diff options
Diffstat (limited to 'src/gpu/batches')
-rw-r--r-- | src/gpu/batches/GrAAConvexPathRenderer.cpp | 1022 | ||||
-rw-r--r-- | src/gpu/batches/GrAAConvexPathRenderer.h | 24 | ||||
-rw-r--r-- | src/gpu/batches/GrAAConvexTessellator.cpp | 1027 | ||||
-rw-r--r-- | src/gpu/batches/GrAAConvexTessellator.h | 270 | ||||
-rw-r--r-- | src/gpu/batches/GrAADistanceFieldPathRenderer.cpp | 626 | ||||
-rwxr-xr-x | src/gpu/batches/GrAADistanceFieldPathRenderer.h | 75 | ||||
-rw-r--r-- | src/gpu/batches/GrAAHairLinePathRenderer.cpp | 998 | ||||
-rw-r--r-- | src/gpu/batches/GrAAHairLinePathRenderer.h | 33 | ||||
-rw-r--r-- | src/gpu/batches/GrAALinearizingConvexPathRenderer.cpp | 345 | ||||
-rw-r--r-- | src/gpu/batches/GrAALinearizingConvexPathRenderer.h | 24 | ||||
-rw-r--r-- | src/gpu/batches/GrDashLinePathRenderer.cpp | 26 | ||||
-rw-r--r-- | src/gpu/batches/GrDashLinePathRenderer.h | 29 | ||||
-rw-r--r-- | src/gpu/batches/GrStencilAndCoverPathRenderer.cpp | 158 | ||||
-rw-r--r-- | src/gpu/batches/GrStencilAndCoverPathRenderer.h | 45 | ||||
-rw-r--r-- | src/gpu/batches/GrTessellatingPathRenderer.cpp | 1660 | ||||
-rw-r--r-- | src/gpu/batches/GrTessellatingPathRenderer.h | 33 |
16 files changed, 6395 insertions, 0 deletions
diff --git a/src/gpu/batches/GrAAConvexPathRenderer.cpp b/src/gpu/batches/GrAAConvexPathRenderer.cpp new file mode 100644 index 0000000000..6023f188df --- /dev/null +++ b/src/gpu/batches/GrAAConvexPathRenderer.cpp @@ -0,0 +1,1022 @@ + +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrAAConvexPathRenderer.h" + +#include "GrAAConvexTessellator.h" +#include "GrBatchFlushState.h" +#include "GrBatchTest.h" +#include "GrCaps.h" +#include "GrContext.h" +#include "GrDefaultGeoProcFactory.h" +#include "GrGeometryProcessor.h" +#include "GrInvariantOutput.h" +#include "GrPathUtils.h" +#include "GrProcessor.h" +#include "GrPipelineBuilder.h" +#include "GrStrokeInfo.h" +#include "SkGeometry.h" +#include "SkPathPriv.h" +#include "SkString.h" +#include "SkTraceEvent.h" +#include "batches/GrVertexBatch.h" +#include "gl/GrGLProcessor.h" +#include "gl/GrGLGeometryProcessor.h" +#include "gl/builders/GrGLProgramBuilder.h" + +GrAAConvexPathRenderer::GrAAConvexPathRenderer() { +} + +struct Segment { + enum { + // These enum values are assumed in member functions below. + kLine = 0, + kQuad = 1, + } fType; + + // line uses one pt, quad uses 2 pts + SkPoint fPts[2]; + // normal to edge ending at each pt + SkVector fNorms[2]; + // is the corner where the previous segment meets this segment + // sharp. If so, fMid is a normalized bisector facing outward. + SkVector fMid; + + int countPoints() { + GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); + return fType + 1; + } + const SkPoint& endPt() const { + GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); + return fPts[fType]; + }; + const SkPoint& endNorm() const { + GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); + return fNorms[fType]; + }; +}; + +typedef SkTArray<Segment, true> SegmentArray; + +static void center_of_mass(const SegmentArray& segments, SkPoint* c) { + SkScalar area = 0; + SkPoint center = {0, 0}; + int count = segments.count(); + SkPoint p0 = {0, 0}; + if (count > 2) { + // We translate the polygon so that the first point is at the origin. + // This avoids some precision issues with small area polygons far away + // from the origin. + p0 = segments[0].endPt(); + SkPoint pi; + SkPoint pj; + // the first and last iteration of the below loop would compute + // zeros since the starting / ending point is (0,0). So instead we start + // at i=1 and make the last iteration i=count-2. + pj = segments[1].endPt() - p0; + for (int i = 1; i < count - 1; ++i) { + pi = pj; + const SkPoint pj = segments[i + 1].endPt() - p0; + + SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY); + area += t; + center.fX += (pi.fX + pj.fX) * t; + center.fY += (pi.fY + pj.fY) * t; + + } + } + // If the poly has no area then we instead return the average of + // its points. + if (SkScalarNearlyZero(area)) { + SkPoint avg; + avg.set(0, 0); + for (int i = 0; i < count; ++i) { + const SkPoint& pt = segments[i].endPt(); + avg.fX += pt.fX; + avg.fY += pt.fY; + } + SkScalar denom = SK_Scalar1 / count; + avg.scale(denom); + *c = avg; + } else { + area *= 3; + area = SkScalarInvert(area); + center.fX = SkScalarMul(center.fX, area); + center.fY = SkScalarMul(center.fY, area); + // undo the translate of p0 to the origin. + *c = center + p0; + } + SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); +} + +static void compute_vectors(SegmentArray* segments, + SkPoint* fanPt, + SkPathPriv::FirstDirection dir, + int* vCount, + int* iCount) { + center_of_mass(*segments, fanPt); + int count = segments->count(); + + // Make the normals point towards the outside + SkPoint::Side normSide; + if (dir == SkPathPriv::kCCW_FirstDirection) { + normSide = SkPoint::kRight_Side; + } else { + normSide = SkPoint::kLeft_Side; + } + + *vCount = 0; + *iCount = 0; + // compute normals at all points + for (int a = 0; a < count; ++a) { + Segment& sega = (*segments)[a]; + int b = (a + 1) % count; + Segment& segb = (*segments)[b]; + + const SkPoint* prevPt = &sega.endPt(); + int n = segb.countPoints(); + for (int p = 0; p < n; ++p) { + segb.fNorms[p] = segb.fPts[p] - *prevPt; + segb.fNorms[p].normalize(); + segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); + prevPt = &segb.fPts[p]; + } + if (Segment::kLine == segb.fType) { + *vCount += 5; + *iCount += 9; + } else { + *vCount += 6; + *iCount += 12; + } + } + + // compute mid-vectors where segments meet. TODO: Detect shallow corners + // and leave out the wedges and close gaps by stitching segments together. + for (int a = 0; a < count; ++a) { + const Segment& sega = (*segments)[a]; + int b = (a + 1) % count; + Segment& segb = (*segments)[b]; + segb.fMid = segb.fNorms[0] + sega.endNorm(); + segb.fMid.normalize(); + // corner wedges + *vCount += 4; + *iCount += 6; + } +} + +struct DegenerateTestData { + DegenerateTestData() { fStage = kInitial; } + bool isDegenerate() const { return kNonDegenerate != fStage; } + enum { + kInitial, + kPoint, + kLine, + kNonDegenerate + } fStage; + SkPoint fFirstPoint; + SkVector fLineNormal; + SkScalar fLineC; +}; + +static const SkScalar kClose = (SK_Scalar1 / 16); +static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); + +static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { + switch (data->fStage) { + case DegenerateTestData::kInitial: + data->fFirstPoint = pt; + data->fStage = DegenerateTestData::kPoint; + break; + case DegenerateTestData::kPoint: + if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) { + data->fLineNormal = pt - data->fFirstPoint; + data->fLineNormal.normalize(); + data->fLineNormal.setOrthog(data->fLineNormal); + data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); + data->fStage = DegenerateTestData::kLine; + } + break; + case DegenerateTestData::kLine: + if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { + data->fStage = DegenerateTestData::kNonDegenerate; + } + case DegenerateTestData::kNonDegenerate: + break; + default: + SkFAIL("Unexpected degenerate test stage."); + } +} + +static inline bool get_direction(const SkPath& path, const SkMatrix& m, + SkPathPriv::FirstDirection* dir) { + if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { + return false; + } + // check whether m reverses the orientation + SkASSERT(!m.hasPerspective()); + SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - + SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); + if (det2x2 < 0) { + *dir = SkPathPriv::OppositeFirstDirection(*dir); + } + return true; +} + +static inline void add_line_to_segment(const SkPoint& pt, + SegmentArray* segments) { + segments->push_back(); + segments->back().fType = Segment::kLine; + segments->back().fPts[0] = pt; +} + +static inline void add_quad_segment(const SkPoint pts[3], + SegmentArray* segments) { + if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) { + if (pts[0] != pts[2]) { + add_line_to_segment(pts[2], segments); + } + } else { + segments->push_back(); + segments->back().fType = Segment::kQuad; + segments->back().fPts[0] = pts[1]; + segments->back().fPts[1] = pts[2]; + } +} + +static inline void add_cubic_segments(const SkPoint pts[4], + SkPathPriv::FirstDirection dir, + SegmentArray* segments) { + SkSTArray<15, SkPoint, true> quads; + GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); + int count = quads.count(); + for (int q = 0; q < count; q += 3) { + add_quad_segment(&quads[q], segments); + } +} + +static bool get_segments(const SkPath& path, + const SkMatrix& m, + SegmentArray* segments, + SkPoint* fanPt, + int* vCount, + int* iCount) { + SkPath::Iter iter(path, true); + // This renderer over-emphasizes very thin path regions. We use the distance + // to the path from the sample to compute coverage. Every pixel intersected + // by the path will be hit and the maximum distance is sqrt(2)/2. We don't + // notice that the sample may be close to a very thin area of the path and + // thus should be very light. This is particularly egregious for degenerate + // line paths. We detect paths that are very close to a line (zero area) and + // draw nothing. + DegenerateTestData degenerateData; + SkPathPriv::FirstDirection dir; + // get_direction can fail for some degenerate paths. + if (!get_direction(path, m, &dir)) { + return false; + } + + for (;;) { + SkPoint pts[4]; + SkPath::Verb verb = iter.next(pts); + switch (verb) { + case SkPath::kMove_Verb: + m.mapPoints(pts, 1); + update_degenerate_test(°enerateData, pts[0]); + break; + case SkPath::kLine_Verb: { + m.mapPoints(&pts[1], 1); + update_degenerate_test(°enerateData, pts[1]); + add_line_to_segment(pts[1], segments); + break; + } + case SkPath::kQuad_Verb: + m.mapPoints(pts, 3); + update_degenerate_test(°enerateData, pts[1]); + update_degenerate_test(°enerateData, pts[2]); + add_quad_segment(pts, segments); + break; + case SkPath::kConic_Verb: { + m.mapPoints(pts, 3); + SkScalar weight = iter.conicWeight(); + SkAutoConicToQuads converter; + const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f); + for (int i = 0; i < converter.countQuads(); ++i) { + update_degenerate_test(°enerateData, quadPts[2*i + 1]); + update_degenerate_test(°enerateData, quadPts[2*i + 2]); + add_quad_segment(quadPts + 2*i, segments); + } + break; + } + case SkPath::kCubic_Verb: { + m.mapPoints(pts, 4); + update_degenerate_test(°enerateData, pts[1]); + update_degenerate_test(°enerateData, pts[2]); + update_degenerate_test(°enerateData, pts[3]); + add_cubic_segments(pts, dir, segments); + break; + }; + case SkPath::kDone_Verb: + if (degenerateData.isDegenerate()) { + return false; + } else { + compute_vectors(segments, fanPt, dir, vCount, iCount); + return true; + } + default: + break; + } + } +} + +struct QuadVertex { + SkPoint fPos; + SkPoint fUV; + SkScalar fD0; + SkScalar fD1; +}; + +struct Draw { + Draw() : fVertexCnt(0), fIndexCnt(0) {} + int fVertexCnt; + int fIndexCnt; +}; + +typedef SkTArray<Draw, true> DrawArray; + +static void create_vertices(const SegmentArray& segments, + const SkPoint& fanPt, + DrawArray* draws, + QuadVertex* verts, + uint16_t* idxs) { + Draw* draw = &draws->push_back(); + // alias just to make vert/index assignments easier to read. + int* v = &draw->fVertexCnt; + int* i = &draw->fIndexCnt; + + int count = segments.count(); + for (int a = 0; a < count; ++a) { + const Segment& sega = segments[a]; + int b = (a + 1) % count; + const Segment& segb = segments[b]; + + // Check whether adding the verts for this segment to the current draw would cause index + // values to overflow. + int vCount = 4; + if (Segment::kLine == segb.fType) { + vCount += 5; + } else { + vCount += 6; + } + if (draw->fVertexCnt + vCount > (1 << 16)) { + verts += *v; + idxs += *i; + draw = &draws->push_back(); + v = &draw->fVertexCnt; + i = &draw->fIndexCnt; + } + + // FIXME: These tris are inset in the 1 unit arc around the corner + verts[*v + 0].fPos = sega.endPt(); + verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm(); + verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid; + verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0]; + verts[*v + 0].fUV.set(0,0); + verts[*v + 1].fUV.set(0,-SK_Scalar1); + verts[*v + 2].fUV.set(0,-SK_Scalar1); + verts[*v + 3].fUV.set(0,-SK_Scalar1); + verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; + verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; + verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; + verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; + + idxs[*i + 0] = *v + 0; + idxs[*i + 1] = *v + 2; + idxs[*i + 2] = *v + 1; + idxs[*i + 3] = *v + 0; + idxs[*i + 4] = *v + 3; + idxs[*i + 5] = *v + 2; + + *v += 4; + *i += 6; + + if (Segment::kLine == segb.fType) { + verts[*v + 0].fPos = fanPt; + verts[*v + 1].fPos = sega.endPt(); + verts[*v + 2].fPos = segb.fPts[0]; + + verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0]; + verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0]; + + // we draw the line edge as a degenerate quad (u is 0, v is the + // signed distance to the edge) + SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos, + verts[*v + 2].fPos); + verts[*v + 0].fUV.set(0, dist); + verts[*v + 1].fUV.set(0, 0); + verts[*v + 2].fUV.set(0, 0); + verts[*v + 3].fUV.set(0, -SK_Scalar1); + verts[*v + 4].fUV.set(0, -SK_Scalar1); + + verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; + verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; + verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; + verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; + verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1; + + idxs[*i + 0] = *v + 3; + idxs[*i + 1] = *v + 1; + idxs[*i + 2] = *v + 2; + + idxs[*i + 3] = *v + 4; + idxs[*i + 4] = *v + 3; + idxs[*i + 5] = *v + 2; + + *i += 6; + + // Draw the interior fan if it exists. + // TODO: Detect and combine colinear segments. This will ensure we catch every case + // with no interior, and that the resulting shared edge uses the same endpoints. + if (count >= 3) { + idxs[*i + 0] = *v + 0; + idxs[*i + 1] = *v + 2; + idxs[*i + 2] = *v + 1; + + *i += 3; + } + + *v += 5; + } else { + SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; + + SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; + midVec.normalize(); + + verts[*v + 0].fPos = fanPt; + verts[*v + 1].fPos = qpts[0]; + verts[*v + 2].fPos = qpts[2]; + verts[*v + 3].fPos = qpts[0] + segb.fNorms[0]; + verts[*v + 4].fPos = qpts[2] + segb.fNorms[1]; + verts[*v + 5].fPos = qpts[1] + midVec; + + SkScalar c = segb.fNorms[0].dot(qpts[0]); + verts[*v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c; + verts[*v + 1].fD0 = 0.f; + verts[*v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c; + verts[*v + 3].fD0 = -SK_ScalarMax/100; + verts[*v + 4].fD0 = -SK_ScalarMax/100; + verts[*v + 5].fD0 = -SK_ScalarMax/100; + + c = segb.fNorms[1].dot(qpts[2]); + verts[*v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c; + verts[*v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c; + verts[*v + 2].fD1 = 0.f; + verts[*v + 3].fD1 = -SK_ScalarMax/100; + verts[*v + 4].fD1 = -SK_ScalarMax/100; + verts[*v + 5].fD1 = -SK_ScalarMax/100; + + GrPathUtils::QuadUVMatrix toUV(qpts); + toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v); + + idxs[*i + 0] = *v + 3; + idxs[*i + 1] = *v + 1; + idxs[*i + 2] = *v + 2; + idxs[*i + 3] = *v + 4; + idxs[*i + 4] = *v + 3; + idxs[*i + 5] = *v + 2; + + idxs[*i + 6] = *v + 5; + idxs[*i + 7] = *v + 3; + idxs[*i + 8] = *v + 4; + + *i += 9; + + // Draw the interior fan if it exists. + // TODO: Detect and combine colinear segments. This will ensure we catch every case + // with no interior, and that the resulting shared edge uses the same endpoints. + if (count >= 3) { + idxs[*i + 0] = *v + 0; + idxs[*i + 1] = *v + 2; + idxs[*i + 2] = *v + 1; + + *i += 3; + } + + *v += 6; + } + } +} + +/////////////////////////////////////////////////////////////////////////////// + +/* + * Quadratic specified by 0=u^2-v canonical coords. u and v are the first + * two components of the vertex attribute. Coverage is based on signed + * distance with negative being inside, positive outside. The edge is specified in + * window space (y-down). If either the third or fourth component of the interpolated + * vertex coord is > 0 then the pixel is considered outside the edge. This is used to + * attempt to trim to a portion of the infinite quad. + * Requires shader derivative instruction support. + */ + +class QuadEdgeEffect : public GrGeometryProcessor { +public: + + static GrGeometryProcessor* Create(GrColor color, const SkMatrix& localMatrix, + bool usesLocalCoords) { + return new QuadEdgeEffect(color, localMatrix, usesLocalCoords); + } + + virtual ~QuadEdgeEffect() {} + + const char* name() const override { return "QuadEdge"; } + + const Attribute* inPosition() const { return fInPosition; } + const Attribute* inQuadEdge() const { return fInQuadEdge; } + GrColor color() const { return fColor; } + bool colorIgnored() const { return GrColor_ILLEGAL == fColor; } + const SkMatrix& localMatrix() const { return fLocalMatrix; } + bool usesLocalCoords() const { return fUsesLocalCoords; } + + class GLProcessor : public GrGLGeometryProcessor { + public: + GLProcessor(const GrGeometryProcessor&, + const GrBatchTracker&) + : fColor(GrColor_ILLEGAL) {} + + void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { + const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>(); + GrGLGPBuilder* pb = args.fPB; + GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); + + // emit attributes + vsBuilder->emitAttributes(qe); + + GrGLVertToFrag v(kVec4f_GrSLType); + args.fPB->addVarying("QuadEdge", &v); + vsBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName); + + // Setup pass through color + if (!qe.colorIgnored()) { + this->setupUniformColor(pb, args.fOutputColor, &fColorUniform); + } + + // Setup position + this->setupPosition(pb, gpArgs, qe.inPosition()->fName); + + // emit transforms + this->emitTransforms(args.fPB, gpArgs->fPositionVar, qe.inPosition()->fName, + qe.localMatrix(), args.fTransformsIn, args.fTransformsOut); + + GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); + + SkAssertResult(fsBuilder->enableFeature( + GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); + fsBuilder->codeAppendf("float edgeAlpha;"); + + // keep the derivative instructions outside the conditional + fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn()); + fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn()); + fsBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); + // today we know z and w are in device space. We could use derivatives + fsBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(), + v.fsIn()); + fsBuilder->codeAppendf ("} else {"); + fsBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y," + " 2.0*%s.x*duvdy.x - duvdy.y);", + v.fsIn(), v.fsIn()); + fsBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), + v.fsIn()); + fsBuilder->codeAppendf("edgeAlpha = " + "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}"); + + fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); + } + + static inline void GenKey(const GrGeometryProcessor& gp, + const GrBatchTracker& bt, + const GrGLSLCaps&, + GrProcessorKeyBuilder* b) { + const QuadEdgeEffect& qee = gp.cast<QuadEdgeEffect>(); + uint32_t key = 0; + key |= qee.usesLocalCoords() && qee.localMatrix().hasPerspective() ? 