(0, 0, 1));",
- inputs.attr(Attrib::kShapeMatrixX), inputs.attr(Attrib::kShapeMatrixY));
- v->codeAppendf("if (0u != (%s & PERSPECTIVE_FLAG)) {",
- inputs.attr(Attrib::kInstanceInfo));
- v->codeAppend ( "shapeMatrix[2] = ");
- inputs.fetchNextParam(kVec3f_GrSLType);
- v->codeAppend ( ";");
- v->codeAppend ("}");
- }
-
- int usedShapeTypes = 0;
-
- bool hasSingleShapeType = SkIsPow2(ip.batchInfo().fShapeTypes);
- if (!hasSingleShapeType) {
- usedShapeTypes |= ip.batchInfo().fShapeTypes;
- v->define("SHAPE_TYPE_BIT", kShapeType_InfoBit);
- v->codeAppendf("uint shapeType = %s >> SHAPE_TYPE_BIT;",
- inputs.attr(Attrib::kInstanceInfo));
- }
-
- SkAutoTDelete<Backend> backend(Backend::Create(v->getProgramBuilder(), ip.batchInfo(), inputs));
- backend->init(varyingHandler, v);
-
- if (hasSingleShapeType) {
- if (kRect_ShapeFlag == ip.batchInfo().fShapeTypes) {
- backend->setupRect(v);
- } else if (kOval_ShapeFlag == ip.batchInfo().fShapeTypes) {
- backend->setupOval(v);
- } else {
- backend->setupRRect(v);
- }
- } else {
- v->codeAppend ("switch (shapeType) {");
- if (ip.batchInfo().fShapeTypes & kRect_ShapeFlag) {
- v->codeAppend ("case RECT_SHAPE_TYPE: {");
- backend->setupRect(v);
- v->codeAppend ("} break;");
- }
- if (ip.batchInfo().fShapeTypes & kOval_ShapeFlag) {
- v->codeAppend ("case OVAL_SHAPE_TYPE: {");
- backend->setupOval(v);
- v->codeAppend ("} break;");
- }
- if (ip.batchInfo().fShapeTypes & kRRect_ShapesMask) {
- v->codeAppend ("default: {");
- backend->setupRRect(v);
- v->codeAppend ("} break;");
- }
- v->codeAppend ("}");
- }
-
- if (ip.batchInfo().fInnerShapeTypes) {
- bool hasSingleInnerShapeType = SkIsPow2(ip.batchInfo().fInnerShapeTypes);
- if (!hasSingleInnerShapeType) {
- usedShapeTypes |= ip.batchInfo().fInnerShapeTypes;
- v->definef("INNER_SHAPE_TYPE_MASK", "0x%xu", kInnerShapeType_InfoMask);
- v->define("INNER_SHAPE_TYPE_BIT", kInnerShapeType_InfoBit);
- v->codeAppendf("uint innerShapeType = ((%s & INNER_SHAPE_TYPE_MASK) >> "
- "INNER_SHAPE_TYPE_BIT);",
- inputs.attr(Attrib::kInstanceInfo));
- }
- // Here we take advantage of the fact that outerRect == localRect in recordDRRect.
- v->codeAppendf("vec4 outer = %s;", inputs.attr(Attrib::kLocalRect));
- v->codeAppend ("vec4 inner = ");
- inputs.fetchNextParam();
- v->codeAppend (";");
- // outer2Inner is a transform from shape coords to inner shape coords:
- // e.g. innerShapeCoords = shapeCoords * outer2Inner.xy + outer2Inner.zw
- v->codeAppend ("vec4 outer2Inner = vec4(outer.zw - outer.xy, "
- "outer.xy + outer.zw - inner.xy - inner.zw) / "
- "(inner.zw - inner.xy).xyxy;");
- v->codeAppendf("vec2 innerShapeCoords = %s * outer2Inner.xy + outer2Inner.zw;",
- backend->outShapeCoords());
-
- backend->initInnerShape(varyingHandler, v);
-
- if (hasSingleInnerShapeType) {
- if (kRect_ShapeFlag == ip.batchInfo().fInnerShapeTypes) {
- backend->setupInnerRect(v);
- } else if (kOval_ShapeFlag == ip.batchInfo().fInnerShapeTypes) {
- backend->setupInnerOval(v);
- } else {
- backend->setupInnerRRect(v);
- }
- } else {
- v->codeAppend("switch (innerShapeType) {");
- if (ip.batchInfo().fInnerShapeTypes & kRect_ShapeFlag) {
- v->codeAppend("case RECT_SHAPE_TYPE: {");
- backend->setupInnerRect(v);
- v->codeAppend("} break;");
- }
- if (ip.batchInfo().fInnerShapeTypes & kOval_ShapeFlag) {
- v->codeAppend("case OVAL_SHAPE_TYPE: {");
- backend->setupInnerOval(v);
- v->codeAppend("} break;");
- }
- if (ip.batchInfo().fInnerShapeTypes & kRRect_ShapesMask) {
- v->codeAppend("default: {");
- backend->setupInnerRRect(v);
- v->codeAppend("} break;");
- }
- v->codeAppend("}");
- }
- }
-
- if (usedShapeTypes & kRect_ShapeFlag) {
- v->definef("RECT_SHAPE_TYPE", "%du", (int)ShapeType::kRect);
- }
- if (usedShapeTypes & kOval_ShapeFlag) {
- v->definef("OVAL_SHAPE_TYPE", "%du", (int)ShapeType::kOval);
- }
-
- backend->emitCode(v, f, args.fOutputCoverage, args.fOutputColor);
-
- const char* localCoords = nullptr;
- if (ip.batchInfo().fUsesLocalCoords) {
- localCoords = "localCoords";
- v->codeAppendf("vec2 t = 0.5 * (%s + vec2(1));", backend->outShapeCoords());
- v->codeAppendf("vec2 localCoords = (1.0 - t) * %s.xy + t * %s.zw;",
- inputs.attr(Attrib::kLocalRect), inputs.attr(Attrib::kLocalRect));
- }
- if (ip.batchInfo().fHasLocalMatrix && ip.batchInfo().fHasParams) {
- v->definef("LOCAL_MATRIX_FLAG", "0x%xu", kLocalMatrix_InfoFlag);
- v->codeAppendf("if (0u != (%s & LOCAL_MATRIX_FLAG)) {",
- inputs.attr(Attrib::kInstanceInfo));
- if (!ip.batchInfo().fUsesLocalCoords) {
- inputs.skipParams(2);
- } else {
- v->codeAppendf( "mat2x3 localMatrix;");
- v->codeAppend ( "localMatrix[0] = ");
- inputs.fetchNextParam(kVec3f_GrSLType);
- v->codeAppend ( ";");
- v->codeAppend ( "localMatrix[1] = ");
- inputs.fetchNextParam(kVec3f_GrSLType);
- v->codeAppend ( ";");
- v->codeAppend ( "localCoords = (vec3(localCoords, 1) * localMatrix).xy;");
- }
- v->codeAppend("}");
- }
-
- GrSLType positionType = ip.batchInfo().fHasPerspective ? kVec3f_GrSLType : kVec2f_GrSLType;
- v->codeAppendf("%s deviceCoords = vec3(%s, 1) * shapeMatrix;",
- GrGLSLTypeString(positionType), backend->outShapeCoords());
- gpArgs->fPositionVar.set(positionType, "deviceCoords");
-
- this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, localCoords,
- args.fTransformsIn, args.fTransformsOut);
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-
-void GLSLInstanceProcessor::Backend::init(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder* v) {
- if (fModifiedShapeCoords) {
- v->codeAppendf("vec2 %s = %s;", fModifiedShapeCoords, fInputs.attr(Attrib::kShapeCoords));
- }
-
- this->onInit(varyingHandler, v);
-
- if (!fColor.vsOut()) {
- varyingHandler->addFlatVarying("color", &fColor, kLow_GrSLPrecision);
- v->codeAppendf("%s = %s;", fColor.vsOut(), fInputs.attr(Attrib::kColor));
- }
-}
-
-void GLSLInstanceProcessor::Backend::setupRRect(GrGLSLVertexBuilder* v) {
- v->codeAppendf("uvec2 corner = uvec2(%s & 1, (%s >> 1) & 1);",
- fInputs.attr(Attrib::kVertexAttrs), fInputs.attr(Attrib::kVertexAttrs));
- v->codeAppend ("vec2 cornerSign = vec2(corner) * 2.0 - 1.0;");
- v->codeAppendf("vec2 radii%s;", fNeedsNeighborRadii ? ", neighborRadii" : "");
- v->codeAppend ("mat2 p = ");
- fInputs.fetchNextParam(kMat22f_GrSLType);
- v->codeAppend (";");
- uint8_t types = fBatchInfo.fShapeTypes & kRRect_ShapesMask;
- if (0 == (types & (types - 1))) {
- if (kSimpleRRect_ShapeFlag == types) {
- this->setupSimpleRadii(v);
- } else if (kNinePatch_ShapeFlag == types) {
- this->setupNinePatchRadii(v);
- } else if (kComplexRRect_ShapeFlag == types) {
- this->setupComplexRadii(v);
- }
- } else {
- v->codeAppend("switch (shapeType) {");
- if (types & kSimpleRRect_ShapeFlag) {
- v->definef("SIMPLE_R_RECT_SHAPE_TYPE", "%du", (int)ShapeType::kSimpleRRect);
- v->codeAppend ("case SIMPLE_R_RECT_SHAPE_TYPE: {");
- this->setupSimpleRadii(v);
- v->codeAppend ("} break;");
- }
- if (types & kNinePatch_ShapeFlag) {
- v->definef("NINE_PATCH_SHAPE_TYPE", "%du", (int)ShapeType::kNinePatch);
- v->codeAppend ("case NINE_PATCH_SHAPE_TYPE: {");
- this->setupNinePatchRadii(v);
- v->codeAppend ("} break;");
- }
- if (types & kComplexRRect_ShapeFlag) {
- v->codeAppend ("default: {");
- this->setupComplexRadii(v);
- v->codeAppend ("} break;");
- }
- v->codeAppend("}");
- }
-
- this->adjustRRectVertices(v);
-
- if (fArcCoords.vsOut()) {
- v->codeAppendf("%s = (cornerSign * %s + radii - vec2(1)) / radii;",
- fArcCoords.vsOut(), fModifiedShapeCoords);
- }
- if (fTriangleIsArc.vsOut()) {
- v->codeAppendf("%s = int(all(equal(vec2(1), abs(%s))));",
- fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kShapeCoords));
- }
-
- this->onSetupRRect(v);
-}
-
-void GLSLInstanceProcessor::Backend::setupSimpleRadii(GrGLSLVertexBuilder* v) {
- if (fNeedsNeighborRadii) {
- v->codeAppend ("neighborRadii = ");
- }
- v->codeAppend("radii = p[0] * 2.0 / p[1];");
-}
-
-void GLSLInstanceProcessor::Backend::setupNinePatchRadii(GrGLSLVertexBuilder* v) {
- v->codeAppend("radii = vec2(p[0][corner.x], p[1][corner.y]);");
- if (fNeedsNeighborRadii) {
- v->codeAppend("neighborRadii = vec2(p[0][1u - corner.x], p[1][1u - corner.y]);");
- }
-}
-
-void GLSLInstanceProcessor::Backend::setupComplexRadii(GrGLSLVertexBuilder* v) {
- /**
- * The x and y radii of each arc are stored in separate vectors,
- * in the following order:
- *
- * __x1 _ _ _ x3__
- *
- * y1 | | y2
- *
- * | |
- *
- * y3 |__ _ _ _ __| y4
- * x2 x4
- *
- */
- v->codeAppend("mat2 p2 = ");
- fInputs.fetchNextParam(kMat22f_GrSLType);
- v->codeAppend(";");
- v->codeAppend("radii = vec2(p[corner.x][corner.y], p2[corner.y][corner.x]);");
- if (fNeedsNeighborRadii) {
- v->codeAppend("neighborRadii = vec2(p[1u - corner.x][corner.y], "
- "p2[1u - corner.y][corner.x]);");
- }
-}
-
-void GLSLInstanceProcessor::Backend::adjustRRectVertices(GrGLSLVertexBuilder* v) {
- // Resize the 4 triangles that arcs are drawn into so they match their corresponding radii.