0x1 : 0x0; + key |= qee.colorIgnored() ? 0x2 : 0x0; + b->add32(key); + } + + virtual void setData(const GrGLProgramDataManager& pdman, + const GrPrimitiveProcessor& gp, + const GrBatchTracker& bt) override { + const QuadEdgeEffect& qe = gp.cast<QuadEdgeEffect>(); + if (qe.color() != fColor) { + GrGLfloat c[4]; + GrColorToRGBAFloat(qe.color(), c); + pdman.set4fv(fColorUniform, 1, c); + fColor = qe.color(); + } + } + + void setTransformData(const GrPrimitiveProcessor& primProc, + const GrGLProgramDataManager& pdman, + int index, + const SkTArray<const GrCoordTransform*, true>& transforms) override { + this->setTransformDataHelper<QuadEdgeEffect>(primProc, pdman, index, transforms); + } + + private: + GrColor fColor; + UniformHandle fColorUniform; + + typedef GrGLGeometryProcessor INHERITED; + }; + + virtual void getGLProcessorKey(const GrBatchTracker& bt, + const GrGLSLCaps& caps, + GrProcessorKeyBuilder* b) const override { + GLProcessor::GenKey(*this, bt, caps, b); + } + + virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, + const GrGLSLCaps&) const override { + return new GLProcessor(*this, bt); + } + +private: + QuadEdgeEffect(GrColor color, const SkMatrix& localMatrix, bool usesLocalCoords) + : fColor(color) + , fLocalMatrix(localMatrix) + , fUsesLocalCoords(usesLocalCoords) { + this->initClassID<QuadEdgeEffect>(); + fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); + fInQuadEdge = &this->addVertexAttrib(Attribute("inQuadEdge", kVec4f_GrVertexAttribType)); + } + + const Attribute* fInPosition; + const Attribute* fInQuadEdge; + GrColor fColor; + SkMatrix fLocalMatrix; + bool fUsesLocalCoords; + + GR_DECLARE_GEOMETRY_PROCESSOR_TEST; + + typedef GrGeometryProcessor INHERITED; +}; + +GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect); + +const GrGeometryProcessor* QuadEdgeEffect::TestCreate(GrProcessorTestData* d) { + // Doesn't work without derivative instructions. + return d->fCaps->shaderCaps()->shaderDerivativeSupport() ? + QuadEdgeEffect::Create(GrRandomColor(d->fRandom), + GrTest::TestMatrix(d->fRandom), + d->fRandom->nextBool()) : nullptr; +} + +/////////////////////////////////////////////////////////////////////////////// + +bool GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { + return (args.fShaderCaps->shaderDerivativeSupport() && args.fAntiAlias && + args.fStroke->isFillStyle() && !args.fPath->isInverseFillType() && + args.fPath->isConvex()); +} + +// extract the result vertices and indices from the GrAAConvexTessellator +static void extract_verts(const GrAAConvexTessellator& tess, + void* vertices, + size_t vertexStride, + GrColor color, + uint16_t* idxs, + bool tweakAlphaForCoverage) { + intptr_t verts = reinterpret_cast<intptr_t>(vertices); + + for (int i = 0; i < tess.numPts(); ++i) { + *((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i); + } + + // Make 'verts' point to the colors + verts += sizeof(SkPoint); + for (int i = 0; i < tess.numPts(); ++i) { + if (tweakAlphaForCoverage) { + SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255); + unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i)); + GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); + *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor; + } else { + *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; + *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = + tess.coverage(i); + } + } + + for (int i = 0; i < tess.numIndices(); ++i) { + idxs[i] = tess.index(i); + } +} + +static const GrGeometryProcessor* create_fill_gp(bool tweakAlphaForCoverage, + const SkMatrix& viewMatrix, + bool usesLocalCoords, + bool coverageIgnored) { + using namespace GrDefaultGeoProcFactory; + + Color color(Color::kAttribute_Type); + Coverage::Type coverageType; + // TODO remove coverage if coverage is ignored + /*if (coverageIgnored) { + coverageType = Coverage::kNone_Type; + } else*/ if (tweakAlphaForCoverage) { + coverageType = Coverage::kSolid_Type; + } else { + coverageType = Coverage::kAttribute_Type; + } + Coverage coverage(coverageType); + LocalCoords localCoords(usesLocalCoords ? LocalCoords::kUsePosition_Type : + LocalCoords::kUnused_Type); + return CreateForDeviceSpace(color, coverage, localCoords, viewMatrix); +} + +class AAConvexPathBatch : public GrVertexBatch { +public: + struct Geometry { + GrColor fColor; + SkMatrix fViewMatrix; + SkPath fPath; + }; + + static GrDrawBatch* Create(const Geometry& geometry) { return new AAConvexPathBatch(geometry); } + + const char* name() const override { return "AAConvexBatch"; } + + void getInvariantOutputColor(GrInitInvariantOutput* out) const override { + // When this is called on a batch, there is only one geometry bundle + out->setKnownFourComponents(fGeoData[0].fColor); + } + void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { + out->setUnknownSingleComponent(); + } + +private: + + void initBatchTracker(const GrPipelineOptimizations& opt) override { + // Handle any color overrides + if (!opt.readsColor()) { + fGeoData[0].fColor = GrColor_ILLEGAL; + } + opt.getOverrideColorIfSet(&fGeoData[0].fColor); + + // setup batch properties + fBatch.fColorIgnored = !opt.readsColor(); + fBatch.fColor = fGeoData[0].fColor; + fBatch.fUsesLocalCoords = opt.readsLocalCoords(); + fBatch.fCoverageIgnored = !opt.readsCoverage(); + fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks(); + fBatch.fCanTweakAlphaForCoverage = opt.canTweakAlphaForCoverage(); + } + + void prepareLinesOnlyDraws(Target* target) { + bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); + + // Setup GrGeometryProcessor + SkAutoTUnref<const GrGeometryProcessor> gp(create_fill_gp(canTweakAlphaForCoverage, + this->viewMatrix(), + this->usesLocalCoords(), + this->coverageIgnored())); + if (!gp) { + SkDebugf("Could not create GrGeometryProcessor\n"); + return; + } + + target->initDraw(gp, this->pipeline()); + + size_t vertexStride = gp->getVertexStride(); + + SkASSERT(canTweakAlphaForCoverage ? + vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : + vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); + + GrAAConvexTessellator tess; + + int instanceCount = fGeoData.count(); + + for (int i = 0; i < instanceCount; i++) { + tess.rewind(); + + Geometry& args = fGeoData[i]; + + if (!tess.tessellate(args.fViewMatrix, args.fPath)) { + continue; + } + + const GrVertexBuffer* vertexBuffer; + int firstVertex; + + void* verts = target->makeVertexSpace(vertexStride, tess.numPts(), &vertexBuffer, + &firstVertex); + if (!verts) { + SkDebugf("Could not allocate vertices\n"); + return; + } + + const GrIndexBuffer* indexBuffer; + int firstIndex; + + uint16_t* idxs = target->makeIndexSpace(tess.numIndices(), &indexBuffer, &firstIndex); + if (!idxs) { + SkDebugf("Could not allocate indices\n"); + return; + } + + extract_verts(tess, verts, vertexStride, args.fColor, idxs, canTweakAlphaForCoverage); + + GrVertices info; + info.initIndexed(kTriangles_GrPrimitiveType, + vertexBuffer, indexBuffer, + firstVertex, firstIndex, + tess.numPts(), tess.numIndices()); + target->draw(info); + } + } + + void onPrepareDraws(Target* target) override { +#ifndef SK_IGNORE_LINEONLY_AA_CONVEX_PATH_OPTS + if (this->linesOnly()) { + this->prepareLinesOnlyDraws(target); + return; + } +#endif + + int instanceCount = fGeoData.count(); + + SkMatrix invert; + if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) { + SkDebugf("Could not invert viewmatrix\n"); + return; + } + + // Setup GrGeometryProcessor + SkAutoTUnref<GrGeometryProcessor> quadProcessor( + QuadEdgeEffect::Create(this->color(), invert, this->usesLocalCoords())); + + target->initDraw(quadProcessor, this->pipeline()); + + // TODO generate all segments for all paths and use one vertex buffer + for (int i = 0; i < instanceCount; i++) { + Geometry& args = fGeoData[i]; + + // We use the fact that SkPath::transform path does subdivision based on + // perspective. Otherwise, we apply the view matrix when copying to the + // segment representation. + const SkMatrix* viewMatrix = &args.fViewMatrix; + if (viewMatrix->hasPerspective()) { + args.fPath.transform(*viewMatrix); + viewMatrix = &SkMatrix::I(); + } + + int vertexCount; + int indexCount; + enum { + kPreallocSegmentCnt = 512 / sizeof(Segment), + kPreallocDrawCnt = 4, + }; + SkSTArray<kPreallocSegmentCnt, Segment, true> segments; + SkPoint fanPt; + + if (!get_segments(args.fPath, *viewMatrix, &segments, &fanPt, &vertexCount, + &indexCount)) { + continue; + } + + const GrVertexBuffer* vertexBuffer; + int firstVertex; + + size_t vertexStride = quadProcessor->getVertexStride(); + QuadVertex* verts = reinterpret_cast<QuadVertex*>(target->makeVertexSpace( + vertexStride, vertexCount, &vertexBuffer, &firstVertex)); + + if (!verts) { + SkDebugf("Could not allocate vertices\n"); + return; + } + + const GrIndexBuffer* indexBuffer; + int firstIndex; + + uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); + if (!idxs) { + SkDebugf("Could not allocate indices\n"); + return; + } + + SkSTArray<kPreallocDrawCnt, Draw, true> draws; + create_vertices(segments, fanPt, &draws, verts, idxs); + + GrVertices vertices; + + for (int i = 0; i < draws.count(); ++i) { + const Draw& draw = draws[i]; + vertices.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, + firstVertex, firstIndex, draw.fVertexCnt, draw.fIndexCnt); + target->draw(vertices); + firstVertex += draw.fVertexCnt; + firstIndex += draw.fIndexCnt; + } + } + } + + SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } + + AAConvexPathBatch(const Geometry& geometry) { + this->initClassID<AAConvexPathBatch>(); + fGeoData.push_back(geometry); + + // compute bounds + fBounds = geometry.fPath.getBounds(); + geometry.fViewMatrix.mapRect(&fBounds); + } + + bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { + AAConvexPathBatch* that = t->cast<AAConvexPathBatch>(); + if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), + that->bounds(), caps)) { + return false; + } + + if (this->color() != that->color()) { + return false; + } + + SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); + if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { + return false; + } + + if (this->linesOnly() != that->linesOnly()) { + return false; + } + + // In the event of two batches, one who can tweak, one who cannot, we just fall back to + // not tweaking + if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { + fBatch.fCanTweakAlphaForCoverage = false; + } + + fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); + this->joinBounds(that->bounds()); + return true; + } + + GrColor color() const { return fBatch.fColor; } + bool linesOnly() const { return fBatch.fLinesOnly; } + bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } + bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } + const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } + bool coverageIgnored() const { return fBatch.fCoverageIgnored; } + + struct BatchTracker { + GrColor fColor; + bool fUsesLocalCoords; + bool fColorIgnored; + bool fCoverageIgnored; + bool fLinesOnly; + bool fCanTweakAlphaForCoverage; + }; + + BatchTracker fBatch; + SkSTArray<1, Geometry, true> fGeoData; +}; + +bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { + if (args.fPath->isEmpty()) { + return true; + } + + AAConvexPathBatch::Geometry geometry; + geometry.fColor = args.fColor; + geometry.fViewMatrix = *args.fViewMatrix; + geometry.fPath = *args.fPath; + + SkAutoTUnref<GrDrawBatch> batch(AAConvexPathBatch::Create(geometry)); + args.fTarget->drawBatch(*args.fPipelineBuilder, batch); + + return true; + +} + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +#ifdef GR_TEST_UTILS + +DRAW_BATCH_TEST_DEFINE(AAConvexPathBatch) { + AAConvexPathBatch::Geometry geometry; + geometry.fColor = GrRandomColor(random); + geometry.fViewMatrix = GrTest::TestMatrixInvertible(random); + geometry.fPath = GrTest::TestPathConvex(random); + + return AAConvexPathBatch::Create(geometry); +} + +#endif diff --git a/src/gpu/batches/GrAAConvexPathRenderer.h b/src/gpu/batches/GrAAConvexPathRenderer.h new file mode 100644 index 0000000000..5d51d6c98a --- /dev/null +++ b/src/gpu/batches/GrAAConvexPathRenderer.h @@ -0,0 +1,24 @@ + +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrAAConvexPathRenderer_DEFINED +#define GrAAConvexPathRenderer_DEFINED + +#include "GrPathRenderer.h" + +class GrAAConvexPathRenderer : public GrPathRenderer { +public: + GrAAConvexPathRenderer(); + +private: + bool onCanDrawPath(const CanDrawPathArgs&) const override; + + bool onDrawPath(const DrawPathArgs&) override; +}; + +#endif diff --git a/src/gpu/batches/GrAAConvexTessellator.cpp b/src/gpu/batches/GrAAConvexTessellator.cpp new file mode 100644 index 0000000000..c111b8b562 --- /dev/null +++ b/src/gpu/batches/GrAAConvexTessellator.cpp @@ -0,0 +1,1027 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrAAConvexTessellator.h" +#include "SkCanvas.h" +#include "SkPath.h" +#include "SkPoint.h" +#include "SkString.h" +#include "GrPathUtils.h" + +// Next steps: +// add an interactive sample app slide +// add debug check that all points are suitably far apart +// test more degenerate cases + +// The tolerance for fusing vertices and eliminating colinear lines (It is in device space). +static const SkScalar kClose = (SK_Scalar1 / 16); +static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); + +// tesselation tolerance values, in device space pixels +static const SkScalar kQuadTolerance = 0.2f; +static const SkScalar kCubicTolerance = 0.2f; +static const SkScalar kConicTolerance = 0.5f; + +// dot product below which we use a round cap between curve segments +static const SkScalar kRoundCapThreshold = 0.8f; + +static SkScalar intersect(const SkPoint& p0, const SkPoint& n0, + const SkPoint& p1, const SkPoint& n1) { + const SkPoint v = p1 - p0; + SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX; + return (v.fX * n1.fY - v.fY * n1.fX) / perpDot; +} + +// This is a special case version of intersect where we have the vector +// perpendicular to the second line rather than the vector parallel to it. +static SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0, + const SkPoint& p1, const SkPoint& perp) { + const SkPoint v = p1 - p0; + SkScalar perpDot = n0.dot(perp); + return v.dot(perp) / perpDot; +} + +static bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) { + SkScalar distSq = p0.distanceToSqd(p1); + return distSq < kCloseSqd; +} + +static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const SkPoint& test) { + SkPoint testV = test - p0; + SkScalar dist = testV.fX * v.fY - testV.fY * v.fX; + return SkScalarAbs(dist); +} + +int GrAAConvexTessellator::addPt(const SkPoint& pt, + SkScalar depth, + SkScalar coverage, + bool movable, + bool isCurve) { + this->validate(); + + int index = fPts.count(); + *fPts.push() = pt; + *fCoverages.push() = coverage; + *fMovable.push() = movable; + *fIsCurve.push() = isCurve; + + this->validate(); + return index; +} + +void GrAAConvexTessellator::popLastPt() { + this->validate(); + + fPts.pop(); + fCoverages.pop(); + fMovable.pop(); + + this->validate(); +} + +void GrAAConvexTessellator::popFirstPtShuffle() { + this->validate(); + + fPts.removeShuffle(0); + fCoverages.removeShuffle(0); + fMovable.removeShuffle(0); + + this->validate(); +} + +void GrAAConvexTessellator::updatePt(int index, + const SkPoint& pt, + SkScalar depth, + SkScalar coverage) { + this->validate(); + SkASSERT(fMovable[index]); + + fPts[index] = pt; + fCoverages[index] = coverage; +} + +void GrAAConvexTessellator::addTri(int i0, int i1, int i2) { + if (i0 == i1 || i1 == i2 || i2 == i0) { + return; + } + + *fIndices.push() = i0; + *fIndices.push() = i1; + *fIndices.push() = i2; +} + +void GrAAConvexTessellator::rewind() { + fPts.rewind(); + fCoverages.rewind(); + fMovable.rewind(); + fIndices.rewind(); + fNorms.rewind(); + fInitialRing.rewind(); + fCandidateVerts.rewind(); +#if GR_AA_CONVEX_TESSELLATOR_VIZ + fRings.rewind(); // TODO: leak in this case! +#else + fRings[0].rewind(); + fRings[1].rewind(); +#endif +} + +void GrAAConvexTessellator::computeBisectors() { + fBisectors.setCount(fNorms.count()); + + int prev = fBisectors.count() - 1; + for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) { + fBisectors[cur] = fNorms[cur] + fNorms[prev]; + if (!fBisectors[cur].normalize()) { + SkASSERT(SkPoint::kLeft_Side == fSide || SkPoint::kRight_Side == fSide); + fBisectors[cur].setOrthog(fNorms[cur], (SkPoint::Side)-fSide); + SkVector other; + other.setOrthog(fNorms[prev], fSide); + fBisectors[cur] += other; + SkAssertResult(fBisectors[cur].normalize()); + } else { + fBisectors[cur].negate(); // make the bisector face in + } + + SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length())); + } +} + +// Create as many rings as we need to (up to a predefined limit) to reach the specified target +// depth. If we are in fill mode, the final ring will automatically be fanned. +bool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth, + SkScalar initialCoverage, SkScalar targetDepth, + SkScalar targetCoverage, Ring** finalRing) { + static const int kMaxNumRings = 8; + + if (previousRing.numPts() < 3) { + return false; + } + Ring* currentRing = &previousRing; + int i; + for (i = 0; i < kMaxNumRings; ++i) { + Ring* nextRing = this->getNextRing(currentRing); + SkASSERT(nextRing != currentRing); + + bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage, + targetDepth, targetCoverage, i == 0); + currentRing = nextRing; + if (done) { + break; + } + currentRing->init(*this); + } + + if (kMaxNumRings == i) { + // Bail if we've exceeded the amount of time we want to throw at this. + this->terminate(*currentRing); + return false; + } + bool done = currentRing->numPts() >= 3; + if (done) { + currentRing->init(*this); + } + *finalRing = currentRing; + return done; +} + +// The general idea here is to, conceptually, start with the original polygon and slide +// the vertices along the bisectors until the first intersection. At that +// point two of the edges collapse and the process repeats on the new polygon. +// The polygon state is captured in the Ring class while the GrAAConvexTessellator +// controls the iteration. The CandidateVerts holds the formative points for the +// next ring. +bool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) { + if (!this->extractFromPath(m, path)) { + return false; + } + + SkScalar coverage = 1.0f; + SkScalar scaleFactor = 0.0f; + if (fStrokeWidth >= 0.0f) { + SkASSERT(m.isSimilarity()); + scaleFactor = m.getMaxScale(); // x and y scale are the same + SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; + Ring outerStrokeRing; + this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius, + coverage, &outerStrokeRing); + outerStrokeRing.init(*this); + Ring outerAARing; + this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing); + } else { + Ring outerAARing; + this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing); + } + + // the bisectors are only needed for the computation of the outer ring + fBisectors.rewind(); + if (fStrokeWidth >= 0.0f && fInitialRing.numPts() > 2) { + SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth; + Ring* insetStrokeRing; + SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius; + if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage, + &insetStrokeRing)) { + Ring* insetAARing; + this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth + + kAntialiasingRadius * 2, 0.0f, &insetAARing); + } + } else { + Ring* insetAARing; + this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing); + } + + SkDEBUGCODE(this->validate();) + return true; +} + +SkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const { + SkASSERT(edgeIdx < fNorms.count()); + + SkPoint v = p - fPts[edgeIdx]; + SkScalar depth = -fNorms[edgeIdx].dot(v); + return depth; +} + +// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies +// along the 'bisector' from the 'startIdx'-th point. +bool GrAAConvexTessellator::computePtAlongBisector(int startIdx, + const SkVector& bisector, + int edgeIdx, + SkScalar desiredDepth, + SkPoint* result) const { + const SkPoint& norm = fNorms[edgeIdx]; + + // First find the point where the edge and the bisector intersect + SkPoint newP; + + SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm); + if (SkScalarNearlyEqual(t, 0.0f)) { + // the start point was one of the original ring points + SkASSERT(startIdx < fPts.count()); + newP = fPts[startIdx]; + } else if (t < 0.0f) { + newP = bisector; + newP.scale(t); + newP += fPts[startIdx]; + } else { + return false; + } + + // Then offset along the bisector from that point the correct distance + SkScalar dot = bisector.dot(norm); + t = -desiredDepth / dot; + *result = bisector; + result->scale(t); + *result += newP; + + return true; +} + +bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) { + SkASSERT(SkPath::kConvex_Convexity == path.getConvexity()); + + // Outer ring: 3*numPts + // Middle ring: numPts + // Presumptive inner ring: numPts + this->reservePts(5*path.countPoints()); + // Outer ring: 12*numPts + // Middle ring: 0 + // Presumptive inner ring: 6*numPts + 6 + fIndices.setReserve(18*path.countPoints() + 6); + + fNorms.setReserve(path.countPoints()); + + // TODO: is there a faster way to extract the points from the path? Perhaps + // get all the points via a new entry point, transform them all in bulk + // and then walk them to find duplicates? + SkPath::Iter iter(path, true); + SkPoint pts[4]; + SkPath::Verb verb; + while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { + switch (verb) { + case SkPath::kLine_Verb: + this->lineTo(m, pts[1], false); + break; + case SkPath::kQuad_Verb: + this->quadTo(m, pts); + break; + case SkPath::kCubic_Verb: + this->cubicTo(m, pts); + break; + case SkPath::kConic_Verb: + this->conicTo(m, pts, iter.conicWeight()); + break; + case SkPath::kMove_Verb: + case SkPath::kClose_Verb: + case SkPath::kDone_Verb: + break; + } + } + + if (this->numPts() < 2) { + return false; + } + + // check if last point is a duplicate of the first point. If so, remove it. + if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) { + this->popLastPt(); + fNorms.pop(); + } + + SkASSERT(fPts.count() == fNorms.count()+1); + if (this->numPts() >= 3) { + if (abs_dist_from_line(fPts.top(), fNorms.top(), fPts[0]) < kClose) { + // The last point is on the line from the second to last to the first point. + this->popLastPt(); + fNorms.pop(); + } + + *fNorms.push() = fPts[0] - fPts.top(); + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); + SkASSERT(len > 0.0f); + SkASSERT(fPts.count() == fNorms.count()); + } + + if (this->numPts() >= 3 && abs_dist_from_line(fPts[0], fNorms.top(), fPts[1]) < kClose) { + // The first point is on the line from the last to the second. + this->popFirstPtShuffle(); + fNorms.removeShuffle(0); + fNorms[0] = fPts[1] - fPts[0]; + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms[0]); + SkASSERT(len > 0.0f); + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length())); + } + + if (this->numPts() >= 3) { + // Check the cross product of the final trio + SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top()); + if (cross > 0.0f) { + fSide = SkPoint::kRight_Side; + } else { + fSide = SkPoint::kLeft_Side; + } + + // Make all the normals face outwards rather than along the edge + for (int cur = 0; cur < fNorms.count(); ++cur) { + fNorms[cur].setOrthog(fNorms[cur], fSide); + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); + } + + this->computeBisectors(); + } else if (this->numPts() == 2) { + // We've got two points, so we're degenerate. + if (fStrokeWidth < 0.0f) { + // it's a fill, so we don't need to worry about degenerate paths + return false; + } + // For stroking, we still need to process the degenerate path, so fix it up + fSide = SkPoint::kLeft_Side; + + // Make all the normals face outwards rather than along the edge + for (int cur = 0; cur < fNorms.count(); ++cur) { + fNorms[cur].setOrthog(fNorms[cur], fSide); + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[cur].length())); + } + + fNorms.push(SkPoint::Make(-fNorms[0].fX, -fNorms[0].fY)); + // we won't actually use the bisectors, so just push zeroes + fBisectors.push(SkPoint::Make(0.0, 0.0)); + fBisectors.push(SkPoint::Make(0.0, 0.0)); + } else { + return false; + } + + fCandidateVerts.setReserve(this->numPts()); + fInitialRing.setReserve(this->numPts()); + for (int i = 0; i < this->numPts(); ++i) { + fInitialRing.addIdx(i, i); + } + fInitialRing.init(fNorms, fBisectors); + + this->validate(); + return true; +} + +GrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) { +#if GR_AA_CONVEX_TESSELLATOR_VIZ + Ring* ring = *fRings.push() = new Ring; + ring->setReserve(fInitialRing.numPts()); + ring->rewind(); + return ring; +#else + // Flip flop back and forth between fRings[0] & fRings[1] + int nextRing = (lastRing == &fRings[0]) ? 1 : 0; + fRings[nextRing].setReserve(fInitialRing.numPts()); + fRings[nextRing].rewind(); + return &fRings[nextRing]; +#endif +} + +void GrAAConvexTessellator::fanRing(const Ring& ring) { + // fan out from point 0 + int startIdx = ring.index(0); + for (int cur = ring.numPts() - 2; cur >= 0; --cur) { + this->addTri(startIdx, ring.index(cur), ring.index(cur + 1)); + } +} + +void GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset, + SkScalar coverage, Ring* nextRing) { + const int numPts = previousRing.numPts(); + if (numPts == 0) { + return; + } + + int prev = numPts - 1; + int lastPerpIdx = -1, firstPerpIdx = -1; + + const SkScalar outsetSq = SkScalarMul(outset, outset); + SkScalar miterLimitSq = SkScalarMul(outset, fMiterLimit); + miterLimitSq = SkScalarMul(miterLimitSq, miterLimitSq); + for (int cur = 0; cur < numPts; ++cur) { + int originalIdx = previousRing.index(cur); + // For each vertex of the original polygon we add at least two points to the + // outset polygon - one extending perpendicular to each impinging edge. Connecting these + // two points yields a bevel join. We need one additional point for a mitered join, and + // a round join requires one or more points depending upon curvature. + + // The perpendicular point for the last edge + SkPoint normal1 = previousRing.norm(prev); + SkPoint perp1 = normal1; + perp1.scale(outset); + perp1 += this->point(originalIdx); + + // The perpendicular point for the next edge. + SkPoint normal2 = previousRing.norm(cur); + SkPoint perp2 = normal2; + perp2.scale(outset); + perp2 += fPts[originalIdx]; + + bool isCurve = fIsCurve[originalIdx]; + + // We know it isn't a duplicate of the prior point (since it and this + // one are just perpendicular offsets from the non-merged polygon points) + int perp1Idx = this->addPt(perp1, -outset, coverage, false, isCurve); + nextRing->addIdx(perp1Idx, originalIdx); + + int perp2Idx; + // For very shallow angles all the corner points could fuse. + if (duplicate_pt(perp2, this->point(perp1Idx))) { + perp2Idx = perp1Idx; + } else { + perp2Idx = this->addPt(perp2, -outset, coverage, false, isCurve); + } + + if (perp2Idx != perp1Idx) { + if (isCurve) { + // bevel or round depending upon curvature + SkScalar dotProd = normal1.dot(normal2); + if (dotProd < kRoundCapThreshold) { + // Currently we "round" by creating a single extra point, which produces + // good results for common cases. For thick strokes with high curvature, we will + // need to add more points; for the time being we simply fall back to software + // rendering for thick strokes. + SkPoint miter = previousRing.bisector(cur); + miter.setLength(-outset); + miter += fPts[originalIdx]; + + // For very shallow angles all the corner points could fuse + if (!duplicate_pt(miter, this->point(perp1Idx))) { + int miterIdx; + miterIdx = this->addPt(miter, -outset, coverage, false, false); + nextRing->addIdx(miterIdx, originalIdx); + // The two triangles for the corner + this->addTri(originalIdx, perp1Idx, miterIdx); + this->addTri(originalIdx, miterIdx, perp2Idx); + } + } else { + this->addTri(originalIdx, perp1Idx, perp2Idx); + } + } else { + switch (fJoin) { + case SkPaint::Join::kMiter_Join: { + // The bisector outset point + SkPoint miter = previousRing.bisector(cur); + SkScalar dotProd = normal1.dot(normal2); + SkScalar sinHalfAngleSq = SkScalarHalf(SK_Scalar1 + dotProd); + SkScalar lengthSq = outsetSq / sinHalfAngleSq; + if (lengthSq > miterLimitSq) { + // just bevel it + this->addTri(originalIdx, perp1Idx, perp2Idx); + break; + } + miter.setLength(-SkScalarSqrt(lengthSq)); + miter += fPts[originalIdx]; + + // For very shallow angles all the corner points could fuse + if (!duplicate_pt(miter, this->point(perp1Idx))) { + int miterIdx; + miterIdx = this->addPt(miter, -outset, coverage, false, false); + nextRing->addIdx(miterIdx, originalIdx); + // The two triangles for the corner + this->addTri(originalIdx, perp1Idx, miterIdx); + this->addTri(originalIdx, miterIdx, perp2Idx); + } + break; + } + case SkPaint::Join::kBevel_Join: + this->addTri(originalIdx, perp1Idx, perp2Idx); + break; + default: + // kRound_Join is unsupported for now. GrAALinearizingConvexPathRenderer is + // only willing to draw mitered or beveled, so we should never get here. + SkASSERT(false); + } + } + + nextRing->addIdx(perp2Idx, originalIdx); + } + + if (0 == cur) { + // Store the index of the first perpendicular point to finish up + firstPerpIdx = perp1Idx; + SkASSERT(-1 == lastPerpIdx); + } else { + // The triangles for the previous edge + int prevIdx = previousRing.index(prev); + this->addTri(prevIdx, perp1Idx, originalIdx); + this->addTri(prevIdx, lastPerpIdx, perp1Idx); + } + + // Track the last perpendicular outset point so we can construct the + // trailing edge triangles. + lastPerpIdx = perp2Idx; + prev = cur; + } + + // pick up the final edge rect + int lastIdx = previousRing.index(numPts - 1); + this->addTri(lastIdx, firstPerpIdx, previousRing.index(0)); + this->addTri(lastIdx, lastPerpIdx, firstPerpIdx); + + this->validate(); +} + +// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead +// and fan it. +void GrAAConvexTessellator::terminate(const Ring& ring) { + if (fStrokeWidth < 0.0f) { + this->fanRing(ring); + } +} + +static SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage, + SkScalar targetDepth, SkScalar targetCoverage) { + if (SkScalarNearlyEqual(initialDepth, targetDepth)) { + return targetCoverage; + } + SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) * + (targetCoverage - initialCoverage) + initialCoverage; + return SkScalarClampMax(result, 1.0f); +} + +// return true when processing is complete +bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing, + SkScalar initialDepth, SkScalar initialCoverage, + SkScalar targetDepth, SkScalar targetCoverage, + bool forceNew) { + bool done = false; + + fCandidateVerts.rewind(); + + // Loop through all the points in the ring and find the intersection with the smallest depth + SkScalar minDist = SK_ScalarMax, minT = 0.0f; + int minEdgeIdx = -1; + + for (int cur = 0; cur < lastRing.numPts(); ++cur) { + int next = (cur + 1) % lastRing.numPts(); + SkScalar t = intersect(this->point(lastRing.index(cur)), lastRing.bisector(cur), + this->point(lastRing.index(next)), lastRing.bisector(next)); + SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur)); + + if (minDist > dist) { + minDist = dist; + minT = t; + minEdgeIdx = cur; + } + } + + if (minEdgeIdx == -1) { + return false; + } + SkPoint newPt = lastRing.bisector(minEdgeIdx); + newPt.scale(minT); + newPt += this->point(lastRing.index(minEdgeIdx)); + + SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt); + if (depth >= targetDepth) { + // None of the bisectors intersect before reaching the desired depth. + // Just step them all to the desired depth + depth = targetDepth; + done = true; + } + + // 'dst' stores where each point in the last ring maps to/transforms into + // in the next ring. + SkTDArray<int> dst; + dst.setCount(lastRing.numPts()); + + // Create the first point (who compares with no one) + if (!this->computePtAlongBisector(lastRing.index(0), + lastRing.bisector(0), + lastRing.origEdgeID(0), + depth, &newPt)) { + this->terminate(lastRing); + return true; + } + dst[0] = fCandidateVerts.addNewPt(newPt, + lastRing.index(0), lastRing.origEdgeID(0), + !this->movable(lastRing.index(0))); + + // Handle the middle points (who only compare with the prior point) + for (int cur = 1; cur < lastRing.numPts()-1; ++cur) { + if (!this->computePtAlongBisector(lastRing.index(cur), + lastRing.bisector(cur), + lastRing.origEdgeID(cur), + depth, &newPt)) { + this->terminate(lastRing); + return true; + } + if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) { + dst[cur] = fCandidateVerts.addNewPt(newPt, + lastRing.index(cur), lastRing.origEdgeID(cur), + !this->movable(lastRing.index(cur))); + } else { + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); + } + } + + // Check on the last point (handling the wrap around) + int cur = lastRing.numPts()-1; + if (!this->computePtAlongBisector(lastRing.index(cur), + lastRing.bisector(cur), + lastRing.origEdgeID(cur), + depth, &newPt)) { + this->terminate(lastRing); + return true; + } + bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint()); + bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint()); + + if (!dupPrev && !dupNext) { + dst[cur] = fCandidateVerts.addNewPt(newPt, + lastRing.index(cur), lastRing.origEdgeID(cur), + !this->movable(lastRing.index(cur))); + } else if (dupPrev && !dupNext) { + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); + } else if (!dupPrev && dupNext) { + dst[cur] = fCandidateVerts.fuseWithNext(); + } else { + bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint()); + + if (!dupPrevVsNext) { + dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur)); + } else { + const int fused = fCandidateVerts.fuseWithBoth(); + dst[cur] = fused; + const int targetIdx = dst[cur - 1]; + for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) { + dst[i] = fused; + } + } + } + + // Fold the new ring's points into the global pool + for (int i = 0; i < fCandidateVerts.numPts(); ++i) { + int newIdx; + if (fCandidateVerts.needsToBeNew(i) || forceNew) { + // if the originating index is still valid then this point wasn't + // fused (and is thus movable) + SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage, + targetDepth, targetCoverage); + newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage, + fCandidateVerts.originatingIdx(i) != -1, false); + } else { + SkASSERT(fCandidateVerts.originatingIdx(i) != -1); + this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth, + targetCoverage); + newIdx = fCandidateVerts.originatingIdx(i); + } + + nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i)); + } + + // 'dst' currently has indices into the ring. Remap these to be indices + // into the global pool since the triangulation operates in that space. + for (int i = 0; i < dst.count(); ++i) { + dst[i] = nextRing->index(dst[i]); + } + + for (int cur = 0; cur < lastRing.numPts(); ++cur) { + int next = (cur + 1) % lastRing.numPts(); + + this->addTri(lastRing.index(cur), lastRing.index(next), dst[next]); + this->addTri(lastRing.index(cur), dst[next], dst[cur]); + } + + if (done && fStrokeWidth < 0.0f) { + // fill + this->fanRing(*nextRing); + } + + if (nextRing->numPts() < 3) { + done = true; + } + return done; +} + +void GrAAConvexTessellator::validate() const { + SkASSERT(fPts.count() == fMovable.count()); + SkASSERT(0 == (fIndices.count() % 3)); +} + +////////////////////////////////////////////////////////////////////////////// +void GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) { + this->computeNormals(tess); + this->computeBisectors(tess); +} + +void GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms, + const SkTDArray<SkVector>& bisectors) { + for (int i = 0; i < fPts.count(); ++i) { + fPts[i].fNorm = norms[i]; + fPts[i].fBisector = bisectors[i]; + } +} + +// Compute the outward facing normal at each vertex. +void GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) { + for (int cur = 0; cur < fPts.count(); ++cur) { + int next = (cur + 1) % fPts.count(); + + fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex); + SkPoint::Normalize(&fPts[cur].fNorm); + fPts[cur].fNorm.setOrthog(fPts[cur].fNorm, tess.side()); + } +} + +void GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) { + int prev = fPts.count() - 1; + for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) { + fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm; + if (!fPts[cur].fBisector.normalize()) { + SkASSERT(SkPoint::kLeft_Side == tess.side() || SkPoint::kRight_Side == tess.side()); + fPts[cur].fBisector.setOrthog(fPts[cur].fNorm, (SkPoint::Side)-tess.side()); + SkVector other; + other.setOrthog(fPts[prev].fNorm, tess.side()); + fPts[cur].fBisector += other; + SkAssertResult(fPts[cur].fBisector.normalize()); + } else { + fPts[cur].fBisector.negate(); // make the bisector face in + } + } +} + +////////////////////////////////////////////////////////////////////////////// +#ifdef SK_DEBUG +// Is this ring convex? +bool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const { + if (fPts.count() < 3) { + return true; + } + + SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex); + SkPoint cur = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex); + SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX; + SkScalar maxDot = minDot; + + prev = cur; + for (int i = 1; i < fPts.count(); ++i) { + int next = (i + 1) % fPts.count(); + + cur = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex); + SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX; + + minDot = SkMinScalar(minDot, dot); + maxDot = SkMaxScalar(maxDot, dot); + + prev = cur; + } + + if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) { + maxDot = 0; + } + if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) { + minDot = 0; + } + return (maxDot >= 0.0f) == (minDot >= 0.0f); +} + +#endif + +void GrAAConvexTessellator::lineTo(SkPoint p, bool isCurve) { + if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) { + return; + } + + SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1); + if (this->numPts() >= 2 && + abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) { + // The old last point is on the line from the second to last to the new point + this->popLastPt(); + fNorms.pop(); + fIsCurve.pop(); + } + SkScalar initialRingCoverage = fStrokeWidth < 0.0f ? 0.5f : 1.0f; + this->addPt(p, 0.0f, initialRingCoverage, false, isCurve); + if (this->numPts() > 1) { + *fNorms.push() = fPts.top() - fPts[fPts.count()-2]; + SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top()); + SkASSERT(len > 0.0f); + SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length())); + } +} + +void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) { + m.mapPoints(&p, 1); + this->lineTo(p, isCurve); +} + +void GrAAConvexTessellator::quadTo(SkPoint pts[3]) { + int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance); + fPointBuffer.setReserve(maxCount); + SkPoint* target = fPointBuffer.begin(); + int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2], + kQuadTolerance, &target, maxCount); + fPointBuffer.setCount(count); + for (int i = 0; i < count; i++) { + lineTo(fPointBuffer[i], true); + } +} + +void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) { + SkPoint transformed[3]; + transformed[0] = pts[0]; + transformed[1] = pts[1]; + transformed[2] = pts[2]; + m.mapPoints(transformed, 3); + quadTo(transformed); +} + +void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) { + m.mapPoints(pts, 4); + int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance); + fPointBuffer.setReserve(maxCount); + SkPoint* target = fPointBuffer.begin(); + int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3], + kCubicTolerance, &target, maxCount); + fPointBuffer.setCount(count); + for (int i = 0; i < count; i++) { + lineTo(fPointBuffer[i], true); + } +} + +// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h +#include "SkGeometry.h" + +void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w) { + m.mapPoints(pts, 3); + SkAutoConicToQuads quadder; + const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance); + SkPoint lastPoint = *(quads++); + int count = quadder.countQuads(); + for (int i = 0; i < count; ++i) { + SkPoint quadPts[3]; + quadPts[0] = lastPoint; + quadPts[1] = quads[0]; + quadPts[2] = i == count - 1 ? pts[2] : quads[1]; + quadTo(quadPts); + lastPoint = quadPts[2]; + quads += 2; + } +} + +////////////////////////////////////////////////////////////////////////////// +#if GR_AA_CONVEX_TESSELLATOR_VIZ +static const SkScalar kPointRadius = 0.02f; +static const SkScalar kArrowStrokeWidth = 0.0f; +static const SkScalar kArrowLength = 0.2f; +static const SkScalar kEdgeTextSize = 0.1f; +static const SkScalar kPointTextSize = 0.02f; + +static void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) { + SkPaint paint; + SkASSERT(paramValue <= 1.0f); + int gs = int(255*paramValue); + paint.setARGB(255, gs, gs, gs); + + canvas->drawCircle(p.fX, p.fY, kPointRadius, paint); + + if (stroke) { + SkPaint stroke; + stroke.setColor(SK_ColorYELLOW); + stroke.setStyle(SkPaint::kStroke_Style); + stroke.setStrokeWidth(kPointRadius/3.0f); + canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke); + } +} + +static void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) { + SkPaint p; + p.setColor(color); + + canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p); +} + +static void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n, + SkScalar len, SkColor color) { + SkPaint paint; + paint.setColor(color); + paint.setStrokeWidth(kArrowStrokeWidth); + paint.setStyle(SkPaint::kStroke_Style); + + canvas->drawLine(p.fX, p.fY, + p.fX + len * n.fX, p.fY + len * n.fY, + paint); +} + +void GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const { + SkPaint paint; + paint.setTextSize(kEdgeTextSize); + + for (int cur = 0; cur < fPts.count(); ++cur) { + int next = (cur + 1) % fPts.count(); + + draw_line(canvas, + tess.point(fPts[cur].fIndex), + tess.point(fPts[next].fIndex), + SK_ColorGREEN); + + SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex); + mid.scale(0.5f); + + if (fPts.count()) { + draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED); + mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX; + mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY; + } + + SkString num; + num.printf("%d", this->origEdgeID(cur)); + canvas->drawText(num.c_str(), num.size(), mid.fX, mid.fY, paint); + + if (fPts.count()) { + draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector, + kArrowLength, SK_ColorBLUE); + } + } +} + +void GrAAConvexTessellator::draw(SkCanvas* canvas) const { + for (int i = 0; i < fIndices.count(); i += 3) { + SkASSERT(fIndices[i] < this->numPts()) ; + SkASSERT(fIndices[i+1] < this->numPts()) ; + SkASSERT(fIndices[i+2] < this->numPts()) ; + + draw_line(canvas, + this->point(this->fIndices[i]), this->point(this->fIndices[i+1]), + SK_ColorBLACK); + draw_line(canvas, + this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]), + SK_ColorBLACK); + draw_line(canvas, + this->point(this->fIndices[i+2]), this->point(this->fIndices[i]), + SK_ColorBLACK); + } + + fInitialRing.draw(canvas, *this); + for (int i = 0; i < fRings.count(); ++i) { + fRings[i]->draw(canvas, *this); + } + + for (int i = 0; i < this->numPts(); ++i) { + draw_point(canvas, + this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)), + !this->movable(i)); + + SkPaint paint; + paint.setTextSize(kPointTextSize); + paint.setTextAlign(SkPaint::kCenter_Align); + if (this->depth(i) <= -kAntialiasingRadius) { + paint.setColor(SK_ColorWHITE); + } + + SkString num; + num.printf("%d", i); + canvas->drawText(num.c_str(), num.size(), + this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f), + paint); + } +} + +#endif + diff --git a/src/gpu/batches/GrAAConvexTessellator.h b/src/gpu/batches/GrAAConvexTessellator.h new file mode 100644 index 0000000000..f3d84dc8ad --- /dev/null +++ b/src/gpu/batches/GrAAConvexTessellator.h @@ -0,0 +1,270 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrAAConvexTessellator_DEFINED +#define GrAAConvexTessellator_DEFINED + +#include "SkColor.h" +#include "SkPaint.h" +#include "SkPoint.h" +#include "SkScalar.h" +#include "SkTDArray.h" + +class SkCanvas; +class SkMatrix; +class SkPath; + +//#define GR_AA_CONVEX_TESSELLATOR_VIZ 1 + +// device space distance which we inset / outset points in order to create the soft antialiased edge +static const SkScalar kAntialiasingRadius = 0.5f; + +class GrAAConvexTessellator; + +// The AAConvexTessellator holds the global pool of points and the triangulation +// that connects them. It also drives the tessellation process. +// The outward facing normals of the original polygon are stored (in 'fNorms') to service +// computeDepthFromEdge requests. +class GrAAConvexTessellator { +public: + GrAAConvexTessellator(SkScalar strokeWidth = -1.0f, + SkPaint::Join join = SkPaint::Join::kBevel_Join, + SkScalar miterLimit = 0.0f) + : fSide(SkPoint::kOn_Side) + , fStrokeWidth(strokeWidth) + , fJoin(join) + , fMiterLimit(miterLimit) { + } + + SkPoint::Side side() const { return fSide; } + + bool tessellate(const SkMatrix& m, const SkPath& path); + + // The next five should only be called after tessellate to extract the result + int numPts() const { return fPts.count(); } + int numIndices() const { return fIndices.count(); } + + const SkPoint& lastPoint() const { return fPts.top(); } + const SkPoint& point(int index) const { return fPts[index]; } + int index(int index) const { return fIndices[index]; } + SkScalar coverage(int index) const { return fCoverages[index]; } + +#if GR_AA_CONVEX_TESSELLATOR_VIZ + void draw(SkCanvas* canvas) const; +#endif + + // The tessellator can be reused for multiple paths by rewinding in between + void rewind(); + +private: + // CandidateVerts holds the vertices for the next ring while they are + // being generated. Its main function is to de-dup the points. + class CandidateVerts { + public: + void setReserve(int numPts) { fPts.setReserve(numPts); } + void rewind() { fPts.rewind(); } + + int numPts() const { return fPts.count(); } + + const SkPoint& lastPoint() const { return fPts.top().fPt; } + const SkPoint& firstPoint() const { return fPts[0].fPt; } + const SkPoint& point(int index) const { return fPts[index].fPt; } + + int originatingIdx(int index) const { return fPts[index].fOriginatingIdx; } + int origEdge(int index) const { return fPts[index].fOrigEdgeId; } + bool needsToBeNew(int index) const { return fPts[index].fNeedsToBeNew; } + + int addNewPt(const SkPoint& newPt, int originatingIdx, int origEdge, bool needsToBeNew) { + struct PointData* pt = fPts.push(); + pt->fPt = newPt; + pt->fOrigEdgeId = origEdge; + pt->fOriginatingIdx = originatingIdx; + pt->fNeedsToBeNew = needsToBeNew; + return fPts.count() - 1; + } + + int fuseWithPrior(int origEdgeId) { + fPts.top().fOrigEdgeId = origEdgeId; + fPts.top().fOriginatingIdx = -1; + fPts.top().fNeedsToBeNew = true; + return fPts.count() - 1; + } + + int fuseWithNext() { + fPts[0].fOriginatingIdx = -1; + fPts[0].fNeedsToBeNew = true; + return 0; + } + + int fuseWithBoth() { + if (fPts.count() > 1) { + fPts.pop(); + } + + fPts[0].fOriginatingIdx = -1; + fPts[0].fNeedsToBeNew = true; + return 0; + } + + private: + struct PointData { + SkPoint fPt; + int fOriginatingIdx; + int fOrigEdgeId; + bool fNeedsToBeNew; + }; + + SkTDArray<struct PointData> fPts; + }; + + // The Ring holds a set of indices into the global pool that together define + // a single polygon inset. + class Ring { + public: + void setReserve(int numPts) { fPts.setReserve(numPts); } + void rewind() { fPts.rewind(); } + + int numPts() const { return fPts.count(); } + + void addIdx(int index, int origEdgeId) { + struct PointData* pt = fPts.push(); + pt->fIndex = index; + pt->fOrigEdgeId = origEdgeId; + } + + // init should be called after all the indices have been added (via addIdx) + void init(const GrAAConvexTessellator& tess); + void init(const SkTDArray<SkVector>& norms, const SkTDArray<SkVector>& bisectors); + + const SkPoint& norm(int index) const { return fPts[index].fNorm; } + const SkPoint& bisector(int index) const { return fPts[index].fBisector; } + int index(int index) const { return fPts[index].fIndex; } + int origEdgeID(int index) const { return fPts[index].fOrigEdgeId; } + void setOrigEdgeId(int index, int id) { fPts[index].fOrigEdgeId = id; } + + #if GR_AA_CONVEX_TESSELLATOR_VIZ + void draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const; + #endif + + private: + void computeNormals(const GrAAConvexTessellator& result); + void computeBisectors(const GrAAConvexTessellator& tess); + + SkDEBUGCODE(bool isConvex(const GrAAConvexTessellator& tess) const;) + + struct PointData { + SkPoint fNorm; + SkPoint fBisector; + int fIndex; + int fOrigEdgeId; + }; + + SkTDArray<PointData> fPts; + }; + + bool movable(int index) const { return fMovable[index]; } + + // Movable points are those that can be slid along their bisector. + // Basically, a point is immovable if it is part of the original + // polygon or it results from the fusing of two bisectors. + int addPt(const SkPoint& pt, SkScalar depth, SkScalar coverage, bool movable, bool isCurve); + void popLastPt(); + void popFirstPtShuffle(); + + void updatePt(int index, const SkPoint& pt, SkScalar depth, SkScalar coverage); + + void addTri(int i0, int i1, int i2); + + void reservePts(int count) { + fPts.setReserve(count); + fCoverages.setReserve(count); + fMovable.setReserve(count); + } + + SkScalar computeDepthFromEdge(int edgeIdx, const SkPoint& p) const; + + bool computePtAlongBisector(int startIdx, const SkPoint& bisector, + int edgeIdx, SkScalar desiredDepth, + SkPoint* result) const; + + void lineTo(SkPoint p, bool isCurve); + + void lineTo(const SkMatrix& m, SkPoint p, bool isCurve); + + void quadTo(SkPoint pts[3]); + + void quadTo(const SkMatrix& m, SkPoint pts[3]); + + void cubicTo(const SkMatrix& m, SkPoint pts[4]); + + void conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w); + + void terminate(const Ring& lastRing); + + // return false on failure/degenerate path + bool extractFromPath(const SkMatrix& m, const SkPath& path); + void computeBisectors(); + + void fanRing(const Ring& ring); + + Ring* getNextRing(Ring* lastRing); + + void