- // 0.5 is a special value that indicates the edge of an arc triangle.
- v->codeAppendf("if (abs(%s.x) == 0.5)"
- "%s.x = cornerSign.x * (1.0 - radii.x);",
- fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
- v->codeAppendf("if (abs(%s.y) == 0.5) "
- "%s.y = cornerSign.y * (1.0 - radii.y);",
- fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
-}
-
-void GLSLInstanceProcessor::Backend::initInnerShape(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder* v) {
- SkASSERT(!(fBatchInfo.fInnerShapeTypes & (kNinePatch_ShapeFlag | kComplexRRect_ShapeFlag)));
-
- this->onInitInnerShape(varyingHandler, v);
-
- if (fInnerShapeCoords.vsOut()) {
- v->codeAppendf("%s = innerShapeCoords;", fInnerShapeCoords.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::Backend::setupInnerRRect(GrGLSLVertexBuilder* v) {
- v->codeAppend("mat2 innerP = ");
- fInputs.fetchNextParam(kMat22f_GrSLType);
- v->codeAppend(";");
- v->codeAppend("vec2 innerRadii = innerP[0] * 2.0 / innerP[1];");
- this->onSetupInnerRRect(v);
-}
-
-void GLSLInstanceProcessor::Backend::emitCode(GrGLSLVertexBuilder* v, GrGLSLPPFragmentBuilder* f,
- const char* outCoverage, const char* outColor) {
- this->onEmitCode(v, f, fModifiesCoverage ? outCoverage : nullptr,
- fModifiesColor ? outColor : nullptr);
- if (!fModifiesCoverage) {
- // Even though the subclass doesn't use coverage, we are expected to assign some value.
- f->codeAppendf("%s = vec4(1);", outCoverage);
- }
- if (!fModifiesColor) {
- // The subclass didn't assign a value to the output color.
- f->codeAppendf("%s = %s;", outColor, fColor.fsIn());
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-
-class GLSLInstanceProcessor::BackendNonAA : public Backend {
-public:
- BackendNonAA(BatchInfo batchInfo, const VertexInputs& inputs)
- : INHERITED(batchInfo, inputs) {
- if (fBatchInfo.fCannotDiscard && !fBatchInfo.isSimpleRects()) {
- fModifiesColor = !fBatchInfo.fCannotTweakAlphaForCoverage;
- fModifiesCoverage = !fModifiesColor;
- }
- }
-
-private:
- void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
- void setupRect(GrGLSLVertexBuilder*) override;
- void setupOval(GrGLSLVertexBuilder*) override;
-
- void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
- void setupInnerRect(GrGLSLVertexBuilder*) override;
- void setupInnerOval(GrGLSLVertexBuilder*) override;
- void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
-
- void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*,
- const char*) override;
-
- typedef Backend INHERITED;
-};
-
-void GLSLInstanceProcessor::BackendNonAA::onInit(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder*) {
- if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
- varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision);
- varyingHandler->addVarying("arcCoords", &fArcCoords, kMedium_GrSLPrecision);
- }
-}
-
-void GLSLInstanceProcessor::BackendNonAA::setupRect(GrGLSLVertexBuilder* v) {
- if (fTriangleIsArc.vsOut()) {
- v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendNonAA::setupOval(GrGLSLVertexBuilder* v) {
- SkASSERT(fArcCoords.vsOut());
- SkASSERT(fTriangleIsArc.vsOut());
- v->codeAppendf("%s = %s;", fArcCoords.vsOut(), this->outShapeCoords());
- v->codeAppendf("%s = %s & 1;", fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
-}
-
-void GLSLInstanceProcessor::BackendNonAA::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder*) {
- varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kMedium_GrSLPrecision);
- if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes &&
- kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
- varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kMedium_GrSLPrecision);
- }
-}
-
-void GLSLInstanceProcessor::BackendNonAA::setupInnerRect(GrGLSLVertexBuilder* v) {
- if (fInnerRRect.vsOut()) {
- v->codeAppendf("%s = vec4(1);", fInnerRRect.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendNonAA::setupInnerOval(GrGLSLVertexBuilder* v) {
- if (fInnerRRect.vsOut()) {
- v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendNonAA::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
- v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut());
-}
-
-void GLSLInstanceProcessor::BackendNonAA::onEmitCode(GrGLSLVertexBuilder*,
- GrGLSLPPFragmentBuilder* f,
- const char* outCoverage,
- const char* outColor) {
- const char* dropFragment = nullptr;
- if (!fBatchInfo.fCannotDiscard) {
- dropFragment = "discard";
- } else if (fModifiesCoverage) {
- f->appendPrecisionModifier(kLow_GrSLPrecision);
- f->codeAppend ("float covered = 1.0;");
- dropFragment = "covered = 0.0";
- } else if (fModifiesColor) {
- f->appendPrecisionModifier(kLow_GrSLPrecision);
- f->codeAppendf("vec4 color = %s;", fColor.fsIn());
- dropFragment = "color = vec4(0)";
- }
- if (fTriangleIsArc.fsIn()) {
- SkASSERT(dropFragment);
- f->codeAppendf("if (%s != 0 && dot(%s, %s) > 1.0) %s;",
- fTriangleIsArc.fsIn(), fArcCoords.fsIn(), fArcCoords.fsIn(), dropFragment);
- }
- if (fBatchInfo.fInnerShapeTypes) {
- SkASSERT(dropFragment);
- f->codeAppendf("// Inner shape.\n");
- if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
- f->codeAppendf("if (all(lessThanEqual(abs(%s), vec2(1)))) %s;",
- fInnerShapeCoords.fsIn(), dropFragment);
- } else if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
- f->codeAppendf("if ((dot(%s, %s) <= 1.0)) %s;",
- fInnerShapeCoords.fsIn(), fInnerShapeCoords.fsIn(), dropFragment);
- } else {
- f->codeAppendf("if (all(lessThan(abs(%s), vec2(1)))) {", fInnerShapeCoords.fsIn());
- f->codeAppendf( "vec2 distanceToArcEdge = abs(%s) - %s.xy;",
- fInnerShapeCoords.fsIn(), fInnerRRect.fsIn());
- f->codeAppend ( "if (any(lessThan(distanceToArcEdge, vec2(0)))) {");
- f->codeAppendf( "%s;", dropFragment);
- f->codeAppend ( "} else {");
- f->codeAppendf( "vec2 rrectCoords = distanceToArcEdge * %s.zw;",
- fInnerRRect.fsIn());
- f->codeAppend ( "if (dot(rrectCoords, rrectCoords) <= 1.0) {");
- f->codeAppendf( "%s;", dropFragment);
- f->codeAppend ( "}");
- f->codeAppend ( "}");
- f->codeAppend ("}");
- }
- }
- if (fModifiesCoverage) {
- f->codeAppendf("%s = vec4(covered);", outCoverage);
- } else if (fModifiesColor) {
- f->codeAppendf("%s = color;", outColor);
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-
-class GLSLInstanceProcessor::BackendCoverage : public Backend {
-public:
- BackendCoverage(BatchInfo batchInfo, const VertexInputs& inputs)
- : INHERITED(batchInfo, inputs),
- fColorTimesRectCoverage(kVec4f_GrSLType),
- fRectCoverage(kFloat_GrSLType),
- fEllipseCoords(kVec2f_GrSLType),
- fEllipseName(kVec2f_GrSLType),
- fBloatedRadius(kFloat_GrSLType),
- fDistanceToInnerEdge(kVec2f_GrSLType),
- fInnerShapeBloatedHalfSize(kVec2f_GrSLType),
- fInnerEllipseCoords(kVec2f_GrSLType),
- fInnerEllipseName(kVec2f_GrSLType) {
- fShapeIsCircle = !fBatchInfo.fNonSquare && !(fBatchInfo.fShapeTypes & kRRect_ShapesMask);
- fTweakAlphaForCoverage = !fBatchInfo.fCannotTweakAlphaForCoverage &&
- !fBatchInfo.fInnerShapeTypes;
- fModifiesCoverage = !fTweakAlphaForCoverage;
- fModifiesColor = fTweakAlphaForCoverage;
- fModifiedShapeCoords = "bloatedShapeCoords";
- }
-
-private:
- void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
- void setupRect(GrGLSLVertexBuilder*) override;
- void setupOval(GrGLSLVertexBuilder*) override;
- void adjustRRectVertices(GrGLSLVertexBuilder*) override;
- void onSetupRRect(GrGLSLVertexBuilder*) override;
-
- void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
- void setupInnerRect(GrGLSLVertexBuilder*) override;
- void setupInnerOval(GrGLSLVertexBuilder*) override;
- void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
-
- void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char* outCoverage,
- const char* outColor) override;
-
- void emitRect(GrGLSLPPFragmentBuilder*, const char* outCoverage, const char* outColor);
- void emitCircle(GrGLSLPPFragmentBuilder*, const char* outCoverage);
- void emitArc(GrGLSLPPFragmentBuilder* f, const char* ellipseCoords, const char* ellipseName,
- bool ellipseCoordsNeedClamp, bool ellipseCoordsMayBeNegative,
- const char* outCoverage);
- void emitInnerRect(GrGLSLPPFragmentBuilder*, const char* outCoverage);
-
- GrGLSLVertToFrag fColorTimesRectCoverage;
- GrGLSLVertToFrag fRectCoverage;
- GrGLSLVertToFrag fEllipseCoords;
- GrGLSLVertToFrag fEllipseName;
- GrGLSLVertToFrag fBloatedRadius;
- GrGLSLVertToFrag fDistanceToInnerEdge;
- GrGLSLVertToFrag fInnerShapeBloatedHalfSize;
- GrGLSLVertToFrag fInnerEllipseCoords;
- GrGLSLVertToFrag fInnerEllipseName;
- bool fShapeIsCircle;
- bool fTweakAlphaForCoverage;
-
- typedef Backend INHERITED;
-};
-
-void GLSLInstanceProcessor::BackendCoverage::onInit(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder* v) {
- v->codeAppend ("mat2 shapeTransposeMatrix = transpose(mat2(shapeMatrix));");
- v->codeAppend ("vec2 shapeHalfSize = vec2(length(shapeTransposeMatrix[0]), "
- "length(shapeTransposeMatrix[1]));");
- v->codeAppend ("vec2 bloat = 0.5 / shapeHalfSize;");
- v->codeAppendf("bloatedShapeCoords = %s * (1.0 + bloat);", fInputs.attr(Attrib::kShapeCoords));
-
- if (kOval_ShapeFlag != fBatchInfo.fShapeTypes) {
- if (fTweakAlphaForCoverage) {
- varyingHandler->addVarying("colorTimesRectCoverage", &fColorTimesRectCoverage,
- kLow_GrSLPrecision);
- if (kRect_ShapeFlag == fBatchInfo.fShapeTypes) {
- fColor = fColorTimesRectCoverage;
- }
- } else {
- varyingHandler->addVarying("rectCoverage", &fRectCoverage, kLow_GrSLPrecision);
- }
- v->codeAppend("float rectCoverage = 0.0;");
- }
- if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
- varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc, kHigh_GrSLPrecision);
- if (!fShapeIsCircle) {
- varyingHandler->addVarying("ellipseCoords", &fEllipseCoords, kHigh_GrSLPrecision);
- varyingHandler->addFlatVarying("ellipseName", &fEllipseName, kHigh_GrSLPrecision);
- } else {
- varyingHandler->addVarying("circleCoords", &fEllipseCoords, kMedium_GrSLPrecision);
- varyingHandler->addFlatVarying("bloatedRadius", &fBloatedRadius, kMedium_GrSLPrecision);
- }
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::setupRect(GrGLSLVertexBuilder* v) {
- // Make the border one pixel wide. Inner vs outer is indicated by coordAttrs.