createOuterRing(const Ring& previousRing, SkScalar outset, SkScalar coverage, + Ring* nextRing); + + bool createInsetRings(Ring& previousRing, SkScalar initialDepth, SkScalar initialCoverage, + SkScalar targetDepth, SkScalar targetCoverage, Ring** finalRing); + + bool createInsetRing(const Ring& lastRing, Ring* nextRing, + SkScalar initialDepth, SkScalar initialCoverage, SkScalar targetDepth, + SkScalar targetCoverage, bool forceNew); + + void validate() const; + + // fPts, fCoverages & fMovable should always have the same # of elements + SkTDArray<SkPoint> fPts; + SkTDArray<SkScalar> fCoverages; + // movable points are those that can be slid further along their bisector + SkTDArray<bool> fMovable; + + // The outward facing normals for the original polygon + SkTDArray<SkVector> fNorms; + // The inward facing bisector at each point in the original polygon. Only + // needed for exterior ring creation and then handed off to the initial ring. + SkTDArray<SkVector> fBisectors; + + // Tracks whether a given point is interior to a curve. Such points are + // assumed to have shallow curvature. + SkTDArray<bool> fIsCurve; + + SkPoint::Side fSide; // winding of the original polygon + + // The triangulation of the points + SkTDArray<int> fIndices; + + Ring fInitialRing; +#if GR_AA_CONVEX_TESSELLATOR_VIZ + // When visualizing save all the rings + SkTDArray<Ring*> fRings; +#else + Ring fRings[2]; +#endif + CandidateVerts fCandidateVerts; + + // < 0 means filling rather than stroking + SkScalar fStrokeWidth; + + SkPaint::Join fJoin; + + SkScalar fMiterLimit; + + SkTDArray<SkPoint> fPointBuffer; +}; + + +#endif + diff --git a/src/gpu/batches/GrAADistanceFieldPathRenderer.cpp b/src/gpu/batches/GrAADistanceFieldPathRenderer.cpp new file mode 100644 index 0000000000..45a3d65179 --- /dev/null +++ b/src/gpu/batches/GrAADistanceFieldPathRenderer.cpp @@ -0,0 +1,626 @@ + +/* + * Copyright 2014 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrAADistanceFieldPathRenderer.h" + +#include "GrBatchFlushState.h" +#include "GrBatchTest.h" +#include "GrContext.h" +#include "GrPipelineBuilder.h" +#include "GrResourceProvider.h" +#include "GrSurfacePriv.h" +#include "GrSWMaskHelper.h" +#include "GrTexturePriv.h" +#include "GrVertexBuffer.h" +#include "batches/GrVertexBatch.h" +#include "effects/GrDistanceFieldGeoProc.h" + +#include "SkDistanceFieldGen.h" +#include "SkRTConf.h" + +#define ATLAS_TEXTURE_WIDTH 1024 +#define ATLAS_TEXTURE_HEIGHT 2048 +#define PLOT_WIDTH 256 +#define PLOT_HEIGHT 256 + +#define NUM_PLOTS_X (ATLAS_TEXTURE_WIDTH / PLOT_WIDTH) +#define NUM_PLOTS_Y (ATLAS_TEXTURE_HEIGHT / PLOT_HEIGHT) + +#ifdef DF_PATH_TRACKING +static int g_NumCachedPaths = 0; +static int g_NumFreedPaths = 0; +#endif + +// mip levels +static const int kSmallMIP = 32; +static const int kMediumMIP = 78; +static const int kLargeMIP = 192; + +// Callback to clear out internal path cache when eviction occurs +void GrAADistanceFieldPathRenderer::HandleEviction(GrBatchAtlas::AtlasID id, void* pr) { + GrAADistanceFieldPathRenderer* dfpr = (GrAADistanceFieldPathRenderer*)pr; + // remove any paths that use this plot + PathDataList::Iter iter; + iter.init(dfpr->fPathList, PathDataList::Iter::kHead_IterStart); + PathData* pathData; + while ((pathData = iter.get())) { + iter.next(); + if (id == pathData->fID) { + dfpr->fPathCache.remove(pathData->fKey); + dfpr->fPathList.remove(pathData); + delete pathData; +#ifdef DF_PATH_TRACKING + ++g_NumFreedPaths; +#endif + } + } +} + +//////////////////////////////////////////////////////////////////////////////// +GrAADistanceFieldPathRenderer::GrAADistanceFieldPathRenderer() : fAtlas(nullptr) {} + +GrAADistanceFieldPathRenderer::~GrAADistanceFieldPathRenderer() { + PathDataList::Iter iter; + iter.init(fPathList, PathDataList::Iter::kHead_IterStart); + PathData* pathData; + while ((pathData = iter.get())) { + iter.next(); + fPathList.remove(pathData); + delete pathData; + } + delete fAtlas; + +#ifdef DF_PATH_TRACKING + SkDebugf("Cached paths: %d, freed paths: %d\n", g_NumCachedPaths, g_NumFreedPaths); +#endif +} + +//////////////////////////////////////////////////////////////////////////////// +bool GrAADistanceFieldPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { + + // TODO: Support inverse fill + // TODO: Support strokes + if (!args.fShaderCaps->shaderDerivativeSupport() || !args.fAntiAlias || + args.fPath->isInverseFillType() || args.fPath->isVolatile() || + !args.fStroke->isFillStyle()) { + return false; + } + + // currently don't support perspective + if (args.fViewMatrix->hasPerspective()) { + return false; + } + + // only support paths smaller than 64x64, scaled to less than 256x256 + // the goal is to accelerate rendering of lots of small paths that may be scaling + SkScalar maxScale = args.fViewMatrix->getMaxScale(); + const SkRect& bounds = args.fPath->getBounds(); + SkScalar maxDim = SkMaxScalar(bounds.width(), bounds.height()); + return maxDim < 64.f && maxDim * maxScale < 256.f; +} + +//////////////////////////////////////////////////////////////////////////////// + +// padding around path bounds to allow for antialiased pixels +static const SkScalar kAntiAliasPad = 1.0f; + +class AADistanceFieldPathBatch : public GrVertexBatch { +public: + typedef GrAADistanceFieldPathRenderer::PathData PathData; + typedef SkTDynamicHash<PathData, PathData::Key> PathCache; + typedef GrAADistanceFieldPathRenderer::PathDataList PathDataList; + + struct Geometry { + Geometry(const SkStrokeRec& stroke) : fStroke(stroke) {} + SkPath fPath; + SkStrokeRec fStroke; + bool fAntiAlias; + PathData* fPathData; + }; + + static GrDrawBatch* Create(const Geometry& geometry, GrColor color, const SkMatrix& viewMatrix, + GrBatchAtlas* atlas, PathCache* pathCache, PathDataList* pathList) { + return new AADistanceFieldPathBatch(geometry, color, viewMatrix, atlas, pathCache, + pathList); + } + + const char* name() const override { return "AADistanceFieldPathBatch"; } + + void getInvariantOutputColor(GrInitInvariantOutput* out) const override { + out->setKnownFourComponents(fBatch.fColor); + } + + void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { + out->setUnknownSingleComponent(); + } + +private: + void initBatchTracker(const GrPipelineOptimizations& opt) override { + // Handle any color overrides + if (!opt.readsColor()) { + fBatch.fColor = GrColor_ILLEGAL; + } + opt.getOverrideColorIfSet(&fBatch.fColor); + + // setup batch properties + fBatch.fColorIgnored = !opt.readsColor(); + fBatch.fUsesLocalCoords = opt.readsLocalCoords(); + fBatch.fCoverageIgnored = !opt.readsCoverage(); + } + + struct FlushInfo { + SkAutoTUnref<const GrVertexBuffer> fVertexBuffer; + SkAutoTUnref<const GrIndexBuffer> fIndexBuffer; + int fVertexOffset; + int fInstancesToFlush; + }; + + void onPrepareDraws(Target* target) override { + int instanceCount = fGeoData.count(); + + SkMatrix invert; + if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) { + SkDebugf("Could not invert viewmatrix\n"); + return; + } + + uint32_t flags = 0; + flags |= this->viewMatrix().isSimilarity() ? kSimilarity_DistanceFieldEffectFlag : 0; + + GrTextureParams params(SkShader::kRepeat_TileMode, GrTextureParams::kBilerp_FilterMode); + + // Setup GrGeometryProcessor + GrBatchAtlas* atlas = fAtlas; + SkAutoTUnref<GrGeometryProcessor> dfProcessor( + GrDistanceFieldPathGeoProc::Create(this->color(), + this->viewMatrix(), + atlas->getTexture(), + params, + flags, + this->usesLocalCoords())); + + target->initDraw(dfProcessor, this->pipeline()); + + FlushInfo flushInfo; + + // allocate vertices + size_t vertexStride = dfProcessor->getVertexStride(); + SkASSERT(vertexStride == 2 * sizeof(SkPoint)); + + const GrVertexBuffer* vertexBuffer; + void* vertices = target->makeVertexSpace(vertexStride, + kVerticesPerQuad * instanceCount, + &vertexBuffer, + &flushInfo.fVertexOffset); + flushInfo.fVertexBuffer.reset(SkRef(vertexBuffer)); + flushInfo.fIndexBuffer.reset(target->resourceProvider()->refQuadIndexBuffer()); + if (!vertices || !flushInfo.fIndexBuffer) { + SkDebugf("Could not allocate vertices\n"); + return; + } + + flushInfo.fInstancesToFlush = 0; + for (int i = 0; i < instanceCount; i++) { + Geometry& args = fGeoData[i]; + + // get mip level + SkScalar maxScale = this->viewMatrix().getMaxScale(); + const SkRect& bounds = args.fPath.getBounds(); + SkScalar maxDim = SkMaxScalar(bounds.width(), bounds.height()); + SkScalar size = maxScale * maxDim; + uint32_t desiredDimension; + if (size <= kSmallMIP) { + desiredDimension = kSmallMIP; + } else if (size <= kMediumMIP) { + desiredDimension = kMediumMIP; + } else { + desiredDimension = kLargeMIP; + } + + // check to see if path is cached + // TODO: handle stroked vs. filled version of same path + PathData::Key key = { args.fPath.getGenerationID(), desiredDimension }; + args.fPathData = fPathCache->find(key); + if (nullptr == args.fPathData || !atlas->hasID(args.fPathData->fID)) { + // Remove the stale cache entry + if (args.fPathData) { + fPathCache->remove(args.fPathData->fKey); + fPathList->remove(args.fPathData); + delete args.fPathData; + } + SkScalar scale = desiredDimension/maxDim; + args.fPathData = new PathData; + if (!this->addPathToAtlas(target, + dfProcessor, + this->pipeline(), + &flushInfo, + atlas, + args.fPathData, + args.fPath, + args.fStroke, + args.fAntiAlias, + desiredDimension, + scale)) { + SkDebugf("Can't rasterize path\n"); + return; + } + } + + atlas->setLastUseToken(args.fPathData->fID, target->currentToken()); + + // Now set vertices + intptr_t offset = reinterpret_cast<intptr_t>(vertices); + offset += i * kVerticesPerQuad * vertexStride; + SkPoint* positions = reinterpret_cast<SkPoint*>(offset); + this->writePathVertices(target, + atlas, + this->pipeline(), + dfProcessor, + positions, + vertexStride, + this->viewMatrix(), + args.fPath, + args.fPathData); + flushInfo.fInstancesToFlush++; + } + + this->flush(target, &flushInfo); + } + + SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } + + AADistanceFieldPathBatch(const Geometry& geometry, GrColor color, const SkMatrix& viewMatrix, + GrBatchAtlas* atlas, + PathCache* pathCache, PathDataList* pathList) { + this->initClassID<AADistanceFieldPathBatch>(); + fBatch.fColor = color; + fBatch.fViewMatrix = viewMatrix; + fGeoData.push_back(geometry); + fGeoData.back().fPathData = nullptr; + + fAtlas = atlas; + fPathCache = pathCache; + fPathList = pathList; + + // Compute bounds + fBounds = geometry.fPath.getBounds(); + viewMatrix.mapRect(&fBounds); + } + + bool addPathToAtlas(GrVertexBatch::Target* target, + const GrGeometryProcessor* dfProcessor, + const GrPipeline* pipeline, + FlushInfo* flushInfo, + GrBatchAtlas* atlas, + PathData* pathData, + const SkPath& path, + const SkStrokeRec& + stroke, bool antiAlias, + uint32_t dimension, + SkScalar scale) { + const SkRect& bounds = path.getBounds(); + + // generate bounding rect for bitmap draw + SkRect scaledBounds = bounds; + // scale to mip level size + scaledBounds.fLeft *= scale; + scaledBounds.fTop *= scale; + scaledBounds.fRight *= scale; + scaledBounds.fBottom *= scale; + // move the origin to an integer boundary (gives better results) + SkScalar dx = SkScalarFraction(scaledBounds.fLeft); + SkScalar dy = SkScalarFraction(scaledBounds.fTop); + scaledBounds.offset(-dx, -dy); + // get integer boundary + SkIRect devPathBounds; + scaledBounds.roundOut(&devPathBounds); + // pad to allow room for antialiasing + devPathBounds.outset(SkScalarCeilToInt(kAntiAliasPad), SkScalarCeilToInt(kAntiAliasPad)); + // move origin to upper left corner + devPathBounds.offsetTo(0,0); + + // draw path to bitmap + SkMatrix drawMatrix; + drawMatrix.setTranslate(-bounds.left(), -bounds.top()); + drawMatrix.postScale(scale, scale); + drawMatrix.postTranslate(kAntiAliasPad, kAntiAliasPad); + + // setup bitmap backing + // Now translate so the bound's UL corner is at the origin + drawMatrix.postTranslate(-devPathBounds.fLeft * SK_Scalar1, + -devPathBounds.fTop * SK_Scalar1); + SkIRect pathBounds = SkIRect::MakeWH(devPathBounds.width(), + devPathBounds.height()); + + SkAutoPixmapStorage dst; + if (!dst.tryAlloc(SkImageInfo::MakeA8(pathBounds.width(), + pathBounds.height()))) { + return false; + } + sk_bzero(dst.writable_addr(), dst.getSafeSize()); + + // rasterize path + SkPaint paint; + if (stroke.isHairlineStyle()) { + paint.setStyle(SkPaint::kStroke_Style); + paint.setStrokeWidth(SK_Scalar1); + } else { + if (stroke.isFillStyle()) { + paint.setStyle(SkPaint::kFill_Style); + } else { + paint.setStyle(SkPaint::kStroke_Style); + paint.setStrokeJoin(stroke.getJoin()); + paint.setStrokeCap(stroke.getCap()); + paint.setStrokeWidth(stroke.getWidth()); + } + } + paint.setAntiAlias(antiAlias); + + SkDraw draw; + sk_bzero(&draw, sizeof(draw)); + + SkRasterClip rasterClip; + rasterClip.setRect(pathBounds); + draw.fRC = &rasterClip; + draw.fClip = &rasterClip.bwRgn(); + draw.fMatrix = &drawMatrix; + draw.fDst = dst; + + draw.drawPathCoverage(path, paint); + + // generate signed distance field + devPathBounds.outset(SK_DistanceFieldPad, SK_DistanceFieldPad); + int width = devPathBounds.width(); + int height = devPathBounds.height(); + // TODO We should really generate this directly into the plot somehow + SkAutoSMalloc<1024> dfStorage(width * height * sizeof(unsigned char)); + + // Generate signed distance field + SkGenerateDistanceFieldFromA8Image((unsigned char*)dfStorage.get(), + (const unsigned char*)dst.addr(), + dst.width(), dst.height(), dst.rowBytes()); + + // add to atlas + SkIPoint16 atlasLocation; + GrBatchAtlas::AtlasID id; + bool success = atlas->addToAtlas(&id, target, width, height, dfStorage.get(), + &atlasLocation); + if (!success) { + this->flush(target, flushInfo); + target->initDraw(dfProcessor, pipeline); + + SkDEBUGCODE(success =) atlas->addToAtlas(&id, target, width, height, + dfStorage.get(), &atlasLocation); + SkASSERT(success); + + } + + // add to cache + pathData->fKey.fGenID = path.getGenerationID(); + pathData->fKey.fDimension = dimension; + pathData->fScale = scale; + pathData->fID = id; + // change the scaled rect to match the size of the inset distance field + scaledBounds.fRight = scaledBounds.fLeft + + SkIntToScalar(devPathBounds.width() - 2*SK_DistanceFieldInset); + scaledBounds.fBottom = scaledBounds.fTop + + SkIntToScalar(devPathBounds.height() - 2*SK_DistanceFieldInset); + // shift the origin to the correct place relative to the distance field + // need to also restore the fractional translation + scaledBounds.offset(-SkIntToScalar(SK_DistanceFieldInset) - kAntiAliasPad + dx, + -SkIntToScalar(SK_DistanceFieldInset) - kAntiAliasPad + dy); + pathData->fBounds = scaledBounds; + // origin we render from is inset from distance field edge + atlasLocation.fX += SK_DistanceFieldInset; + atlasLocation.fY += SK_DistanceFieldInset; + pathData->fAtlasLocation = atlasLocation; + + fPathCache->add(pathData); + fPathList->addToTail(pathData); +#ifdef DF_PATH_TRACKING + ++g_NumCachedPaths; +#endif + return true; + } + + void writePathVertices(GrDrawBatch::Target* target, + GrBatchAtlas* atlas, + const GrPipeline* pipeline, + const GrGeometryProcessor* gp, + SkPoint* positions, + size_t vertexStride, + const SkMatrix& viewMatrix, + const SkPath& path, + const PathData* pathData) { + GrTexture* texture = atlas->getTexture(); + + SkScalar dx = pathData->fBounds.fLeft; + SkScalar dy = pathData->fBounds.fTop; + SkScalar width = pathData->fBounds.width(); + SkScalar height = pathData->fBounds.height(); + + SkScalar invScale = 1.0f / pathData->fScale; + dx *= invScale; + dy *= invScale; + width *= invScale; + height *= invScale; + + SkFixed tx = SkIntToFixed(pathData->fAtlasLocation.fX); + SkFixed ty = SkIntToFixed(pathData->fAtlasLocation.fY); + SkFixed tw = SkScalarToFixed(pathData->fBounds.width()); + SkFixed th = SkScalarToFixed(pathData->fBounds.height()); + + // vertex positions + // TODO make the vertex attributes a struct + SkRect r = SkRect::MakeXYWH(dx, dy, width, height); + positions->setRectFan(r.left(), r.top(), r.right(), r.bottom(), vertexStride); + + // vertex texture coords + SkPoint* textureCoords = positions + 1; + textureCoords->setRectFan(SkFixedToFloat(texture->texturePriv().normalizeFixedX(tx)), + SkFixedToFloat(texture->texturePriv().normalizeFixedY(ty)), + SkFixedToFloat(texture->texturePriv().normalizeFixedX(tx + tw)), + SkFixedToFloat(texture->texturePriv().normalizeFixedY(ty + th)), + vertexStride); + } + + void flush(GrVertexBatch::Target* target, FlushInfo* flushInfo) { + GrVertices vertices; + int maxInstancesPerDraw = flushInfo->fIndexBuffer->maxQuads(); + vertices.initInstanced(kTriangles_GrPrimitiveType, flushInfo->fVertexBuffer, + flushInfo->fIndexBuffer, flushInfo->fVertexOffset, kVerticesPerQuad, + kIndicesPerQuad, flushInfo->fInstancesToFlush, maxInstancesPerDraw); + target->draw(vertices); + flushInfo->fVertexOffset += kVerticesPerQuad * flushInfo->fInstancesToFlush; + flushInfo->fInstancesToFlush = 0; + } + + GrColor color() const { return fBatch.fColor; } + const SkMatrix& viewMatrix() const { return fBatch.fViewMatrix; } + bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } + + bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { + AADistanceFieldPathBatch* that = t->cast<AADistanceFieldPathBatch>(); + if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), + that->bounds(), caps)) { + return false; + } + + // TODO we could actually probably do a bunch of this work on the CPU, ie map viewMatrix, + // maybe upload color via attribute + if (this->color() != that->color()) { + return false; + } + + if (!this->viewMatrix().cheapEqualTo(that->viewMatrix())) { + return false; + } + + fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); + this->joinBounds(that->bounds()); + return true; + } + + struct BatchTracker { + GrColor fColor; + SkMatrix fViewMatrix; + bool fUsesLocalCoords; + bool fColorIgnored; + bool fCoverageIgnored; + }; + + BatchTracker fBatch; + SkSTArray<1, Geometry, true> fGeoData; + GrBatchAtlas* fAtlas; + PathCache* fPathCache; + PathDataList* fPathList; +}; + +bool GrAADistanceFieldPathRenderer::onDrawPath(const DrawPathArgs& args) { + // we've already bailed on inverse filled paths, so this is safe + if (args.fPath->isEmpty()) { + return true; + } + + if (!fAtlas) { + fAtlas = args.fResourceProvider->createAtlas(kAlpha_8_GrPixelConfig, + ATLAS_TEXTURE_WIDTH, ATLAS_TEXTURE_HEIGHT, + NUM_PLOTS_X, NUM_PLOTS_Y, + &GrAADistanceFieldPathRenderer::HandleEviction, + (void*)this); + if (!fAtlas) { + return false; + } + } + + AADistanceFieldPathBatch::Geometry geometry(*args.fStroke); + geometry.fPath = *args.fPath; + geometry.fAntiAlias = args.fAntiAlias; + + SkAutoTUnref<GrDrawBatch> batch(AADistanceFieldPathBatch::Create(geometry, args.fColor, + *args.fViewMatrix, fAtlas, + &fPathCache, &fPathList)); + args.fTarget->drawBatch(*args.fPipelineBuilder, batch); + + return true; +} + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +#ifdef GR_TEST_UTILS + +struct PathTestStruct { + typedef GrAADistanceFieldPathRenderer::PathCache PathCache; + typedef GrAADistanceFieldPathRenderer::PathData PathData; + typedef GrAADistanceFieldPathRenderer::PathDataList PathDataList; + PathTestStruct() : fContextID(SK_InvalidGenID), fAtlas(nullptr) {} + ~PathTestStruct() { this->reset(); } + + void reset() { + PathDataList::Iter iter; + iter.init(fPathList, PathDataList::Iter::kHead_IterStart); + PathData* pathData; + while ((pathData = iter.get())) { + iter.next(); + fPathList.remove(pathData); + delete pathData; + } + delete fAtlas; + fPathCache.reset(); + } + + static void HandleEviction(GrBatchAtlas::AtlasID id, void* pr) { + PathTestStruct* dfpr = (PathTestStruct*)pr; + // remove any paths that use this plot + PathDataList::Iter iter; + iter.init(dfpr->fPathList, PathDataList::Iter::kHead_IterStart); + PathData* pathData; + while ((pathData = iter.get())) { + iter.next(); + if (id == pathData->fID) { + dfpr->fPathCache.remove(pathData->fKey); + dfpr->fPathList.remove(pathData); + delete pathData; + } + } + } + + uint32_t fContextID; + GrBatchAtlas* fAtlas; + PathCache fPathCache; + PathDataList fPathList; +}; + +DRAW_BATCH_TEST_DEFINE(AADistanceFieldPathBatch) { + static PathTestStruct gTestStruct; + + if (context->uniqueID() != gTestStruct.fContextID) { + gTestStruct.fContextID = context->uniqueID(); + gTestStruct.reset(); + gTestStruct.fAtlas = + context->resourceProvider()->createAtlas(kAlpha_8_GrPixelConfig, + ATLAS_TEXTURE_WIDTH, ATLAS_TEXTURE_HEIGHT, + NUM_PLOTS_X, NUM_PLOTS_Y, + &PathTestStruct::HandleEviction, + (void*)&gTestStruct); + } + + SkMatrix viewMatrix = GrTest::TestMatrix(random); + GrColor color = GrRandomColor(random); + + AADistanceFieldPathBatch::Geometry geometry(GrTest::TestStrokeRec(random)); + geometry.fPath = GrTest::TestPath(random); + geometry.fAntiAlias = random->nextBool(); + + return AADistanceFieldPathBatch::Create(geometry, color, viewMatrix, + gTestStruct.fAtlas, + &gTestStruct.fPathCache, + &gTestStruct.fPathList); +} + +#endif diff --git a/src/gpu/batches/GrAADistanceFieldPathRenderer.h b/src/gpu/batches/GrAADistanceFieldPathRenderer.h new file mode 100755 index 0000000000..469aeeb981 --- /dev/null +++ b/src/gpu/batches/GrAADistanceFieldPathRenderer.h @@ -0,0 +1,75 @@ + +/* + * Copyright 2014 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrAADistanceFieldPathRenderer_DEFINED +#define GrAADistanceFieldPathRenderer_DEFINED + +#include "GrBatchAtlas.h" +#include "GrPathRenderer.h" +#include "GrRect.h" + +#include "SkChecksum.h" +#include "SkTDynamicHash.h" + +class GrContext; + +class GrAADistanceFieldPathRenderer : public GrPathRenderer { +public: + GrAADistanceFieldPathRenderer(); + virtual ~GrAADistanceFieldPathRenderer(); + +private: + StencilSupport onGetStencilSupport(const SkPath&, const GrStrokeInfo&) const override { + return GrPathRenderer::kNoSupport_StencilSupport; + } + + bool onCanDrawPath(const CanDrawPathArgs&) const override; + + bool onDrawPath(const DrawPathArgs&) override; + + struct PathData { + struct Key { + uint32_t fGenID; + // rendered size for stored path (32x32 max, 64x64 max, 128x128 max) + uint32_t fDimension; + bool operator==(const Key& other) const { + return other.fGenID == fGenID && other.fDimension == fDimension; + } + }; + Key fKey; + SkScalar fScale; + GrBatchAtlas::AtlasID fID; + SkRect fBounds; + SkIPoint16 fAtlasLocation; + SK_DECLARE_INTERNAL_LLIST_INTERFACE(PathData); + + static inline const Key& GetKey(const PathData& data) { + return data.fKey; + } + + static inline uint32_t Hash(Key key) { + return SkChecksum::Murmur3(reinterpret_cast<const uint32_t*>(&key), sizeof(key)); + } + }; + + static void HandleEviction(GrBatchAtlas::AtlasID, void*); + + typedef SkTDynamicHash<PathData, PathData::Key> PathCache; + typedef SkTInternalLList<PathData> PathDataList; + + GrBatchAtlas* fAtlas; + PathCache fPathCache; + PathDataList fPathList; + + typedef GrPathRenderer INHERITED; + + friend class AADistanceFieldPathBatch; + friend struct PathTestStruct; +}; + +#endif diff --git a/src/gpu/batches/GrAAHairLinePathRenderer.cpp b/src/gpu/batches/GrAAHairLinePathRenderer.cpp new file mode 100644 index 0000000000..e102db27a0 --- /dev/null +++ b/src/gpu/batches/GrAAHairLinePathRenderer.cpp @@ -0,0 +1,998 @@ +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrAAHairLinePathRenderer.h" + +#include "GrBatchFlushState.h" +#include "GrBatchTest.h" +#include "GrCaps.h" +#include "GrContext.h" +#include "GrDefaultGeoProcFactory.h" +#include "GrIndexBuffer.h" +#include "GrPathUtils.h" +#include "GrPipelineBuilder.h" +#include "GrProcessor.h" +#include "GrResourceProvider.h" +#include "GrVertexBuffer.h" +#include "SkGeometry.h" +#include "SkStroke.h" +#include "SkTemplates.h" + +#include "batches/GrVertexBatch.h" + +#include "effects/GrBezierEffect.h" + +#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> + +// quadratics are rendered as 5-sided polys in order to bound the +// AA stroke around the center-curve. See comments in push_quad_index_buffer and +// bloat_quad. Quadratics and conics share an index buffer + +// lines are rendered as: +// *______________* +// |\ -_______ /| +// | \ \ / | +// | *--------* | +// | / ______/ \ | +// */_-__________\* +// For: 6 vertices and 18 indices (for 6 triangles) + +// Each quadratic is rendered as a five sided polygon. This poly bounds +// the quadratic's bounding triangle but has been expanded so that the +// 1-pixel wide area around the curve is inside the poly. +// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 +// that is rendered would look like this: +// b0 +// b +// +// a0 c0 +// a c +// a1 c1 +// Each is drawn as three triangles ((a0,a1,b0), (b0,c1,c0), (a1,c1,b0)) +// specified by these 9 indices: +static const uint16_t kQuadIdxBufPattern[] = { + 0, 1, 2, + 2, 4, 3, + 1, 4, 2 +}; + +static const int kIdxsPerQuad = SK_ARRAY_COUNT(kQuadIdxBufPattern); +static const int kQuadNumVertices = 5; +static const int kQuadsNumInIdxBuffer = 256; +GR_DECLARE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); + +static const GrIndexBuffer* ref_quads_index_buffer(GrResourceProvider* resourceProvider) { + GR_DEFINE_STATIC_UNIQUE_KEY(gQuadsIndexBufferKey); + return resourceProvider->findOrCreateInstancedIndexBuffer( + kQuadIdxBufPattern, kIdxsPerQuad, kQuadsNumInIdxBuffer, kQuadNumVertices, + gQuadsIndexBufferKey); +} + + +// Each line segment is rendered as two quads and two triangles. +// p0 and p1 have alpha = 1 while all other points have alpha = 0. +// The four external points are offset 1 pixel perpendicular to the +// line and half a pixel parallel to the line. +// +// p4 p5 +// p0 p1 +// p2 p3 +// +// Each is drawn as six triangles specified by these 18 indices: + +static const uint16_t kLineSegIdxBufPattern[] = { + 0, 1, 3, + 0, 3, 2, + 0, 4, 5, + 0, 5, 1, + 0, 2, 4, + 1, 5, 3 +}; + +static const int kIdxsPerLineSeg = SK_ARRAY_COUNT(kLineSegIdxBufPattern); +static const int kLineSegNumVertices = 6; +static const int kLineSegsNumInIdxBuffer = 256; + +GR_DECLARE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); + +static const GrIndexBuffer* ref_lines_index_buffer(GrResourceProvider* resourceProvider) { + GR_DEFINE_STATIC_UNIQUE_KEY(gLinesIndexBufferKey); + return resourceProvider->findOrCreateInstancedIndexBuffer( + kLineSegIdxBufPattern, kIdxsPerLineSeg, kLineSegsNumInIdxBuffer, kLineSegNumVertices, + gLinesIndexBufferKey); +} + +// Takes 178th time of logf on Z600 / VC2010 +static int get_float_exp(float x) { + GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); +#ifdef SK_DEBUG + static bool tested; + if (!tested) { + tested = true; + SkASSERT(get_float_exp(0.25f) == -2); + SkASSERT(get_float_exp(0.3f) == -2); + SkASSERT(get_float_exp(0.5f) == -1); + SkASSERT(get_float_exp(1.f) == 0); + SkASSERT(get_float_exp(2.f) == 1); + SkASSERT(get_float_exp(2.5f) == 1); + SkASSERT(get_float_exp(8.f) == 3); + SkASSERT(get_float_exp(100.f) == 6); + SkASSERT(get_float_exp(1000.f) == 9); + SkASSERT(get_float_exp(1024.f) == 10); + SkASSERT(get_float_exp(3000000.f) == 21); + } +#endif + const int* iptr = (const int*)&x; + return (((*iptr) & 0x7f800000) >> 23) - 127; +} + +// Uses the max curvature function for quads to estimate +// where to chop the conic. If the max curvature is not +// found along the curve segment it will return 1 and +// dst[0] is the original conic. If it returns 2 the dst[0] +// and dst[1] are the two new conics. +static int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { + SkScalar t = SkFindQuadMaxCurvature(src); + if (t == 0) { + if (dst) { + dst[0].set(src, weight); + } + return 1; + } else { + if (dst) { + SkConic conic; + conic.set(src, weight); + conic.chopAt(t, dst); + } + return 2; + } +} + +// Calls split_conic on the entire conic and then once more on each subsection. +// Most cases will result in either 1 conic (chop point is not within t range) +// or 3 points (split once and then one subsection is split again). +static int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { + SkConic dstTemp[2]; + int conicCnt = split_conic(src, dstTemp, weight); + if (2 == conicCnt) { + int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); + conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); + } else { + dst[0] = dstTemp[0]; + } + return conicCnt; +} + +// returns 0 if quad/conic is degen or close to it +// in this case approx the path with lines +// otherwise returns 1 +static int is_degen_quad_or_conic(const SkPoint p[3], SkScalar* dsqd) { + static const SkScalar gDegenerateToLineTol = GrPathUtils::kDefaultTolerance; + static const SkScalar gDegenerateToLineTolSqd = + SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); + + if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || + p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { + return 1; + } + + *dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); + if (*dsqd < gDegenerateToLineTolSqd) { + return 1; + } + + if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { + return 1; + } + return 0; +} + +static int is_degen_quad_or_conic(const SkPoint p[3]) { + SkScalar dsqd; + return is_degen_quad_or_conic(p, &dsqd); +} + +// we subdivide the quads to avoid huge overfill +// if it returns -1 then should be drawn as lines +static int num_quad_subdivs(const SkPoint p[3]) { + SkScalar dsqd; + if (is_degen_quad_or_conic(p, &dsqd)) { + return -1; + } + + // tolerance of triangle height in pixels + // tuned on windows Quadro FX 380 / Z600 + // trade off of fill vs cpu time on verts + // maybe different when do this using gpu (geo or tess shaders) + static const SkScalar gSubdivTol = 175 * SK_Scalar1; + + if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { + return 0; + } else { + static const int kMaxSub = 4; + // subdividing the quad reduces d by 4. so we want x = log4(d/tol) + // = log4(d*d/tol*tol)/2 + // = log2(d*d/tol*tol) + + // +1 since we're ignoring the mantissa contribution. + int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; + log = SkTMin(SkTMax(0, log), kMaxSub); + return log; + } +} + +/** + * Generates the lines and quads to be rendered. Lines are always recorded in + * device space. We will do a device space bloat to account for the 1pixel + * thickness. + * Quads are recorded in device space unless m contains + * perspective, then in they are in src space. We do this because we will + * subdivide large quads to reduce over-fill. This subdivision has to be + * performed before applying the perspective matrix. + */ +static int gather_lines_and_quads(const SkPath& path, + const SkMatrix& m, + const SkIRect& devClipBounds, + GrAAHairLinePathRenderer::PtArray* lines, + GrAAHairLinePathRenderer::PtArray* quads, + GrAAHairLinePathRenderer::PtArray* conics, + GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, + GrAAHairLinePathRenderer::FloatArray* conicWeights) { + SkPath::Iter iter(path, false); + + int totalQuadCount = 0; + SkRect bounds; + SkIRect ibounds; + + bool persp = m.hasPerspective(); + + for (;;) { + SkPoint pathPts[4]; + SkPoint devPts[4]; + SkPath::Verb verb = iter.next(pathPts); + switch (verb) { + case SkPath::kConic_Verb: { + SkConic dst[4]; + // We chop the conics to create tighter clipping to hide error + // that appears near max curvature of very thin conics. Thin + // hyperbolas with high weight still show error. + int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); + for (int i = 0; i < conicCnt; ++i) { + SkPoint* chopPnts = dst[i].fPts; + m.mapPoints(devPts, chopPnts, 3); + bounds.setBounds(devPts, 3); + bounds.outset(SK_Scalar1, SK_Scalar1); + bounds.roundOut(&ibounds); + if (SkIRect::Intersects(devClipBounds, ibounds)) { + if (is_degen_quad_or_conic(devPts)) { + SkPoint* pts = lines->push_back_n(4); + pts[0] = devPts[0]; + pts[1] = devPts[1]; + pts[2] = devPts[1]; + pts[3] = devPts[2]; + } else { + // when in perspective keep conics in src space + SkPoint* cPts = persp ? chopPnts : devPts; + SkPoint* pts = conics->push_back_n(3); + pts[0] = cPts[0]; + pts[1] = cPts[1]; + pts[2] = cPts[2]; + conicWeights->push_back() = dst[i].fW; + } + } + } + break; + } + case SkPath::kMove_Verb: + break; + case SkPath::kLine_Verb: + m.mapPoints(devPts, pathPts, 2); + bounds.setBounds(devPts, 2); + bounds.outset(SK_Scalar1, SK_Scalar1); + bounds.roundOut(&ibounds); + if (SkIRect::Intersects(devClipBounds, ibounds)) { + SkPoint* pts = lines->push_back_n(2); + pts[0] = devPts[0]; + pts[1] = devPts[1]; + } + break; + case SkPath::kQuad_Verb: { + SkPoint choppedPts[5]; + // Chopping the quad helps when the quad is either degenerate or nearly degenerate. + // When it is degenerate it allows the approximation with lines to work since the + // chop point (if there is one) will be at the parabola's vertex. In the nearly + // degenerate the QuadUVMatrix computed for the points is almost singular which + // can cause rendering artifacts. + int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); + for (int i = 0; i < n; ++i) { + SkPoint* quadPts = choppedPts + i * 2; + m.mapPoints(devPts, quadPts, 3); + bounds.setBounds(devPts, 3); + bounds.outset(SK_Scalar1, SK_Scalar1); + bounds.roundOut(&ibounds); + + if (SkIRect::Intersects(devClipBounds, ibounds)) { + int subdiv = num_quad_subdivs(devPts); + SkASSERT(subdiv >= -1); + if (-1 == subdiv) { + SkPoint* pts = lines->push_back_n(4); + pts[0] = devPts[0]; + pts[1] = devPts[1]; + pts[2] = devPts[1]; + pts[3] = devPts[2]; + } else { + // when in perspective keep quads in src space + SkPoint* qPts = persp ? quadPts : devPts; + SkPoint* pts = quads->push_back_n(3); + pts[0] = qPts[0]; + pts[1] = qPts[1]; + pts[2] = qPts[2]; + quadSubdivCnts->push_back() = subdiv; + totalQuadCount += 1 << subdiv; + } + } + } + break; + } + case SkPath::kCubic_Verb: + m.mapPoints(devPts, pathPts, 4); + bounds.setBounds(devPts, 4); + bounds.outset(SK_Scalar1, SK_Scalar1); + bounds.roundOut(&ibounds); + if (SkIRect::Intersects(devClipBounds, ibounds)) { + PREALLOC_PTARRAY(32) q; + // we don't need a direction if we aren't constraining the subdivision + const SkPathPriv::FirstDirection kDummyDir = SkPathPriv::kCCW_FirstDirection; + // We convert cubics to quadratics (for now). + // In perspective have to do conversion in src space. + if (persp) { + SkScalar tolScale = + GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, + path.getBounds()); + GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q); + } else { + GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q); + } + for (int i = 0; i < q.count(); i += 3) { + SkPoint* qInDevSpace; + // bounds has to be calculated in device space, but q is + // in src space when there is perspective. + if (persp) { + m.mapPoints(devPts, &q[i], 3); + bounds.setBounds(devPts, 3); + qInDevSpace = devPts; + } else { + bounds.setBounds(&q[i], 3); + qInDevSpace = &q[i]; + } + bounds.outset(SK_Scalar1, SK_Scalar1); + bounds.roundOut(&ibounds); + if (SkIRect::Intersects(devClipBounds, ibounds)) { + int subdiv = num_quad_subdivs(qInDevSpace); + SkASSERT(subdiv >= -1); + if (-1 == subdiv) { + SkPoint* pts = lines->push_back_n(4); + // lines should always be in device coords + pts[0] = qInDevSpace[0]; + pts[1] = qInDevSpace[1]; + pts[2] = qInDevSpace[1]; + pts[3] = qInDevSpace[2]; + } else { + SkPoint* pts = quads->push_back_n(3); + // q is already in src space when there is no + // perspective and dev coords otherwise. + pts[0] = q[0 + i]; + pts[1] = q[1 + i]; + pts[2] = q[2 + i]; + quadSubdivCnts->push_back() = subdiv; + totalQuadCount += 1 << subdiv; + } + } + } + } + break; + case SkPath::kClose_Verb: + break; + case SkPath::kDone_Verb: + return totalQuadCount; + } + } +} + +struct LineVertex { + SkPoint fPos; + float fCoverage; +}; + +struct BezierVertex { + SkPoint fPos; + union { + struct { + SkScalar fK; + SkScalar fL; + SkScalar fM; + } fConic; + SkVector fQuadCoord; + struct { + SkScalar fBogus[4]; + }; + }; +}; + +GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint)); + +static void intersect_lines(const SkPoint& ptA, const SkVector& normA, + const SkPoint& ptB, const SkVector& normB, + SkPoint* result) { + + SkScalar lineAW = -normA.dot(ptA); + SkScalar lineBW = -normB.dot(ptB); + + SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - + SkScalarMul(normA.fY, normB.fX); + wInv = SkScalarInvert(wInv); + + result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); + result->fX = SkScalarMul(result->fX, wInv); + + result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); + result->fY = SkScalarMul(result->fY, wInv); +} + +static void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kQuadNumVertices]) { + // this should be in the src space, not dev coords, when we have perspective + GrPathUtils::QuadUVMatrix DevToUV(qpts); + DevToUV.apply<kQuadNumVertices, sizeof(BezierVertex), sizeof(SkPoint)>(verts); +} + +static void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, + const SkMatrix* toSrc, BezierVertex verts[kQuadNumVertices]) { + SkASSERT(!toDevice == !toSrc); + // original quad is specified by tri a,b,c + SkPoint a = qpts[0]; + SkPoint b = qpts[1]; + SkPoint c = qpts[2]; + + if (toDevice) { + toDevice->mapPoints(&a, 1); + toDevice->mapPoints(&b, 1); + toDevice->mapPoints(&c, 1); + } + // make a new poly where we replace a and c by a 1-pixel wide edges orthog + // to edges ab and bc: + // + // before | after + // | b0 + // b | + // | + // | a0 c0 + // a c | a1 c1 + // + // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, + // respectively. + BezierVertex& a0 = verts[0]; + BezierVertex& a1 = verts[1]; + BezierVertex& b0 = verts[2]; + BezierVertex& c0 = verts[3]; + BezierVertex& c1 = verts[4]; + + SkVector ab = b; + ab -= a; + SkVector ac = c; + ac -= a; + SkVector cb = b; + cb -= c; + + // We should have already handled degenerates + SkASSERT(ab.length() > 0 && cb.length() > 0); + + ab.normalize(); + SkVector abN; + abN.setOrthog(ab, SkVector::kLeft_Side); + if (abN.dot(ac) > 0) { + abN.negate(); + } + + cb.normalize(); + SkVector cbN; + cbN.setOrthog(cb, SkVector::kLeft_Side); + if (cbN.dot(ac) < 0) { + cbN.negate(); + } + + a0.fPos = a; + a0.fPos += abN; + a1.fPos = a; + a1.fPos -= abN; + + c0.fPos = c; + c0.fPos += cbN; + c1.fPos = c; + c1.fPos -= cbN; + + intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); + + if (toSrc) { + toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kQuadNumVertices); + } +} + +// Equations based off of Loop-Blinn Quadratic GPU Rendering +// Input Parametric: +// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) +// Output Implicit: +// f(x, y, w) = f(P) = K^2 - LM +// K = dot(k, P), L = dot(l, P), M = dot(m, P) +// k, l, m are calculated in function GrPathUtils::getConicKLM +static void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kQuadNumVertices], + const SkScalar weight) { + SkScalar klm[9]; + + GrPathUtils::getConicKLM(p, weight, klm); + + for (int i = 0; i < kQuadNumVertices; ++i) { + const SkPoint pnt = verts[i].fPos; + verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; + verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; + verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; + } +} + +static void add_conics(const SkPoint p[3], + const SkScalar weight, + const SkMatrix* toDevice, + const SkMatrix* toSrc, + BezierVertex** vert) { + bloat_quad(p, toDevice, toSrc, *vert); + set_conic_coeffs(p, *vert, weight); + *vert += kQuadNumVertices; +} + +static void add_quads(const SkPoint p[3], + int subdiv, + const SkMatrix* toDevice, + const SkMatrix* toSrc, + BezierVertex** vert) { + SkASSERT(subdiv >= 0); + if (subdiv) { + SkPoint newP[5]; + SkChopQuadAtHalf(p, newP); + add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert); + add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert); + } else { + bloat_quad(p, toDevice, toSrc, *vert); + set_uv_quad(p, *vert); + *vert += kQuadNumVertices; + } +} + +static void add_line(const SkPoint p[2], + const SkMatrix* toSrc, + uint8_t coverage, + LineVertex** vert) { + const SkPoint& a = p[0]; + const SkPoint& b = p[1]; + + SkVector ortho, vec = b; + vec -= a; + + if (vec.setLength(SK_ScalarHalf)) { + // Create a vector orthogonal to 'vec' and of unit length + ortho.fX = 2.0f * vec.fY; + ortho.fY = -2.0f * vec.fX; + + float floatCoverage = GrNormalizeByteToFloat(coverage); + + (*vert)[0].fPos = a; + (*vert)[0].fCoverage = floatCoverage; + (*vert)[1].fPos = b; + (*vert)[1].fCoverage = floatCoverage; + (*vert)[2].fPos = a - vec + ortho; + (*vert)[2].fCoverage = 0; + (*vert)[3].fPos = b + vec + ortho; + (*vert)[3].fCoverage = 0; + (*vert)[4].fPos = a - vec - ortho; + (*vert)[4].fCoverage = 0; + (*vert)[5].fPos = b + vec - ortho; + (*vert)[5].fCoverage = 0; + + if (toSrc) { + toSrc->mapPointsWithStride(&(*vert)->fPos, + sizeof(LineVertex), + kLineSegNumVertices); + } + } else { + // just make it degenerate and likely offscreen + for (int i = 0; i < kLineSegNumVertices; ++i) { + (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); + } + } + + *vert += kLineSegNumVertices; +} + +/////////////////////////////////////////////////////////////////////////////// + +bool GrAAHairLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { + if (!args.fAntiAlias) { + return false; + } + + if (!IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr)) { + return false; + } + + if (SkPath::kLine_SegmentMask == args.fPath->getSegmentMasks() || + args.fShaderCaps->shaderDerivativeSupport()) { + return true; + } + return false; +} + +template <class VertexType> +bool check_bounds(const SkMatrix& viewMatrix, const SkRect& devBounds, void* vertices, int vCount) +{ + SkRect tolDevBounds = devBounds; + // The bounds ought to be tight, but in perspective the below code runs the verts + // through the view matrix to get back to dev coords, which can introduce imprecision. + if (viewMatrix.hasPerspective()) { + tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); + } else { + // Non-persp matrices cause this path renderer to draw in device space. + SkASSERT(viewMatrix.isIdentity()); + } + SkRect actualBounds; + + VertexType* verts = reinterpret_cast<VertexType*>(vertices); + bool first = true; + for (int i = 0; i < vCount; ++i) { + SkPoint pos = verts[i].fPos; + // This is a hack to workaround the fact that we move some degenerate segments offscreen. + if (SK_ScalarMax == pos.fX) { + continue; + } + viewMatrix.mapPoints(&pos, 1); + if (first) { + actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); + first = false; + } else { + actualBounds.growToInclude(pos.fX, pos.fY); + } + } + if (!first) { + return tolDevBounds.contains(actualBounds); + } + + return true; +} + +class AAHairlineBatch : public GrVertexBatch { +public: + struct Geometry { + GrColor fColor; + uint8_t fCoverage; + SkMatrix fViewMatrix; + SkPath fPath; + SkIRect fDevClipBounds; + }; + + static GrDrawBatch* Create(const Geometry& geometry) { return new AAHairlineBatch(geometry); } + + const char* name() const override { return "AAHairlineBatch"; } + + void getInvariantOutputColor(GrInitInvariantOutput* out) const override { + // When this is called on a batch, there is only one geometry bundle + out->setKnownFourComponents(fGeoData[0].fColor); + } + void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { + out->setUnknownSingleComponent(); + } + +private: + void initBatchTracker(const GrPipelineOptimizations& opt) override { + // Handle any color overrides + if (!opt.readsColor()) { + fGeoData[0].fColor = GrColor_ILLEGAL; + } + opt.getOverrideColorIfSet(&fGeoData[0].fColor); + + // setup batch properties + fBatch.fColorIgnored = !opt.readsColor(); + fBatch.fColor = fGeoData[0].fColor; + fBatch.fUsesLocalCoords = opt.readsLocalCoords(); + fBatch.fCoverageIgnored = !opt.readsCoverage(); + fBatch.fCoverage = fGeoData[0].fCoverage; + } + + SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } + + void onPrepareDraws(Target*) override; + + typedef SkTArray<SkPoint, true> PtArray; + typedef SkTArray<int, true> IntArray; + typedef SkTArray<float, true> FloatArray; + + AAHairlineBatch(const Geometry& geometry) { + this->initClassID<AAHairlineBatch>(); + fGeoData.push_back(geometry); + + // compute bounds + fBounds = geometry.fPath.getBounds(); + geometry.fViewMatrix.mapRect(&fBounds); + + // This is b.c. hairlines are notionally infinitely thin so without expansion + // two overlapping lines could be reordered even though they hit the same pixels. + fBounds.outset(0.5f, 0.5f); + } + + bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { + AAHairlineBatch* that = t->cast<AAHairlineBatch>(); + + if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), + that->bounds(), caps)) { + return false; + } + + if (this->viewMatrix().hasPerspective() != that->viewMatrix().hasPerspective()) { + return false; + } + + // We go to identity if we don't have perspective + if (this->viewMatrix().hasPerspective() && + !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { + return false; + } + + // TODO we can actually batch hairlines if they are the same color in a kind of bulk method + // but we haven't implemented this yet + // TODO investigate going to vertex color and coverage? + if (this->coverage() != that->coverage()) { + return false; + } + + if (this->color() != that->color()) { + return false; + } + + SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); + if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { + return false; + } + + fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); + this->joinBounds(that->bounds()); + return true; + } + + GrColor color() const { return fBatch.fColor; } + uint8_t coverage() const { return fBatch.fCoverage; } + bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } + const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } + bool coverageIgnored() const { return fBatch.fCoverageIgnored; } + + struct BatchTracker { + GrColor fColor; + uint8_t fCoverage; + SkRect fDevBounds; + bool fUsesLocalCoords; + bool fColorIgnored; + bool fCoverageIgnored; + }; + + BatchTracker fBatch; + SkSTArray<1, Geometry, true> fGeoData; +}; + +void AAHairlineBatch::onPrepareDraws(Target* target) { + // Setup the viewmatrix and localmatrix for the GrGeometryProcessor. + SkMatrix invert; + if (!this->viewMatrix().invert(&invert)) { + return; + } + + // we will transform to identity space if the viewmatrix does not have perspective + bool hasPerspective = this->viewMatrix().hasPerspective(); + const SkMatrix* geometryProcessorViewM = &SkMatrix::I(); + const SkMatrix* geometryProcessorLocalM = &invert; + const SkMatrix* toDevice = nullptr; + const SkMatrix* toSrc = nullptr; + if (hasPerspective) { + geometryProcessorViewM = &this->viewMatrix(); + geometryProcessorLocalM = &SkMatrix::I(); + toDevice = &this->viewMatrix(); + toSrc = &invert; + } + + SkAutoTUnref<const GrGeometryProcessor> lineGP; + { + using namespace GrDefaultGeoProcFactory; + + Color color(this->color()); + Coverage coverage(Coverage::kAttribute_Type); + LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type : + LocalCoords::kUnused_Type); + localCoords.fMatrix = geometryProcessorLocalM; + lineGP.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords, + *geometryProcessorViewM)); + } + + SkAutoTUnref<const GrGeometryProcessor> quadGP( + GrQuadEffect::Create(this->color(), + *geometryProcessorViewM, + kHairlineAA_GrProcessorEdgeType, + target->caps(), + *geometryProcessorLocalM, + this->usesLocalCoords(), + this->coverage())); + + SkAutoTUnref<const GrGeometryProcessor> conicGP( + GrConicEffect::Create(this->color(), + *geometryProcessorViewM, + kHairlineAA_GrProcessorEdgeType, + target->caps(), + *geometryProcessorLocalM, + this->usesLocalCoords(), + this->coverage())); + + // This is hand inlined for maximum performance. + PREALLOC_PTARRAY(128) lines; + PREALLOC_PTARRAY(128) quads; + PREALLOC_PTARRAY(128) conics; + IntArray qSubdivs; + FloatArray cWeights; + int quadCount = 0; + + int instanceCount = fGeoData.count(); + for (int i = 0; i < instanceCount; i++) { + const Geometry& args = fGeoData[i]; + quadCount += gather_lines_and_quads(args.fPath, args.fViewMatrix, args.fDevClipBounds, + &lines, &quads, &conics, &qSubdivs, &cWeights); + } + + int lineCount = lines.count() / 2; + int conicCount = conics.count() / 3; + + // do lines first + if (lineCount) { + SkAutoTUnref<const GrIndexBuffer> linesIndexBuffer( + ref_lines_index_buffer(target->resourceProvider())); + target->initDraw(lineGP, this->pipeline()); + + const GrVertexBuffer* vertexBuffer; + int firstVertex; + + size_t vertexStride = lineGP->getVertexStride(); + int vertexCount = kLineSegNumVertices * lineCount; + LineVertex* verts = reinterpret_cast<LineVertex*>( + target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, &firstVertex)); + + if (!verts|| !linesIndexBuffer) { + SkDebugf("Could not allocate vertices\n"); + return; + } + + SkASSERT(lineGP->getVertexStride() == sizeof(LineVertex)); + + for (int i = 0; i < lineCount; ++i) { + add_line(&lines[2*i], toSrc, this->coverage(), &verts); + } + + { + GrVertices vertices; + vertices.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, linesIndexBuffer, + firstVertex, kLineSegNumVertices, kIdxsPerLineSeg, lineCount, + kLineSegsNumInIdxBuffer); + target->draw(vertices); + } + } + + if (quadCount || conicCount) { + const GrVertexBuffer* vertexBuffer; + int firstVertex; + + SkAutoTUnref<const GrIndexBuffer> quadsIndexBuffer( + ref_quads_index_buffer(target->resourceProvider())); + + size_t vertexStride = sizeof(BezierVertex); + int vertexCount = kQuadNumVertices * quadCount + kQuadNumVertices * conicCount; + void *vertices = target->makeVertexSpace(vertexStride, vertexCount, + &vertexBuffer, &firstVertex); + + if (!vertices || !quadsIndexBuffer) { + SkDebugf("Could not allocate vertices\n"); + return; + } + + // Setup vertices + BezierVertex* verts = reinterpret_cast<BezierVertex*>(vertices); + + int unsubdivQuadCnt = quads.count() / 3; + for (int i = 0; i < unsubdivQuadCnt; ++i) { + SkASSERT(qSubdivs[i] >= 0); + add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts); + } + + // Start Conics + for (int i = 0; i < conicCount; ++i) { + add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts); + } + + if (quadCount > 0) { + target->initDraw(quadGP, this->pipeline()); + + { + GrVertices verts; + verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer, + firstVertex, kQuadNumVertices, kIdxsPerQuad, quadCount, + kQuadsNumInIdxBuffer); + target->draw(verts); + firstVertex += quadCount * kQuadNumVertices; + } + } + + if (conicCount > 0) { + target->initDraw(conicGP, this->pipeline()); + + { + GrVertices verts; + verts.initInstanced(kTriangles_GrPrimitiveType, vertexBuffer, quadsIndexBuffer, + firstVertex, kQuadNumVertices, kIdxsPerQuad, conicCount, + kQuadsNumInIdxBuffer); + target->draw(verts); + } + } + } +} + +static GrDrawBatch* create_hairline_batch(GrColor color, + const SkMatrix& viewMatrix, + const SkPath& path, + const GrStrokeInfo& stroke, + const SkIRect& devClipBounds) { + SkScalar hairlineCoverage; + uint8_t newCoverage = 0xff; + if (GrPathRenderer::IsStrokeHairlineOrEquivalent(stroke, viewMatrix, &hairlineCoverage)) { + newCoverage = SkScalarRoundToInt(hairlineCoverage * 0xff); + } + + AAHairlineBatch::Geometry geometry; + geometry.fColor = color; + geometry.fCoverage = newCoverage; + geometry.fViewMatrix = viewMatrix; + geometry.fPath = path; + geometry.fDevClipBounds = devClipBounds; + + return AAHairlineBatch::Create(geometry); +} + +bool GrAAHairLinePathRenderer::onDrawPath(const DrawPathArgs& args) { + SkIRect devClipBounds; + args.fPipelineBuilder->clip().getConservativeBounds(args.fPipelineBuilder->getRenderTarget(), + &devClipBounds); + + SkAutoTUnref<GrDrawBatch> batch(create_hairline_batch(args.fColor, *args.fViewMatrix, *args.fPath, + *args.fStroke, devClipBounds)); + args.fTarget->drawBatch(*args.fPipelineBuilder, batch); + + return true; +} + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +#ifdef GR_TEST_UTILS + +DRAW_BATCH_TEST_DEFINE(AAHairlineBatch) { + GrColor color = GrRandomColor(random); + SkMatrix viewMatrix = GrTest::TestMatrix(random); + GrStrokeInfo stroke(SkStrokeRec::kHairline_InitStyle); + SkPath path = GrTest::TestPath(random); + SkIRect devClipBounds; + devClipBounds.setEmpty(); + return create_hairline_batch(color, viewMatrix, path, stroke, devClipBounds); +} + +#endif diff --git a/src/gpu/batches/GrAAHairLinePathRenderer.h b/src/gpu/batches/GrAAHairLinePathRenderer.h new file mode 100644 