- v->codeAppendf("vec2 rectBloat = (%s != 0) ? bloat : -bloat;",
- fInputs.attr(Attrib::kVertexAttrs));
- // Here we use the absolute value, because when the rect is thinner than a pixel, this makes it
- // mark the spot where pixel center is within half a pixel of the *opposite* edge. This,
- // combined with the "maxCoverage" logic below gives us mathematically correct coverage even for
- // subpixel rectangles.
- v->codeAppendf("bloatedShapeCoords = %s * abs(vec2(1.0 + rectBloat));",
- fInputs.attr(Attrib::kShapeCoords));
-
- // Determine coverage at the vertex. Coverage naturally ramps from 0 to 1 unless the rect is
- // narrower than a pixel.
- v->codeAppend ("float maxCoverage = 4.0 * min(0.5, shapeHalfSize.x) *"
- "min(0.5, shapeHalfSize.y);");
- v->codeAppendf("rectCoverage = (%s != 0) ? 0.0 : maxCoverage;",
- fInputs.attr(Attrib::kVertexAttrs));
-
- if (fTriangleIsArc.vsOut()) {
- v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::setupOval(GrGLSLVertexBuilder* v) {
- // Offset the inner and outer octagons by one pixel. Inner vs outer is indicated by coordAttrs.
- v->codeAppendf("vec2 ovalBloat = (%s != 0) ? bloat : -bloat;",
- fInputs.attr(Attrib::kVertexAttrs));
- v->codeAppendf("bloatedShapeCoords = %s * max(vec2(1.0 + ovalBloat), vec2(0));",
- fInputs.attr(Attrib::kShapeCoords));
- v->codeAppendf("%s = bloatedShapeCoords * shapeHalfSize;", fEllipseCoords.vsOut());
- if (fEllipseName.vsOut()) {
- v->codeAppendf("%s = 1.0 / (shapeHalfSize * shapeHalfSize);", fEllipseName.vsOut());
- }
- if (fBloatedRadius.vsOut()) {
- SkASSERT(fShapeIsCircle);
- v->codeAppendf("%s = shapeHalfSize.x + 0.5;", fBloatedRadius.vsOut());
- }
- if (fTriangleIsArc.vsOut()) {
- v->codeAppendf("%s = int(%s != 0);",
- fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
- }
- if (fColorTimesRectCoverage.vsOut() || fRectCoverage.vsOut()) {
- v->codeAppendf("rectCoverage = 1.0;");
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::adjustRRectVertices(GrGLSLVertexBuilder* v) {
- // We try to let the AA borders line up with the arc edges on their particular side, but we
- // can't allow them to get closer than one half pixel to the edge or they might overlap with
- // their neighboring border.
- v->codeAppend("vec2 innerEdge = max(1.0 - bloat, vec2(0));");
- v->codeAppend ("vec2 borderEdge = cornerSign * clamp(1.0 - radii, -innerEdge, innerEdge);");
- // 0.5 is a special value that indicates this vertex is an arc edge.
- v->codeAppendf("if (abs(%s.x) == 0.5)"
- "bloatedShapeCoords.x = borderEdge.x;", fInputs.attr(Attrib::kShapeCoords));
- v->codeAppendf("if (abs(%s.y) == 0.5)"
- "bloatedShapeCoords.y = borderEdge.y;", fInputs.attr(Attrib::kShapeCoords));
-
- // Adjust the interior border vertices to make the border one pixel wide. 0.75 is a special
- // value to indicate these points.
- v->codeAppendf("if (abs(%s.x) == 0.75) "
- "bloatedShapeCoords.x = cornerSign.x * innerEdge.x;",
- fInputs.attr(Attrib::kShapeCoords));
- v->codeAppendf("if (abs(%s.y) == 0.75) "
- "bloatedShapeCoords.y = cornerSign.y * innerEdge.y;",
- fInputs.attr(Attrib::kShapeCoords));
-}
-
-void GLSLInstanceProcessor::BackendCoverage::onSetupRRect(GrGLSLVertexBuilder* v) {
- // The geometry is laid out in such a way that rectCoverage will be 0 and 1 on the vertices, but
- // we still need to recompute this value because when the rrect gets thinner than one pixel, the
- // interior edge of the border will necessarily clamp, and we need to match the AA behavior of
- // the arc segments (i.e. distance from bloated edge only; ignoring the fact that the pixel
- // actully has less coverage because it's not completely inside the opposite edge.)
- v->codeAppend("vec2 d = shapeHalfSize + 0.5 - abs(bloatedShapeCoords) * shapeHalfSize;");
- v->codeAppend("rectCoverage = min(d.x, d.y);");
-
- SkASSERT(!fShapeIsCircle);
- // The AA border does not get closer than one half pixel to the edge of the rect, so to get a
- // smooth transition from flat edge to arc, we don't allow the radii to be smaller than one half
- // pixel. (We don't worry about the transition on the opposite side when a radius is so large
- // that the border clamped on that side.)
- v->codeAppendf("vec2 clampedRadii = max(radii, bloat);");
- v->codeAppendf("%s = (cornerSign * bloatedShapeCoords + clampedRadii - vec2(1)) * "
- "shapeHalfSize;", fEllipseCoords.vsOut());
- v->codeAppendf("%s = 1.0 / (clampedRadii * clampedRadii * shapeHalfSize * shapeHalfSize);",
- fEllipseName.vsOut());
-}
-
-void GLSLInstanceProcessor::BackendCoverage::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder* v) {
- v->codeAppend("vec2 innerShapeHalfSize = shapeHalfSize / outer2Inner.xy;");
-
- if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
- varyingHandler->addVarying("innerEllipseCoords", &fInnerEllipseCoords,
- kMedium_GrSLPrecision);
- varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName,
- kMedium_GrSLPrecision);
- } else {
- varyingHandler->addVarying("distanceToInnerEdge", &fDistanceToInnerEdge,
- kMedium_GrSLPrecision);
- varyingHandler->addFlatVarying("innerShapeBloatedHalfSize", &fInnerShapeBloatedHalfSize,
- kMedium_GrSLPrecision);
- if (kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
- varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision);
- varyingHandler->addFlatVarying("innerEllipseName", &fInnerEllipseName,
- kMedium_GrSLPrecision);
- varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision);
- }
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::setupInnerRect(GrGLSLVertexBuilder* v) {
- if (fInnerRRect.vsOut()) {
- // The fragment shader will generalize every inner shape as a round rect. Since this one
- // is a rect, we simply emit bogus parameters for the round rect (effectively negative
- // radii) that ensure the fragment shader always takes the "emitRect" codepath.
- v->codeAppendf("%s.xy = abs(outer2Inner.xy) * (1.0 + bloat) + abs(outer2Inner.zw);",
- fInnerRRect.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::setupInnerOval(GrGLSLVertexBuilder* v) {
- v->codeAppendf("%s = 1.0 / (innerShapeHalfSize * innerShapeHalfSize);",
- fInnerEllipseName.vsOut());
- if (fInnerEllipseCoords.vsOut()) {
- v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;", fInnerEllipseCoords.vsOut());
- }
- if (fInnerRRect.vsOut()) {
- v->codeAppendf("%s = vec4(0, 0, innerShapeHalfSize);", fInnerRRect.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
- // The distance to ellipse formula doesn't work well when the radii are less than half a pixel.
- v->codeAppend ("innerRadii = max(innerRadii, bloat);");
- v->codeAppendf("%s = 1.0 / (innerRadii * innerRadii * innerShapeHalfSize * "
- "innerShapeHalfSize);",
- fInnerEllipseName.vsOut());
- v->codeAppendf("%s = vec4(1.0 - innerRadii, innerShapeHalfSize);", fInnerRRect.vsOut());
-}
-
-void GLSLInstanceProcessor::BackendCoverage::onEmitCode(GrGLSLVertexBuilder* v,
- GrGLSLPPFragmentBuilder* f,
- const char* outCoverage,
- const char* outColor) {
- if (fColorTimesRectCoverage.vsOut()) {
- SkASSERT(!fRectCoverage.vsOut());
- v->codeAppendf("%s = %s * rectCoverage;",
- fColorTimesRectCoverage.vsOut(), fInputs.attr(Attrib::kColor));
- }
- if (fRectCoverage.vsOut()) {
- SkASSERT(!fColorTimesRectCoverage.vsOut());
- v->codeAppendf("%s = rectCoverage;", fRectCoverage.vsOut());
- }
-
- SkString coverage("float coverage");
- if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) {
- coverage.prependf("lowp ");
- }
- if (fBatchInfo.fInnerShapeTypes || (!fTweakAlphaForCoverage && fTriangleIsArc.fsIn())) {
- f->codeAppendf("%s;", coverage.c_str());
- coverage = "coverage";
- }
- if (fTriangleIsArc.fsIn()) {
- f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn());
- this->emitRect(f, coverage.c_str(), outColor);
- f->codeAppend ("} else {");
- if (fShapeIsCircle) {
- this->emitCircle(f, coverage.c_str());
- } else {
- bool ellipseCoordsMayBeNegative = SkToBool(fBatchInfo.fShapeTypes & kOval_ShapeFlag);
- this->emitArc(f, fEllipseCoords.fsIn(), fEllipseName.fsIn(),
- true /*ellipseCoordsNeedClamp*/, ellipseCoordsMayBeNegative,
- coverage.c_str());
- }
- if (fTweakAlphaForCoverage) {
- f->codeAppendf("%s = %s * coverage;", outColor, fColor.fsIn());
- }
- f->codeAppend ("}");
- } else {
- this->emitRect(f, coverage.c_str(), outColor);
- }
-
- if (fBatchInfo.fInnerShapeTypes) {
- f->codeAppendf("// Inner shape.\n");
- SkString innerCoverageDecl("float innerCoverage");
- if (f->getProgramBuilder()->glslCaps()->usesPrecisionModifiers()) {
- innerCoverageDecl.prependf("lowp ");
- }
- if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
- this->emitArc(f, fInnerEllipseCoords.fsIn(), fInnerEllipseName.fsIn(),
- true /*ellipseCoordsNeedClamp*/, true /*ellipseCoordsMayBeNegative*/,
- innerCoverageDecl.c_str());
- } else {
- v->codeAppendf("%s = innerShapeCoords * innerShapeHalfSize;",
- fDistanceToInnerEdge.vsOut());
- v->codeAppendf("%s = innerShapeHalfSize + 0.5;", fInnerShapeBloatedHalfSize.vsOut());
-
- if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
- this->emitInnerRect(f, innerCoverageDecl.c_str());
- } else {
- f->codeAppendf("%s = 0.0;", innerCoverageDecl.c_str());
- f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;",
- fInnerShapeCoords.fsIn(), fInnerRRect.fsIn());
- f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(1e-5)))) {");
- this->emitInnerRect(f, "innerCoverage");
- f->codeAppend ("} else {");
- f->codeAppendf( "vec2 ellipseCoords = distanceToArcEdge * %s.zw;",
- fInnerRRect.fsIn());
- this->emitArc(f, "ellipseCoords", fInnerEllipseName.fsIn(),
- false /*ellipseCoordsNeedClamp*/,
- false /*ellipseCoordsMayBeNegative*/, "innerCoverage");
- f->codeAppend ("}");
- }
- }
- f->codeAppendf("%s = vec4(max(coverage - innerCoverage, 0.0));", outCoverage);
- } else if (!fTweakAlphaForCoverage) {
- f->codeAppendf("%s = vec4(coverage);", outCoverage);
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::emitRect(GrGLSLPPFragmentBuilder* f,
- const char* outCoverage,
- const char* outColor) {
- if (fColorTimesRectCoverage.fsIn()) {
- f->codeAppendf("%s = %s;", outColor, fColorTimesRectCoverage.fsIn());
- } else if (fTweakAlphaForCoverage) {
- // We are drawing just ovals. The interior rect always has 100% coverage.
- f->codeAppendf("%s = %s;", outColor, fColor.fsIn());
- } else if (fRectCoverage.fsIn()) {
- f->codeAppendf("%s = %s;", outCoverage, fRectCoverage.fsIn());
- } else {
- f->codeAppendf("%s = 1.0;", outCoverage);
- }
-}
-
-void GLSLInstanceProcessor::BackendCoverage::emitCircle(GrGLSLPPFragmentBuilder* f,
- const char* outCoverage) {
- // TODO: circleCoords = max(circleCoords, 0) if we decide to do this optimization on rrects.
- SkASSERT(!(kRRect_ShapesMask & fBatchInfo.fShapeTypes));
- f->codeAppendf("float distanceToEdge = %s - length(%s);",
- fBloatedRadius.fsIn(), fEllipseCoords.fsIn());
- f->codeAppendf("%s = clamp(distanceToEdge, 0.0, 1.0);", outCoverage);
-}
-
-void GLSLInstanceProcessor::BackendCoverage::emitArc(GrGLSLPPFragmentBuilder* f,
- const char* ellipseCoords,
- const char* ellipseName,
- bool ellipseCoordsNeedClamp,
- bool ellipseCoordsMayBeNegative,
- const char* outCoverage) {
- SkASSERT(!ellipseCoordsMayBeNegative || ellipseCoordsNeedClamp);
- if (ellipseCoordsNeedClamp) {
- // This serves two purposes:
- // - To restrict the arcs of rounded rects to their positive quadrants.
- // - To avoid inversesqrt(0) in the ellipse formula.
- if (ellipseCoordsMayBeNegative) {
- f->codeAppendf("vec2 ellipseClampedCoords = max(abs(%s), vec2(1e-4));", ellipseCoords);
- } else {
- f->codeAppendf("vec2 ellipseClampedCoords = max(%s, vec2(1e-4));", ellipseCoords);
- }
- ellipseCoords = "ellipseClampedCoords";
- }
- // ellipseCoords are in pixel space and ellipseName is 1 / rx^2, 1 / ry^2.
- f->codeAppendf("vec2 Z = %s * %s;", ellipseCoords, ellipseName);
- // implicit is the evaluation of (x/rx)^2 + (y/ry)^2 - 1.
- f->codeAppendf("float implicit = dot(Z, %s) - 1.0;", ellipseCoords);
- // gradDot is the squared length of the gradient of the implicit.
- f->codeAppendf("float gradDot = 4.0 * dot(Z, Z);");
- f->appendPrecisionModifier(kLow_GrSLPrecision);
- f->codeAppend ("float approxDist = implicit * inversesqrt(gradDot);");
- f->codeAppendf("%s = clamp(0.5 - approxDist, 0.0, 1.0);", outCoverage);
-}
-
-void GLSLInstanceProcessor::BackendCoverage::emitInnerRect(GrGLSLPPFragmentBuilder* f,
- const char* outCoverage) {
- f->appendPrecisionModifier(kLow_GrSLPrecision);
- f->codeAppendf("vec2 c = %s - abs(%s);",
- fInnerShapeBloatedHalfSize.fsIn(), fDistanceToInnerEdge.fsIn());
- f->codeAppendf("%s = clamp(min(c.x, c.y), 0.0, 1.0);", outCoverage);
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-
-class GLSLInstanceProcessor::BackendMultisample : public Backend {
-public:
- BackendMultisample(BatchInfo batchInfo, const VertexInputs& inputs, int effectiveSampleCnt)
- : INHERITED(batchInfo, inputs),
- fEffectiveSampleCnt(effectiveSampleCnt),
- fShapeCoords(kVec2f_GrSLType),
- fShapeInverseMatrix(kMat22f_GrSLType),
- fFragShapeHalfSpan(kVec2f_GrSLType),
- fArcTest(kVec2f_GrSLType),
- fArcInverseMatrix(kMat22f_GrSLType),
- fFragArcHalfSpan(kVec2f_GrSLType),
- fEarlyAccept(kInt_GrSLType),
- fInnerShapeInverseMatrix(kMat22f_GrSLType),
- fFragInnerShapeHalfSpan(kVec2f_GrSLType) {
- fRectTrianglesMaySplit = fBatchInfo.fHasPerspective;
- fNeedsNeighborRadii = this->isMixedSampled() && !fBatchInfo.fHasPerspective;
- }
-
-private:
- bool isMixedSampled() const { return AntialiasMode::kMixedSamples == fBatchInfo.fAntialiasMode; }
-
- void onInit(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
- void setupRect(GrGLSLVertexBuilder*) override;
- void setupOval(GrGLSLVertexBuilder*) override;
- void adjustRRectVertices(GrGLSLVertexBuilder*) override;
- void onSetupRRect(GrGLSLVertexBuilder*) override;
-
- void onInitInnerShape(GrGLSLVaryingHandler*, GrGLSLVertexBuilder*) override;
- void setupInnerRect(GrGLSLVertexBuilder*) override;
- void setupInnerOval(GrGLSLVertexBuilder*) override;
- void onSetupInnerRRect(GrGLSLVertexBuilder*) override;
-
- void onEmitCode(GrGLSLVertexBuilder*, GrGLSLPPFragmentBuilder*, const char*,
- const char*) override;
-
- struct EmitShapeCoords {
- const GrGLSLVarying* fVarying;
- const char* fInverseMatrix;
- const char* fFragHalfSpan;
- };
-
- struct EmitShapeOpts {
- bool fIsTightGeometry;
- bool fResolveMixedSamples;
- bool fInvertCoverage;
- };
-
- void emitRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const EmitShapeOpts&);
- void emitArc(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, bool coordsMayBeNegative,
- bool clampCoords, const EmitShapeOpts&);
- void emitSimpleRRect(GrGLSLPPFragmentBuilder*, const EmitShapeCoords&, const char* rrect,
- const EmitShapeOpts&);
- void interpolateAtSample(GrGLSLPPFragmentBuilder*, const GrGLSLVarying&, const char* sampleIdx,
- const char* interpolationMatrix);
- void acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder*, bool inside, const EmitShapeOpts&);
- void acceptCoverageMask(GrGLSLPPFragmentBuilder*, const char* shapeMask, const EmitShapeOpts&,
- bool maybeSharedEdge = true);
-
- int fEffectiveSampleCnt;
- bool fRectTrianglesMaySplit;
- GrGLSLVertToFrag fShapeCoords;
- GrGLSLVertToFrag fShapeInverseMatrix;
- GrGLSLVertToFrag fFragShapeHalfSpan;
- GrGLSLVertToFrag fArcTest;
- GrGLSLVertToFrag fArcInverseMatrix;
- GrGLSLVertToFrag fFragArcHalfSpan;
- GrGLSLVertToFrag fEarlyAccept;
- GrGLSLVertToFrag fInnerShapeInverseMatrix;
- GrGLSLVertToFrag fFragInnerShapeHalfSpan;
- SkString fSquareFun;
-
- typedef Backend INHERITED;
-};
-
-void GLSLInstanceProcessor::BackendMultisample::onInit(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder* v) {
- if (!this->isMixedSampled()) {
- if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
- varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc,
- kHigh_GrSLPrecision);
- varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision);
- if (!fBatchInfo.fHasPerspective) {
- varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix,
- kHigh_GrSLPrecision);
- varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan,
- kHigh_GrSLPrecision);
- }
- } else if (!fBatchInfo.fInnerShapeTypes) {
- return;
- }
- } else {
- varyingHandler->addVarying("shapeCoords", &fShapeCoords, kHigh_GrSLPrecision);
- if (!fBatchInfo.fHasPerspective) {
- varyingHandler->addFlatVarying("shapeInverseMatrix", &fShapeInverseMatrix,
- kHigh_GrSLPrecision);
- varyingHandler->addFlatVarying("fragShapeHalfSpan", &fFragShapeHalfSpan,
- kHigh_GrSLPrecision);
- }
- if (fBatchInfo.fShapeTypes & kRRect_ShapesMask) {
- varyingHandler->addVarying("arcCoords", &fArcCoords, kHigh_GrSLPrecision);
- varyingHandler->addVarying("arcTest", &fArcTest, kHigh_GrSLPrecision);
- if (!fBatchInfo.fHasPerspective) {
- varyingHandler->addFlatVarying("arcInverseMatrix", &fArcInverseMatrix,
- kHigh_GrSLPrecision);
- varyingHandler->addFlatVarying("fragArcHalfSpan", &fFragArcHalfSpan,
- kHigh_GrSLPrecision);
- }
- } else if (fBatchInfo.fShapeTypes & kOval_ShapeFlag) {
- fArcCoords = fShapeCoords;
- fArcInverseMatrix = fShapeInverseMatrix;
- fFragArcHalfSpan = fFragShapeHalfSpan;
- if (fBatchInfo.fShapeTypes & kRect_ShapeFlag) {
- varyingHandler->addFlatVarying("triangleIsArc", &fTriangleIsArc,
- kHigh_GrSLPrecision);
- }
- }
- if (kRect_ShapeFlag != fBatchInfo.fShapeTypes) {
- v->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1);
- varyingHandler->addFlatVarying("earlyAccept", &fEarlyAccept, kHigh_GrSLPrecision);
- }
- }
- if (!fBatchInfo.fHasPerspective) {
- v->codeAppend("mat2 shapeInverseMatrix = inverse(mat2(shapeMatrix));");
- v->codeAppend("vec2 fragShapeSpan = abs(vec4(shapeInverseMatrix).xz) + "
- "abs(vec4(shapeInverseMatrix).yw);");
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::setupRect(GrGLSLVertexBuilder* v) {
- if (fShapeCoords.vsOut()) {
- v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords());
- }
- if (fShapeInverseMatrix.vsOut()) {
- v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut());
- }
- if (fFragShapeHalfSpan.vsOut()) {
- v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut());
- }
- if (fArcTest.vsOut()) {
- // Pick a value that is not > 0.
- v->codeAppendf("%s = vec2(0);", fArcTest.vsOut());
- }
- if (fTriangleIsArc.vsOut()) {
- v->codeAppendf("%s = 0;", fTriangleIsArc.vsOut());
- }
- if (fEarlyAccept.vsOut()) {
- v->codeAppendf("%s = SAMPLE_MASK_ALL;", fEarlyAccept.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::setupOval(GrGLSLVertexBuilder* v) {
- v->codeAppendf("%s = abs(%s);", fArcCoords.vsOut(), this->outShapeCoords());
- if (fArcInverseMatrix.vsOut()) {
- v->codeAppendf("vec2 s = sign(%s);", this->outShapeCoords());
- v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0 , s.y);",
- fArcInverseMatrix.vsOut());
- }
- if (fFragArcHalfSpan.vsOut()) {
- v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragArcHalfSpan.vsOut());
- }
- if (fArcTest.vsOut()) {
- // Pick a value that is > 0.
- v->codeAppendf("%s = vec2(1);", fArcTest.vsOut());
- }
- if (fTriangleIsArc.vsOut()) {
- if (!this->isMixedSampled()) {
- v->codeAppendf("%s = %s & 1;",
- fTriangleIsArc.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
- } else {
- v->codeAppendf("%s = 1;", fTriangleIsArc.vsOut());
- }
- }
- if (fEarlyAccept.vsOut()) {
- v->codeAppendf("%s = ~%s & SAMPLE_MASK_ALL;",
- fEarlyAccept.vsOut(), fInputs.attr(Attrib::kVertexAttrs));
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::adjustRRectVertices(GrGLSLVertexBuilder* v) {
- if (!this->isMixedSampled()) {
- INHERITED::adjustRRectVertices(v);
- return;
- }
-
- if (!fBatchInfo.fHasPerspective) {
- // For the mixed samples algorithm it's best to bloat the corner triangles a bit so that
- // more of the pixels that cross into the arc region are completely inside the shared edges.
- // We also snap to a regular rect if the radii shrink smaller than a pixel.
- v->codeAppend ("vec2 midpt = 0.5 * (neighborRadii - radii);");
- v->codeAppend ("vec2 cornerSize = any(lessThan(radii, fragShapeSpan)) ? "
- "vec2(0) : min(radii + 0.5 * fragShapeSpan, 1.0 - midpt);");
- } else {
- // TODO: We could still bloat the corner triangle in the perspective case; we would just
- // need to find the screen-space derivative of shape coords at this particular point.
- v->codeAppend ("vec2 cornerSize = any(lessThan(radii, vec2(1e-3))) ? vec2(0) : radii;");
- }
-
- v->codeAppendf("if (abs(%s.x) == 0.5)"
- "%s.x = cornerSign.x * (1.0 - cornerSize.x);",
- fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
- v->codeAppendf("if (abs(%s.y) == 0.5)"
- "%s.y = cornerSign.y * (1.0 - cornerSize.y);",
- fInputs.attr(Attrib::kShapeCoords), fModifiedShapeCoords);
-}
-
-void GLSLInstanceProcessor::BackendMultisample::onSetupRRect(GrGLSLVertexBuilder* v) {
- if (fShapeCoords.vsOut()) {
- v->codeAppendf("%s = %s;", fShapeCoords.vsOut(), this->outShapeCoords());
- }
- if (fShapeInverseMatrix.vsOut()) {
- v->codeAppendf("%s = shapeInverseMatrix;", fShapeInverseMatrix.vsOut());
- }
- if (fFragShapeHalfSpan.vsOut()) {
- v->codeAppendf("%s = 0.5 * fragShapeSpan;", fFragShapeHalfSpan.vsOut());
- }
- if (fArcInverseMatrix.vsOut()) {
- v->codeAppend ("vec2 s = cornerSign / radii;");
- v->codeAppendf("%s = shapeInverseMatrix * mat2(s.x, 0, 0, s.y);",
- fArcInverseMatrix.vsOut());
- }
- if (fFragArcHalfSpan.vsOut()) {
- v->codeAppendf("%s = 0.5 * (abs(vec4(%s).xz) + abs(vec4(%s).yw));",
- fFragArcHalfSpan.vsOut(), fArcInverseMatrix.vsOut(),
- fArcInverseMatrix.vsOut());
- }
- if (fArcTest.vsOut()) {
- // The interior triangles are laid out as a fan. fArcTest is both distances from shared
- // edges of a fan triangle to a point within that triangle. fArcTest is used to check if a
- // fragment is too close to either shared edge, in which case we point sample the shape as a
- // rect at that point in order to guarantee the mixed samples discard logic works correctly.
- v->codeAppendf("%s = (cornerSize == vec2(0)) ? vec2(0) : "
- "cornerSign * %s * mat2(1, cornerSize.x - 1.0, cornerSize.y - 1.0, 1);",
- fArcTest.vsOut(), fModifiedShapeCoords);
- if (!fBatchInfo.fHasPerspective) {
- // Shift the point at which distances to edges are measured from the center of the pixel
- // to the corner. This way the sign of fArcTest will quickly tell us whether a pixel
- // is completely inside the shared edge. Perspective mode will accomplish this same task
- // by finding the derivatives in the fragment shader.
- v->codeAppendf("%s -= 0.5 * (fragShapeSpan.yx * abs(radii - 1.0) + fragShapeSpan);",
- fArcTest.vsOut());
- }
- }
- if (fEarlyAccept.vsOut()) {
- SkASSERT(this->isMixedSampled());
- v->codeAppendf("%s = all(equal(vec2(1), abs(%s))) ? 0 : SAMPLE_MASK_ALL;",
- fEarlyAccept.vsOut(), fInputs.attr(Attrib::kShapeCoords));
- }
-}
-
-void
-GLSLInstanceProcessor::BackendMultisample::onInitInnerShape(GrGLSLVaryingHandler* varyingHandler,
- GrGLSLVertexBuilder* v) {
- varyingHandler->addVarying("innerShapeCoords", &fInnerShapeCoords, kHigh_GrSLPrecision);
- if (kOval_ShapeFlag != fBatchInfo.fInnerShapeTypes &&
- kRect_ShapeFlag != fBatchInfo.fInnerShapeTypes) {
- varyingHandler->addFlatVarying("innerRRect", &fInnerRRect, kHigh_GrSLPrecision);
- }
- if (!fBatchInfo.fHasPerspective) {
- varyingHandler->addFlatVarying("innerShapeInverseMatrix", &fInnerShapeInverseMatrix,
- kHigh_GrSLPrecision);
- v->codeAppendf("%s = shapeInverseMatrix * mat2(outer2Inner.x, 0, 0, outer2Inner.y);",
- fInnerShapeInverseMatrix.vsOut());
- varyingHandler->addFlatVarying("fragInnerShapeHalfSpan", &fFragInnerShapeHalfSpan,
- kHigh_GrSLPrecision);
- v->codeAppendf("%s = 0.5 * fragShapeSpan * outer2Inner.xy;",
- fFragInnerShapeHalfSpan.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::setupInnerRect(GrGLSLVertexBuilder* v) {
- if (fInnerRRect.vsOut()) {
- // The fragment shader will generalize every inner shape as a round rect. Since this one
- // is a rect, we simply emit bogus parameters for the round rect (negative radii) that
- // ensure the fragment shader always takes the "sample as rect" codepath.
- v->codeAppendf("%s = vec4(2.0 * (inner.zw - inner.xy) / (outer.zw - outer.xy), vec2(0));",
- fInnerRRect.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::setupInnerOval(GrGLSLVertexBuilder* v) {
- if (fInnerRRect.vsOut()) {
- v->codeAppendf("%s = vec4(0, 0, 1, 1);", fInnerRRect.vsOut());
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::onSetupInnerRRect(GrGLSLVertexBuilder* v) {
- // Avoid numeric instability by not allowing the inner radii to get smaller than 1/10th pixel.
- if (fFragInnerShapeHalfSpan.vsOut()) {
- v->codeAppendf("innerRadii = max(innerRadii, 2e-1 * %s);", fFragInnerShapeHalfSpan.vsOut());
- } else {
- v->codeAppend ("innerRadii = max(innerRadii, vec2(1e-4));");
- }
- v->codeAppendf("%s = vec4(1.0 - innerRadii, 1.0 / innerRadii);", fInnerRRect.vsOut());
-}
-
-void GLSLInstanceProcessor::BackendMultisample::onEmitCode(GrGLSLVertexBuilder*,
- GrGLSLPPFragmentBuilder* f,
- const char*, const char*) {
- f->define("SAMPLE_COUNT", fEffectiveSampleCnt);
- if (this->isMixedSampled()) {
- f->definef("SAMPLE_MASK_ALL", "0x%x", (1 << fEffectiveSampleCnt) - 1);
- f->definef("SAMPLE_MASK_MSB", "0x%x", 1 << (fEffectiveSampleCnt - 1));
- }
-
- if (kRect_ShapeFlag != (fBatchInfo.fShapeTypes | fBatchInfo.fInnerShapeTypes)) {
- GrGLSLShaderVar x("x", kVec2f_GrSLType, GrGLSLShaderVar::kNonArray, kHigh_GrSLPrecision);
- f->emitFunction(kFloat_GrSLType, "square", 1, &x, "return dot(x, x);", &fSquareFun);
- }
-
- EmitShapeCoords shapeCoords;
- shapeCoords.fVarying = &fShapeCoords;
- shapeCoords.fInverseMatrix = fShapeInverseMatrix.fsIn();
- shapeCoords.fFragHalfSpan = fFragShapeHalfSpan.fsIn();
-
- EmitShapeCoords arcCoords;
- arcCoords.fVarying = &fArcCoords;
- arcCoords.fInverseMatrix = fArcInverseMatrix.fsIn();
- arcCoords.fFragHalfSpan = fFragArcHalfSpan.fsIn();
- bool clampArcCoords = this->isMixedSampled() && (fBatchInfo.fShapeTypes & kRRect_ShapesMask);
-
- EmitShapeOpts opts;
- opts.fIsTightGeometry = true;
- opts.fResolveMixedSamples = this->isMixedSampled();
- opts.fInvertCoverage = false;
-
- if (fBatchInfo.fHasPerspective && fBatchInfo.fInnerShapeTypes) {
- // This determines if the fragment should consider the inner shape in its sample mask.
- // We take the derivative early in case discards may occur before we get to the inner shape.
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf("vec2 fragInnerShapeApproxHalfSpan = 0.5 * fwidth(%s);",
- fInnerShapeCoords.fsIn());
- }
-
- if (!this->isMixedSampled()) {
- SkASSERT(!fArcTest.fsIn());
- if (fTriangleIsArc.fsIn()) {
- f->codeAppendf("if (%s != 0) {", fTriangleIsArc.fsIn());
- this->emitArc(f, arcCoords, false, clampArcCoords, opts);
-
- f->codeAppend ("}");
- }
- } else {
- const char* arcTest = fArcTest.fsIn();
- SkASSERT(arcTest);
- if (fBatchInfo.fHasPerspective) {
- // The non-perspective version accounts for fwith() in the vertex shader.
- // We make sure to take the derivative here, before a neighbor pixel may early accept.
- f->enableFeature(GrGLSLPPFragmentBuilder::kStandardDerivatives_GLSLFeature);
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf("vec2 arcTest = %s - 0.5 * fwidth(%s);",
- fArcTest.fsIn(), fArcTest.fsIn());
- arcTest = "arcTest";
- }
- const char* earlyAccept = fEarlyAccept.fsIn() ? fEarlyAccept.fsIn() : "SAMPLE_MASK_ALL";
- f->codeAppendf("if (gl_SampleMaskIn[0] == %s) {", earlyAccept);
- f->overrideSampleCoverage(earlyAccept);
- f->codeAppend ("} else {");
- if (arcTest) {
- // At this point, if the sample mask is all set it means we are inside an arc triangle.
- f->codeAppendf("if (gl_SampleMaskIn[0] == SAMPLE_MASK_ALL || "
- "all(greaterThan(%s, vec2(0)))) {", arcTest);
- this->emitArc(f, arcCoords, false, clampArcCoords, opts);
- f->codeAppend ("} else {");
- this->emitRect(f, shapeCoords, opts);
- f->codeAppend ("}");
- } else if (fTriangleIsArc.fsIn()) {
- f->codeAppendf("if (%s == 0) {", fTriangleIsArc.fsIn());
- this->emitRect(f, shapeCoords, opts);
- f->codeAppend ("} else {");
- this->emitArc(f, arcCoords, false, clampArcCoords, opts);
- f->codeAppend ("}");
- } else if (fBatchInfo.fShapeTypes == kOval_ShapeFlag) {
- this->emitArc(f, arcCoords, false, clampArcCoords, opts);
- } else {
- SkASSERT(fBatchInfo.fShapeTypes == kRect_ShapeFlag);
- this->emitRect(f, shapeCoords, opts);
- }
- f->codeAppend ("}");
- }
-
- if (fBatchInfo.fInnerShapeTypes) {
- f->codeAppendf("// Inner shape.\n");
-
- EmitShapeCoords innerShapeCoords;
- innerShapeCoords.fVarying = &fInnerShapeCoords;
- if (!fBatchInfo.fHasPerspective) {
- innerShapeCoords.fInverseMatrix = fInnerShapeInverseMatrix.fsIn();
- innerShapeCoords.fFragHalfSpan = fFragInnerShapeHalfSpan.fsIn();
- }
-
- EmitShapeOpts innerOpts;
- innerOpts.fIsTightGeometry = false;
- innerOpts.fResolveMixedSamples = false; // Mixed samples are resolved in the outer shape.
- innerOpts.fInvertCoverage = true;
-
- if (kOval_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
- this->emitArc(f, innerShapeCoords, true, false, innerOpts);
- } else {
- f->codeAppendf("if (all(lessThan(abs(%s), 1.0 + %s))) {", fInnerShapeCoords.fsIn(),
- !fBatchInfo.fHasPerspective ? innerShapeCoords.fFragHalfSpan
- : "fragInnerShapeApproxHalfSpan"); // Above.
- if (kRect_ShapeFlag == fBatchInfo.fInnerShapeTypes) {
- this->emitRect(f, innerShapeCoords, innerOpts);
- } else {
- this->emitSimpleRRect(f, innerShapeCoords, fInnerRRect.fsIn(), innerOpts);
- }
- f->codeAppend ("}");
- }
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::emitRect(GrGLSLPPFragmentBuilder* f,
- const EmitShapeCoords& coords,
- const EmitShapeOpts& opts) {
- // Full MSAA doesn't need to do anything to draw a rect.
- SkASSERT(!opts.fIsTightGeometry || opts.fResolveMixedSamples);
- if (coords.fFragHalfSpan) {
- f->codeAppendf("if (all(lessThanEqual(abs(%s), 1.0 - %s))) {",
- coords.fVarying->fsIn(), coords.fFragHalfSpan);
- // The entire pixel is inside the rect.
- this->acceptOrRejectWholeFragment(f, true, opts);
- f->codeAppend ("} else ");
- if (opts.fIsTightGeometry && !fRectTrianglesMaySplit) {
- f->codeAppendf("if (any(lessThan(abs(%s), 1.0 - %s))) {",
- coords.fVarying->fsIn(), coords.fFragHalfSpan);
- // The pixel falls on an edge of the rectangle and is known to not be on a shared edge.
- this->acceptCoverageMask(f, "gl_SampleMaskIn[0]", opts, false);
- f->codeAppend ("} else");
- }
- f->codeAppend ("{");
- }
- f->codeAppend ("int rectMask = 0;");
- f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {");
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppend ( "vec2 pt = ");
- this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix);
- f->codeAppend ( ";");
- f->codeAppend ( "if (all(lessThan(abs(pt), vec2(1)))) rectMask |= (1 << i);");
- f->codeAppend ("}");
- this->acceptCoverageMask(f, "rectMask", opts);
- if (coords.fFragHalfSpan) {
- f->codeAppend ("}");
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::emitArc(GrGLSLPPFragmentBuilder* f,
- const EmitShapeCoords& coords,
- bool coordsMayBeNegative, bool clampCoords,
- const EmitShapeOpts& opts) {
- if (coords.fFragHalfSpan) {
- SkString absArcCoords;
- absArcCoords.printf(coordsMayBeNegative ? "abs(%s)" : "%s", coords.fVarying->fsIn());
- if (clampCoords) {
- f->codeAppendf("if (%s(max(%s + %s, vec2(0))) < 1.0) {",
- fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
- } else {
- f->codeAppendf("if (%s(%s + %s) < 1.0) {",
- fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
- }
- // The entire pixel is inside the arc.
- this->acceptOrRejectWholeFragment(f, true, opts);
- f->codeAppendf("} else if (%s(max(%s - %s, vec2(0))) >= 1.0) {",
- fSquareFun.c_str(), absArcCoords.c_str(), coords.fFragHalfSpan);
- // The entire pixel is outside the arc.
- this->acceptOrRejectWholeFragment(f, false, opts);
- f->codeAppend ("} else {");
- }
- f->codeAppend ( "int arcMask = 0;");
- f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {");
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppend ( "vec2 pt = ");
- this->interpolateAtSample(f, *coords.fVarying, "i", coords.fInverseMatrix);
- f->codeAppend ( ";");
- if (clampCoords) {
- SkASSERT(!coordsMayBeNegative);
- f->codeAppend ( "pt = max(pt, vec2(0));");
- }
- f->codeAppendf( "if (%s(pt) < 1.0) arcMask |= (1 << i);", fSquareFun.c_str());
- f->codeAppend ( "}");
- this->acceptCoverageMask(f, "arcMask", opts);
- if (coords.fFragHalfSpan) {
- f->codeAppend ("}");
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::emitSimpleRRect(GrGLSLPPFragmentBuilder* f,
- const EmitShapeCoords& coords,
- const char* rrect,
- const EmitShapeOpts& opts) {
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf("vec2 distanceToArcEdge = abs(%s) - %s.xy;", coords.fVarying->fsIn(), rrect);
- f->codeAppend ("if (any(lessThan(distanceToArcEdge, vec2(0)))) {");
- this->emitRect(f, coords, opts);
- f->codeAppend ("} else {");
- if (coords.fInverseMatrix && coords.fFragHalfSpan) {
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf("vec2 rrectCoords = distanceToArcEdge * %s.zw;", rrect);
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf("vec2 fragRRectHalfSpan = %s * %s.zw;", coords.fFragHalfSpan, rrect);
- f->codeAppendf("if (%s(rrectCoords + fragRRectHalfSpan) <= 1.0) {", fSquareFun.c_str());
- // The entire pixel is inside the round rect.
- this->acceptOrRejectWholeFragment(f, true, opts);
- f->codeAppendf("} else if (%s(max(rrectCoords - fragRRectHalfSpan, vec2(0))) >= 1.0) {",
- fSquareFun.c_str());
- // The entire pixel is outside the round rect.
- this->acceptOrRejectWholeFragment(f, false, opts);
- f->codeAppend ("} else {");
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf( "vec2 s = %s.zw * sign(%s);", rrect, coords.fVarying->fsIn());
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf( "mat2 innerRRectInverseMatrix = %s * mat2(s.x, 0, 0, s.y);",
- coords.fInverseMatrix);
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppend ( "int rrectMask = 0;");
- f->codeAppend ( "for (int i = 0; i < SAMPLE_COUNT; i++) {");
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppend ( "vec2 pt = rrectCoords + ");
- f->appendOffsetToSample("i", GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates);
- f->codeAppend ( "* innerRRectInverseMatrix;");
- f->codeAppendf( "if (%s(max(pt, vec2(0))) < 1.0) rrectMask |= (1 << i);",
- fSquareFun.c_str());
- f->codeAppend ( "}");
- this->acceptCoverageMask(f, "rrectMask", opts);
- f->codeAppend ("}");
- } else {
- f->codeAppend ("int rrectMask = 0;");
- f->codeAppend ("for (int i = 0; i < SAMPLE_COUNT; i++) {");
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppend ( "vec2 shapePt = ");
- this->interpolateAtSample(f, *coords.fVarying, "i", nullptr);
- f->codeAppend ( ";");
- f->appendPrecisionModifier(kHigh_GrSLPrecision);
- f->codeAppendf( "vec2 rrectPt = max(abs(shapePt) - %s.xy, vec2(0)) * %s.zw;",
- rrect, rrect);
- f->codeAppendf( "if (%s(rrectPt) < 1.0) rrectMask |= (1 << i);", fSquareFun.c_str());
- f->codeAppend ("}");
- this->acceptCoverageMask(f, "rrectMask", opts);
- }
- f->codeAppend ("}");
-}
-
-void GLSLInstanceProcessor::BackendMultisample::interpolateAtSample(GrGLSLPPFragmentBuilder* f,
- const GrGLSLVarying& varying,
- const char* sampleIdx,
- const char* interpolationMatrix) {
- if (interpolationMatrix) {
- f->codeAppendf("(%s + ", varying.fsIn());
- f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates);
- f->codeAppendf(" * %s)", interpolationMatrix);
- } else {
- SkAssertResult(
- f->enableFeature(GrGLSLFragmentBuilder::kMultisampleInterpolation_GLSLFeature));
- f->codeAppendf("interpolateAtOffset(%s, ", varying.fsIn());
- f->appendOffsetToSample(sampleIdx, GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates);
- f->codeAppend(")");
- }
-}
-
-void
-GLSLInstanceProcessor::BackendMultisample::acceptOrRejectWholeFragment(GrGLSLPPFragmentBuilder* f,
- bool inside,
- const EmitShapeOpts& opts) {
- if (inside != opts.fInvertCoverage) { // Accept the entire fragment.
- if (opts.fResolveMixedSamples) {
- // This is a mixed sampled fragment in the interior of the shape. Reassign 100% coverage
- // to one fragment, and drop all other fragments that may fall on this same pixel. Since
- // our geometry is water tight and non-overlapping, we can take advantage of the
- // properties that (1) the incoming sample masks will be disjoint across fragments that
- // fall on a common pixel, and (2) since the entire fragment is inside the shape, each
- // sample's corresponding bit will be set in the incoming sample mask of exactly one
- // fragment.
- f->codeAppend("if ((gl_SampleMaskIn[0] & SAMPLE_MASK_MSB) == 0) {");
- // Drop this fragment.
- if (!fBatchInfo.fCannotDiscard) {
- f->codeAppend("discard;");
- } else {
- f->overrideSampleCoverage("0");
- }
- f->codeAppend("} else {");
- // Override the lone surviving fragment to full coverage.
- f->overrideSampleCoverage("-1");
- f->codeAppend("}");
- }
- } else { // Reject the entire fragment.
- if (!fBatchInfo.fCannotDiscard) {
- f->codeAppend("discard;");
- } else if (opts.fResolveMixedSamples) {
- f->overrideSampleCoverage("0");
- } else {
- f->maskSampleCoverage("0");
- }
- }
-}
-
-void GLSLInstanceProcessor::BackendMultisample::acceptCoverageMask(GrGLSLPPFragmentBuilder* f,
- const char* shapeMask,
- const EmitShapeOpts& opts,
- bool maybeSharedEdge) {
- if (opts.fResolveMixedSamples) {
- if (maybeSharedEdge) {
- // This is a mixed sampled fragment, potentially on the outer edge of the shape, with
- // only partial shape coverage. Override the coverage of one fragment to "shapeMask",
- // and drop all other fragments that may fall on this same pixel. Since our geometry is
- // water tight, non-overlapping, and completely contains the shape, this means that each
- // "on" bit from shapeMask is guaranteed to be set in the incoming sample mask of one,
- // and only one, fragment that falls on this same pixel.
- SkASSERT(!opts.fInvertCoverage);
- f->codeAppendf("if ((gl_SampleMaskIn[0] & (1 << findMSB(%s))) == 0) {", shapeMask);
- // Drop this fragment.
- if (!fBatchInfo.fCannotDiscard) {
- f->codeAppend ("discard;");
- } else {
- f->overrideSampleCoverage("0");
- }
- f->codeAppend ("} else {");
- // Override the coverage of the lone surviving fragment to "shapeMask".
- f->overrideSampleCoverage(shapeMask);
- f->codeAppend ("}");
- } else {
- f->overrideSampleCoverage(shapeMask);
- }
- } else {
- f->maskSampleCoverage(shapeMask, opts.fInvertCoverage);
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-
-GLSLInstanceProcessor::Backend*
-GLSLInstanceProcessor::Backend::Create(const GrGLSLProgramBuilder* p, BatchInfo batchInfo,
- const VertexInputs& inputs) {
- switch (batchInfo.fAntialiasMode) {
- default:
- SkFAIL("Unexpected antialias mode.");
- case AntialiasMode::kNone:
- return new BackendNonAA(batchInfo, inputs);
- case AntialiasMode::kCoverage:
- return new BackendCoverage(batchInfo, inputs);
- case AntialiasMode::kMSAA:
- case AntialiasMode::kMixedSamples: {
- const GrPipeline& pipeline = p->pipeline();
- const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv();
- const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline.getStencil());
- return new BackendMultisample(batchInfo, inputs, specs.fEffectiveSampleCnt);
- }
- }
-}
-
-////////////////////////////////////////////////////////////////////////////////////////////////////
-
-const ShapeVertex kVertexData[] = {
- // Rectangle.
- {+1, +1, ~0}, /*0*/
- {-1, +1, ~0}, /*1*/
- {-1, -1, ~0}, /*2*/
- {+1, -1, ~0}, /*3*/
- // The next 4 are for the bordered version.
- {+1, +1, 0}, /*4*/
- {-1, +1, 0}, /*5*/
- {-1, -1, 0}, /*6*/
- {+1, -1, 0}, /*7*/
-
- // Octagon that inscribes the unit circle, cut by an interior unit octagon.
- {+1.000000f, 0.000000f, 0}, /* 8*/
- {+1.000000f, +0.414214f, ~0}, /* 9*/
- {+0.707106f, +0.707106f, 0}, /*10*/
- {+0.414214f, +1.000000f, ~0}, /*11*/
- { 0.000000f, +1.000000f, 0}, /*12*/
- {-0.414214f, +1.000000f, ~0}, /*13*/
- {-0.707106f, +0.707106f, 0}, /*14*/
- {-1.000000f, +0.414214f, ~0}, /*15*/
- {-1.000000f, 0.000000f, 0}, /*16*/
- {-1.000000f, -0.414214f, ~0}, /*17*/
- {-0.707106f, -0.707106f, 0}, /*18*/
- {-0.414214f, -1.000000f, ~0}, /*19*/
- { 0.000000f, -1.000000f, 0}, /*20*/
- {+0.414214f, -1.000000f, ~0}, /*21*/
- {+0.707106f, -0.707106f, 0}, /*22*/
- {+1.000000f, -0.414214f, ~0}, /*23*/
- // This vertex is for the fanned versions.
- { 0.000000f, 0.000000f, ~0}, /*24*/
-
- // Rectangle with disjoint corner segments.
- {+1.0, +0.5, 0x3}, /*25*/
- {+1.0, +1.0, 0x3}, /*26*/
- {+0.5, +1.0, 0x3}, /*27*/
- {-0.5, +1.0, 0x2}, /*28*/
- {-1.0, +1.0, 0x2}, /*29*/
- {-1.0, +0.5, 0x2}, /*30*/
- {-1.0, -0.5, 0x0}, /*31*/
- {-1.0, -1.0, 0x0}, /*32*/
- {-0.5, -1.0, 0x0}, /*33*/
- {+0.5, -1.0, 0x1}, /*34*/
- {+1.0, -1.0, 0x1}, /*35*/
- {+1.0, -0.5, 0x1}, /*36*/
- // The next 4 are for the fanned version.
- { 0.0, 0.0, 0x3}, /*37*/
- { 0.0, 0.0, 0x2}, /*38*/
- { 0.0, 0.0, 0x0}, /*39*/
- { 0.0, 0.0, 0x1}, /*40*/
- // The next 8 are for the bordered version.
- {+0.75, +0.50, 0x3}, /*41*/
- {+0.50, +0.75, 0x3}, /*42*/
- {-0.50, +0.75, 0x2}, /*43*/
- {-0.75, +0.50, 0x2}, /*44*/
- {-0.75, -0.50, 0x0}, /*45*/
- {-0.50, -0.75, 0x0}, /*46*/
- {+0.50, -0.75, 0x1}, /*47*/
- {+0.75, -0.50, 0x1}, /*48*/
-
- // 16-gon that inscribes the unit circle, cut by an interior unit 16-gon.
- {+1.000000f, +0.000000f, 0}, /*49*/
- {+1.000000f, +0.198913f, ~0}, /*50*/
- {+0.923879f, +0.382683f, 0}, /*51*/
- {+0.847760f, +0.566455f, ~0}, /*52*/
- {+0.707106f, +0.707106f, 0}, /*53*/
- {+0.566455f, +0.847760f, ~0}, /*54*/
- {+0.382683f, +0.923879f, 0}, /*55*/
- {+0.198913f, +1.000000f, ~0}, /*56*/
- {+0.000000f, +1.000000f, 0}, /*57*/
- {-0.198913f, +1.000000f, ~0}, /*58*/
- {-0.382683f, +0.923879f, 0}, /*59*/
- {-0.566455f, +0.847760f, ~0}, /*60*/
- {-0.707106f, +0.707106f, 0}, /*61*/
- {-0.847760f, +0.566455f, ~0}, /*62*/
- {-0.923879f, +0.382683f, 0}, /*63*/
- {-1.000000f, +0.198913f, ~0}, /*64*/
- {-1.000000f, +0.000000f, 0}, /*65*/
- {-1.000000f, -0.198913f, ~0}, /*66*/
- {-0.923879f, -0.382683f, 0}, /*67*/
- {-0.847760f, -0.566455f, ~0}, /*68*/
- {-0.707106f, -0.707106f, 0}, /*69*/
- {-0.566455f, -0.847760f, ~0}, /*70*/
- {-0.382683f, -0.923879f, 0}, /*71*/
- {-0.198913f, -1.000000f, ~0}, /*72*/
- {-0.000000f, -1.000000f, 0}, /*73*/
- {+0.198913f, -1.000000f, ~0}, /*74*/
- {+0.382683f, -0.923879f, 0}, /*75*/
- {+0.566455f, -0.847760f, ~0}, /*76*/
- {+0.707106f, -0.707106f, 0}, /*77*/
- {+0.847760f, -0.566455f, ~0}, /*78*/
- {+0.923879f, -0.382683f, 0}, /*79*/
- {+1.000000f, -0.198913f, ~0}, /*80*/
-};
-
-const uint8_t kIndexData[] = {
- // Rectangle.
- 0, 1, 2,
- 0, 2, 3,
-
- // Rectangle with a border.
- 0, 1, 5,
- 5, 4, 0,
- 1, 2, 6,
- 6, 5, 1,
- 2, 3, 7,
- 7, 6, 2,
- 3, 0, 4,
- 4, 7, 3,
- 4, 5, 6,
- 6, 7, 4,
-
- // Octagon that inscribes the unit circle, cut by an interior unit octagon.
- 10, 8, 9,
- 12, 10, 11,
- 14, 12, 13,
- 16, 14, 15,
- 18, 16, 17,
- 20, 18, 19,
- 22, 20, 21,
- 8, 22, 23,
- 8, 10, 12,
- 12, 14, 16,
- 16, 18, 20,
- 20, 22, 8,
- 8, 12, 16,
- 16, 20, 8,
-
- // Same octagons, but with the interior arranged as a fan. Used by mixed samples.
- 10, 8, 9,
- 12, 10, 11,
- 14, 12, 13,
- 16, 14, 15,
- 18, 16, 17,
- 20, 18, 19,
- 22, 20, 21,
- 8, 22, 23,
- 24, 8, 10,
- 12, 24, 10,
- 24, 12, 14,
- 16, 24, 14,
- 24, 16, 18,
- 20, 24, 18,
- 24, 20, 22,
- 8, 24, 22,
-
- // Same octagons, but with the inner and outer disjoint. Used by coverage AA.
- 8, 22, 23,
- 9, 8, 23,
- 10, 8, 9,
- 11, 10, 9,
- 12, 10, 11,
- 13, 12, 11,
- 14, 12, 13,
- 15, 14, 13,
- 16, 14, 15,
- 17, 16, 15,
- 18, 16, 17,
- 19, 18, 17,
- 20, 18, 19,
- 21, 20, 19,
- 22, 20, 21,
- 23, 22, 21,
- 22, 8, 10,
- 10, 12, 14,
- 14, 16, 18,
- 18, 20, 22,
- 22, 10, 14,
- 14, 18, 22,
-
- // Rectangle with disjoint corner segments.
- 27, 25, 26,
- 30, 28, 29,
- 33, 31, 32,
- 36, 34, 35,
- 25, 27, 28,
- 28, 30, 31,
- 31, 33, 34,
- 34, 36, 25,
- 25, 28, 31,
- 31, 34, 25,
-
- // Same rectangle with disjoint corners, but with the interior arranged as a fan. Used by
- // mixed samples.
- 27, 25, 26,
- 30, 28, 29,
- 33, 31, 32,
- 36, 34, 35,
- 27, 37, 25,
- 28, 37, 27,
- 30, 38, 28,
- 31, 38, 30,
- 33, 39, 31,
- 34, 39, 33,
- 36, 40, 34,
- 25, 40, 36,
-
- // Same rectangle with disjoint corners, with a border as well. Used by coverage AA.
- 41, 25, 26,
- 42, 41, 26,
- 27, 42, 26,
- 43, 28, 29,
- 44, 43, 29,
- 30, 44, 29,
- 45, 31, 32,
- 46, 45, 32,
- 33, 46, 32,
- 47, 34, 35,
- 48, 47, 35,
- 36, 48, 35,
- 27, 28, 42,
- 42, 28, 43,
- 30, 31, 44,
- 44, 31, 45,
- 33, 34, 46,
- 46, 34, 47,
- 36, 25, 48,
- 48, 25, 41,
- 41, 42, 43,
- 43, 44, 45,
- 45, 46, 47,
- 47, 48, 41,
- 41, 43, 45,
- 45, 47, 41,
-
- // Same as the disjoint octagons, but with 16-gons instead. Used by coverage AA when the oval is
- // sufficiently large.
- 49, 79, 80,
- 50, 49, 80,
- 51, 49, 50,
- 52, 51, 50,
- 53, 51, 52,
- 54, 53, 52,
- 55, 53, 54,
- 56, 55, 54,
- 57, 55, 56,
- 58, 57, 56,
- 59, 57, 58,
- 60, 59, 58,
- 61, 59, 60,
- 62, 61, 60,
- 63, 61, 62,
- 64, 63, 62,
- 65, 63, 64,
- 66, 65, 64,
- 67, 65, 66,
- 68, 67, 66,
- 69, 67, 68,
- 70, 69, 68,
- 71, 69, 70,
- 72, 71, 70,
- 73, 71, 72,
- 74, 73, 72,
- 75, 73, 74,
- 76, 75, 74,
- 77, 75, 76,
- 78, 77, 76,
- 79, 77, 78,
- 80, 79, 78,
- 49, 51, 53,
- 53, 55, 57,
- 57, 59, 61,
- 61, 63, 65,
- 65, 67, 69,
- 69, 71, 73,
- 73, 75, 77,
- 77, 79, 49,
- 49, 53, 57,
- 57, 61, 65,
- 65, 69, 73,
- 73, 77, 49,
- 49, 57, 65,
- 65, 73, 49,
-};
-
-enum {
- kRect_FirstIndex = 0,
- kRect_TriCount = 2,
-
- kFramedRect_FirstIndex = 6,
- kFramedRect_TriCount = 10,
-
- kOctagons_FirstIndex = 36,
- kOctagons_TriCount = 14,
-
- kOctagonsFanned_FirstIndex = 78,
- kOctagonsFanned_TriCount = 16,
-
- kDisjointOctagons_FirstIndex = 126,
- kDisjointOctagons_TriCount = 22,
-
- kCorneredRect_FirstIndex = 192,
- kCorneredRect_TriCount = 10,
-
- kCorneredRectFanned_FirstIndex = 222,
- kCorneredRectFanned_TriCount = 12,
-
- kCorneredFramedRect_FirstIndex = 258,
- kCorneredFramedRect_TriCount = 26,
-
- kDisjoint16Gons_FirstIndex = 336,
- kDisjoint16Gons_TriCount = 46,
-};
-
-static const GrUniqueKey::Domain kShapeBufferDomain = GrUniqueKey::GenerateDomain();
-
-template<GrBufferType Type> static const GrUniqueKey& get_shape_buffer_key() {
- static GrUniqueKey* kKey;
- if (!kKey) {
- kKey = new GrUniqueKey;
- GrUniqueKey::Builder builder(kKey, kShapeBufferDomain, 1);
- builder[0] = Type;
- }
- return *kKey;
-}
-
-const GrBuffer* InstanceProcessor::FindOrCreateVertexBuffer(GrGpu* gpu) {
- GrResourceCache* cache = gpu->getContext()->getResourceCache();
- const GrUniqueKey& key = get_shape_buffer_key<kVertex_GrBufferType>();
- if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) {
- return static_cast<GrBuffer*>(cached);
- }
- if (GrBuffer* buffer = gpu->createBuffer(sizeof(kVertexData), kVertex_GrBufferType,
- kStatic_GrAccessPattern, kVertexData)) {
- buffer->resourcePriv().setUniqueKey(key);
- return buffer;
- }
- return nullptr;
-}
-
-const GrBuffer* InstanceProcessor::FindOrCreateIndex8Buffer(GrGpu* gpu) {
- GrResourceCache* cache = gpu->getContext()->getResourceCache();
- const GrUniqueKey& key = get_shape_buffer_key<kIndex_GrBufferType>();
- if (GrGpuResource* cached = cache->findAndRefUniqueResource(key)) {
- return static_cast<GrBuffer*>(cached);
- }
- if (GrBuffer* buffer = gpu->createBuffer(sizeof(kIndexData), kIndex_GrBufferType,
- kStatic_GrAccessPattern, kIndexData)) {
- buffer->resourcePriv().setUniqueKey(key);
- return buffer;
- }
- return nullptr;
-}
-
-IndexRange InstanceProcessor::GetIndexRangeForRect(AntialiasMode aa) {
- static constexpr IndexRange kRectRanges[kNumAntialiasModes] = {
- {kRect_FirstIndex, 3 * kRect_TriCount}, // kNone
- {kFramedRect_FirstIndex, 3 * kFramedRect_TriCount}, // kCoverage
- {kRect_FirstIndex, 3 * kRect_TriCount}, // kMSAA
- {kRect_FirstIndex, 3 * kRect_TriCount} // kMixedSamples
- };
-
- SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
- return kRectRanges[(int)aa];
-
- GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
- GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
- GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
- GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
-}
-
-IndexRange InstanceProcessor::GetIndexRangeForOval(AntialiasMode aa, const SkRect& devBounds) {
- if (AntialiasMode::kCoverage == aa && devBounds.height() * devBounds.width() >= 256 * 256) {
- // This threshold was chosen quasi-scientifically on Tegra X1.
- return {kDisjoint16Gons_FirstIndex, 3 * kDisjoint16Gons_TriCount};
- }
-
- static constexpr IndexRange kOvalRanges[kNumAntialiasModes] = {
- {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kNone
- {kDisjointOctagons_FirstIndex, 3 * kDisjointOctagons_TriCount}, // kCoverage
- {kOctagons_FirstIndex, 3 * kOctagons_TriCount}, // kMSAA
- {kOctagonsFanned_FirstIndex, 3 * kOctagonsFanned_TriCount} // kMixedSamples
- };
-
- SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
- return kOvalRanges[(int)aa];
-
- GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
- GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
- GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
- GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
-}
-
-IndexRange InstanceProcessor::GetIndexRangeForRRect(AntialiasMode aa) {
- static constexpr IndexRange kRRectRanges[kNumAntialiasModes] = {
- {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kNone
- {kCorneredFramedRect_FirstIndex, 3 * kCorneredFramedRect_TriCount}, // kCoverage
- {kCorneredRect_FirstIndex, 3 * kCorneredRect_TriCount}, // kMSAA
- {kCorneredRectFanned_FirstIndex, 3 * kCorneredRectFanned_TriCount} // kMixedSamples
- };
-
- SkASSERT(aa >= AntialiasMode::kNone && aa <= AntialiasMode::kMixedSamples);
- return kRRectRanges[(int)aa];
-
- GR_STATIC_ASSERT(0 == (int)AntialiasMode::kNone);
- GR_STATIC_ASSERT(1 == (int)AntialiasMode::kCoverage);
- GR_STATIC_ASSERT(2 == (int)AntialiasMode::kMSAA);
- GR_STATIC_ASSERT(3 == (int)AntialiasMode::kMixedSamples);
-}
-
-const char* InstanceProcessor::GetNameOfIndexRange(IndexRange range) {
- switch (range.fStart) {
- case kRect_FirstIndex: return "basic_rect";
- case kFramedRect_FirstIndex: return "coverage_rect";
-
- case kOctagons_FirstIndex: return "basic_oval";
- case kDisjointOctagons_FirstIndex: return "coverage_oval";
- case kOctagonsFanned_FirstIndex: return "mixed_samples_oval";
-
- case kCorneredRect_FirstIndex: return "basic_round_rect";
- case kCorneredFramedRect_FirstIndex: return "coverage_round_rect";
- case kCorneredRectFanned_FirstIndex: return "mixed_samples_round_rect";
-
- default: return "unknown";
- }
-}
-
-}