index 0000000000..61c06067d9 --- /dev/null +++ b/src/gpu/batches/GrAAHairLinePathRenderer.h @@ -0,0 +1,33 @@ + +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrAAHairLinePathRenderer_DEFINED +#define GrAAHairLinePathRenderer_DEFINED + +#include "GrPathRenderer.h" + +class GrAAHairLinePathRenderer : public GrPathRenderer { +public: + static GrPathRenderer* Create() { return new GrAAHairLinePathRenderer; } + + typedef SkTArray<SkPoint, true> PtArray; + typedef SkTArray<int, true> IntArray; + typedef SkTArray<float, true> FloatArray; + +private: + bool onCanDrawPath(const CanDrawPathArgs&) const override; + + bool onDrawPath(const DrawPathArgs&) override; + + GrAAHairLinePathRenderer() {} + + typedef GrPathRenderer INHERITED; +}; + + +#endif diff --git a/src/gpu/batches/GrAALinearizingConvexPathRenderer.cpp b/src/gpu/batches/GrAALinearizingConvexPathRenderer.cpp new file mode 100644 index 0000000000..d05fe4e908 --- /dev/null +++ b/src/gpu/batches/GrAALinearizingConvexPathRenderer.cpp @@ -0,0 +1,345 @@ + +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrAALinearizingConvexPathRenderer.h" + +#include "GrAAConvexTessellator.h" +#include "GrBatchFlushState.h" +#include "GrBatchTest.h" +#include "GrContext.h" +#include "GrDefaultGeoProcFactory.h" +#include "GrGeometryProcessor.h" +#include "GrInvariantOutput.h" +#include "GrPathUtils.h" +#include "GrProcessor.h" +#include "GrPipelineBuilder.h" +#include "GrStrokeInfo.h" +#include "SkGeometry.h" +#include "SkString.h" +#include "SkTraceEvent.h" +#include "SkPathPriv.h" +#include "batches/GrVertexBatch.h" +#include "gl/GrGLProcessor.h" +#include "gl/GrGLGeometryProcessor.h" +#include "gl/builders/GrGLProgramBuilder.h" + +static const int DEFAULT_BUFFER_SIZE = 100; + +// The thicker the stroke, the harder it is to produce high-quality results using tessellation. For +// the time being, we simply drop back to software rendering above this stroke width. +static const SkScalar kMaxStrokeWidth = 20.0; + +GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() { +} + +/////////////////////////////////////////////////////////////////////////////// + +bool GrAALinearizingConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { + if (!args.fAntiAlias) { + return false; + } + if (args.fPath->isInverseFillType()) { + return false; + } + if (!args.fPath->isConvex()) { + return false; + } + if (args.fStroke->getStyle() == SkStrokeRec::kStroke_Style) { + if (!args.fViewMatrix->isSimilarity()) { + return false; + } + SkScalar strokeWidth = args.fViewMatrix->getMaxScale() * args.fStroke->getWidth(); + return strokeWidth >= 1.0f && strokeWidth <= kMaxStrokeWidth && !args.fStroke->isDashed() && + SkPathPriv::LastVerbIsClose(*args.fPath) && + args.fStroke->getJoin() != SkPaint::Join::kRound_Join; + } + return args.fStroke->getStyle() == SkStrokeRec::kFill_Style; +} + +// extract the result vertices and indices from the GrAAConvexTessellator +static void extract_verts(const GrAAConvexTessellator& tess, + void* vertices, + size_t vertexStride, + GrColor color, + uint16_t firstIndex, + uint16_t* idxs, + bool tweakAlphaForCoverage) { + intptr_t verts = reinterpret_cast<intptr_t>(vertices); + + for (int i = 0; i < tess.numPts(); ++i) { + *((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i); + } + + // Make 'verts' point to the colors + verts += sizeof(SkPoint); + for (int i = 0; i < tess.numPts(); ++i) { + if (tweakAlphaForCoverage) { + SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255); + unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i)); + GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); + *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor; + } else { + *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; + *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = + tess.coverage(i); + } + } + + for (int i = 0; i < tess.numIndices(); ++i) { + idxs[i] = tess.index(i) + firstIndex; + } +} + +static const GrGeometryProcessor* create_fill_gp(bool tweakAlphaForCoverage, + const SkMatrix& viewMatrix, + bool usesLocalCoords, + bool coverageIgnored) { + using namespace GrDefaultGeoProcFactory; + + Color color(Color::kAttribute_Type); + Coverage::Type coverageType; + // TODO remove coverage if coverage is ignored + /*if (coverageIgnored) { + coverageType = Coverage::kNone_Type; + } else*/ if (tweakAlphaForCoverage) { + coverageType = Coverage::kSolid_Type; + } else { + coverageType = Coverage::kAttribute_Type; + } + Coverage coverage(coverageType); + LocalCoords localCoords(usesLocalCoords ? LocalCoords::kUsePosition_Type : + LocalCoords::kUnused_Type); + return CreateForDeviceSpace(color, coverage, localCoords, viewMatrix); +} + +class AAFlatteningConvexPathBatch : public GrVertexBatch { +public: + struct Geometry { + GrColor fColor; + SkMatrix fViewMatrix; + SkPath fPath; + SkScalar fStrokeWidth; + SkPaint::Join fJoin; + SkScalar fMiterLimit; + }; + + static GrDrawBatch* Create(const Geometry& geometry) { + return new AAFlatteningConvexPathBatch(geometry); + } + + const char* name() const override { return "AAConvexBatch"; } + + void getInvariantOutputColor(GrInitInvariantOutput* out) const override { + // When this is called on a batch, there is only one geometry bundle + out->setKnownFourComponents(fGeoData[0].fColor); + } + void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { + out->setUnknownSingleComponent(); + } + +private: + void initBatchTracker(const GrPipelineOptimizations& opt) override { + // Handle any color overrides + if (!opt.readsColor()) { + fGeoData[0].fColor = GrColor_ILLEGAL; + } + opt.getOverrideColorIfSet(&fGeoData[0].fColor); + + // setup batch properties + fBatch.fColorIgnored = !opt.readsColor(); + fBatch.fColor = fGeoData[0].fColor; + fBatch.fUsesLocalCoords = opt.readsLocalCoords(); + fBatch.fCoverageIgnored = !opt.readsCoverage(); + fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks(); + fBatch.fCanTweakAlphaForCoverage = opt.canTweakAlphaForCoverage(); + } + + void draw(GrVertexBatch::Target* target, const GrPipeline* pipeline, int vertexCount, + size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) { + if (vertexCount == 0 || indexCount == 0) { + return; + } + const GrVertexBuffer* vertexBuffer; + GrVertices info; + int firstVertex; + void* verts = target->makeVertexSpace(vertexStride, vertexCount, &vertexBuffer, + &firstVertex); + if (!verts) { + SkDebugf("Could not allocate vertices\n"); + return; + } + memcpy(verts, vertices, vertexCount * vertexStride); + + const GrIndexBuffer* indexBuffer; + int firstIndex; + uint16_t* idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); + if (!idxs) { + SkDebugf("Could not allocate indices\n"); + return; + } + memcpy(idxs, indices, indexCount * sizeof(uint16_t)); + info.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex, + firstIndex, vertexCount, indexCount); + target->draw(info); + } + + void onPrepareDraws(Target* target) override { + bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); + + // Setup GrGeometryProcessor + SkAutoTUnref<const GrGeometryProcessor> gp(create_fill_gp(canTweakAlphaForCoverage, + this->viewMatrix(), + this->usesLocalCoords(), + this->coverageIgnored())); + if (!gp) { + SkDebugf("Couldn't create a GrGeometryProcessor\n"); + return; + } + + target->initDraw(gp, this->pipeline()); + + size_t vertexStride = gp->getVertexStride(); + + SkASSERT(canTweakAlphaForCoverage ? + vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : + vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); + + int instanceCount = fGeoData.count(); + + int vertexCount = 0; + int indexCount = 0; + int maxVertices = DEFAULT_BUFFER_SIZE; + int maxIndices = DEFAULT_BUFFER_SIZE; + uint8_t* vertices = (uint8_t*) sk_malloc_throw(maxVertices * vertexStride); + uint16_t* indices = (uint16_t*) sk_malloc_throw(maxIndices * sizeof(uint16_t)); + for (int i = 0; i < instanceCount; i++) { + Geometry& args = fGeoData[i]; + GrAAConvexTessellator tess(args.fStrokeWidth, args.fJoin, args.fMiterLimit); + + if (!tess.tessellate(args.fViewMatrix, args.fPath)) { + continue; + } + + int currentIndices = tess.numIndices(); + SkASSERT(currentIndices <= UINT16_MAX); + if (indexCount + currentIndices > UINT16_MAX) { + // if we added the current instance, we would overflow the indices we can store in a + // uint16_t. Draw what we've got so far and reset. + draw(target, this->pipeline(), vertexCount, vertexStride, vertices, indexCount, + indices); + vertexCount = 0; + indexCount = 0; + } + int currentVertices = tess.numPts(); + if (vertexCount + currentVertices > maxVertices) { + maxVertices = SkTMax(vertexCount + currentVertices, maxVertices * 2); + vertices = (uint8_t*) sk_realloc_throw(vertices, maxVertices * vertexStride); + } + if (indexCount + currentIndices > maxIndices) { + maxIndices = SkTMax(indexCount + currentIndices, maxIndices * 2); + indices = (uint16_t*) sk_realloc_throw(indices, maxIndices * sizeof(uint16_t)); + } + + extract_verts(tess, vertices + vertexStride * vertexCount, vertexStride, args.fColor, + vertexCount, indices + indexCount, canTweakAlphaForCoverage); + vertexCount += currentVertices; + indexCount += currentIndices; + } + draw(target, this->pipeline(), vertexCount, vertexStride, vertices, indexCount, + indices); + sk_free(vertices); + sk_free(indices); + } + + SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } + + AAFlatteningConvexPathBatch(const Geometry& geometry) { + this->initClassID<AAFlatteningConvexPathBatch>(); + fGeoData.push_back(geometry); + + // compute bounds + fBounds = geometry.fPath.getBounds(); + geometry.fViewMatrix.mapRect(&fBounds); + } + + bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { + AAFlatteningConvexPathBatch* that = t->cast<AAFlatteningConvexPathBatch>(); + if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), + that->bounds(), caps)) { + return false; + } + + SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); + if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { + return false; + } + + // In the event of two batches, one who can tweak, one who cannot, we just fall back to + // not tweaking + if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { + fBatch.fCanTweakAlphaForCoverage = false; + } + + fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); + this->joinBounds(that->bounds()); + return true; + } + + GrColor color() const { return fBatch.fColor; } + bool linesOnly() const { return fBatch.fLinesOnly; } + bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } + bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } + const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } + bool coverageIgnored() const { return fBatch.fCoverageIgnored; } + + struct BatchTracker { + GrColor fColor; + bool fUsesLocalCoords; + bool fColorIgnored; + bool fCoverageIgnored; + bool fLinesOnly; + bool fCanTweakAlphaForCoverage; + }; + + BatchTracker fBatch; + SkSTArray<1, Geometry, true> fGeoData; +}; + +bool GrAALinearizingConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { + if (args.fPath->isEmpty()) { + return true; + } + AAFlatteningConvexPathBatch::Geometry geometry; + geometry.fColor = args.fColor; + geometry.fViewMatrix = *args.fViewMatrix; + geometry.fPath = *args.fPath; + geometry.fStrokeWidth = args.fStroke->isFillStyle() ? -1.0f : args.fStroke->getWidth(); + geometry.fJoin = args.fStroke->isFillStyle() ? SkPaint::Join::kMiter_Join : + args.fStroke->getJoin(); + geometry.fMiterLimit = args.fStroke->getMiter(); + + SkAutoTUnref<GrDrawBatch> batch(AAFlatteningConvexPathBatch::Create(geometry)); + args.fTarget->drawBatch(*args.fPipelineBuilder, batch); + + return true; +} + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +#ifdef GR_TEST_UTILS + +DRAW_BATCH_TEST_DEFINE(AAFlatteningConvexPathBatch) { + AAFlatteningConvexPathBatch::Geometry geometry; + geometry.fColor = GrRandomColor(random); + geometry.fViewMatrix = GrTest::TestMatrixInvertible(random); + geometry.fPath = GrTest::TestPathConvex(random); + + return AAFlatteningConvexPathBatch::Create(geometry); +} + +#endif diff --git a/src/gpu/batches/GrAALinearizingConvexPathRenderer.h b/src/gpu/batches/GrAALinearizingConvexPathRenderer.h new file mode 100644 index 0000000000..57d21e0c1e --- /dev/null +++ b/src/gpu/batches/GrAALinearizingConvexPathRenderer.h @@ -0,0 +1,24 @@ + +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrAALinearizingConvexPathRenderer_DEFINED +#define GrAALinearizingConvexPathRenderer_DEFINED + +#include "GrPathRenderer.h" + +class GrAALinearizingConvexPathRenderer : public GrPathRenderer { +public: + GrAALinearizingConvexPathRenderer(); + +private: + bool onCanDrawPath(const CanDrawPathArgs&) const override; + + bool onDrawPath(const DrawPathArgs&) override; +}; + +#endif diff --git a/src/gpu/batches/GrDashLinePathRenderer.cpp b/src/gpu/batches/GrDashLinePathRenderer.cpp new file mode 100644 index 0000000000..e26f5d7627 --- /dev/null +++ b/src/gpu/batches/GrDashLinePathRenderer.cpp @@ -0,0 +1,26 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrDashLinePathRenderer.h" + +#include "GrGpu.h" +#include "effects/GrDashingEffect.h" + +bool GrDashLinePathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { + SkPoint pts[2]; + if (args.fStroke->isDashed() && args.fPath->isLine(pts)) { + return GrDashingEffect::CanDrawDashLine(pts, *args.fStroke, *args.fViewMatrix); + } + return false; +} + +bool GrDashLinePathRenderer::onDrawPath(const DrawPathArgs& args) { + SkPoint pts[2]; + SkAssertResult(args.fPath->isLine(pts)); + return GrDashingEffect::DrawDashLine(args.fTarget, *args.fPipelineBuilder, args.fColor, + *args.fViewMatrix, pts, args.fAntiAlias, *args.fStroke); +} diff --git a/src/gpu/batches/GrDashLinePathRenderer.h b/src/gpu/batches/GrDashLinePathRenderer.h new file mode 100644 index 0000000000..f21c73b688 --- /dev/null +++ b/src/gpu/batches/GrDashLinePathRenderer.h @@ -0,0 +1,29 @@ + +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrDashLinePathRenderer_DEFINED +#define GrDashLinePathRenderer_DEFINED + +#include "GrPathRenderer.h" + +class GrDashLinePathRenderer : public GrPathRenderer { +private: + bool onCanDrawPath(const CanDrawPathArgs&) const override; + + StencilSupport onGetStencilSupport(const SkPath&, const GrStrokeInfo&) const override { + return kNoSupport_StencilSupport; + } + + bool onDrawPath(const DrawPathArgs&) override; + + SkAutoTUnref<GrGpu> fGpu; + typedef GrPathRenderer INHERITED; +}; + + +#endif diff --git a/src/gpu/batches/GrStencilAndCoverPathRenderer.cpp b/src/gpu/batches/GrStencilAndCoverPathRenderer.cpp new file mode 100644 index 0000000000..1a32e3fb75 --- /dev/null +++ b/src/gpu/batches/GrStencilAndCoverPathRenderer.cpp @@ -0,0 +1,158 @@ + +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + + +#include "GrStencilAndCoverPathRenderer.h" +#include "GrCaps.h" +#include "GrContext.h" +#include "GrGpu.h" +#include "GrPath.h" +#include "GrRenderTarget.h" +#include "GrResourceProvider.h" +#include "GrStrokeInfo.h" + +/* + * For now paths only natively support winding and even odd fill types + */ +static GrPathRendering::FillType convert_skpath_filltype(SkPath::FillType fill) { + switch (fill) { + default: + SkFAIL("Incomplete Switch\n"); + case SkPath::kWinding_FillType: + case SkPath::kInverseWinding_FillType: + return GrPathRendering::kWinding_FillType; + case SkPath::kEvenOdd_FillType: + case SkPath::kInverseEvenOdd_FillType: + return GrPathRendering::kEvenOdd_FillType; + } +} + +GrPathRenderer* GrStencilAndCoverPathRenderer::Create(GrResourceProvider* resourceProvider, + const GrCaps& caps) { + if (caps.shaderCaps()->pathRenderingSupport()) { + return new GrStencilAndCoverPathRenderer(resourceProvider); + } else { + return nullptr; + } +} + +GrStencilAndCoverPathRenderer::GrStencilAndCoverPathRenderer(GrResourceProvider* resourceProvider) + : fResourceProvider(resourceProvider) { +} + +bool GrStencilAndCoverPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { + if (args.fStroke->isHairlineStyle()) { + return false; + } + if (!args.fPipelineBuilder->getStencil().isDisabled()) { + return false; + } + if (args.fAntiAlias) { + return args.fPipelineBuilder->getRenderTarget()->isStencilBufferMultisampled(); + } else { + return true; // doesn't do per-path AA, relies on the target having MSAA + } +} + +static GrPath* get_gr_path(GrResourceProvider* resourceProvider, const SkPath& skPath, + const GrStrokeInfo& stroke) { + GrUniqueKey key; + bool isVolatile; + GrPath::ComputeKey(skPath, stroke, &key, &isVolatile); + SkAutoTUnref<GrPath> path( + static_cast<GrPath*>(resourceProvider->findAndRefResourceByUniqueKey(key))); + if (!path) { + path.reset(resourceProvider->createPath(skPath, stroke)); + if (!isVolatile) { + resourceProvider->assignUniqueKeyToResource(key, path); + } + } else { + SkASSERT(path->isEqualTo(skPath, stroke)); + } + return path.detach(); +} + +void GrStencilAndCoverPathRenderer::onStencilPath(const StencilPathArgs& args) { + SkASSERT(!args.fPath->isInverseFillType()); + SkAutoTUnref<GrPathProcessor> pp(GrPathProcessor::Create(GrColor_WHITE, *args.fViewMatrix)); + SkAutoTUnref<GrPath> p(get_gr_path(fResourceProvider, *args.fPath, *args.fStroke)); + args.fTarget->stencilPath(*args.fPipelineBuilder, pp, p, + convert_skpath_filltype(args.fPath->getFillType())); +} + +bool GrStencilAndCoverPathRenderer::onDrawPath(const DrawPathArgs& args) { + SkASSERT(!args.fStroke->isHairlineStyle()); + const SkPath& path = *args.fPath; + GrPipelineBuilder* pipelineBuilder = args.fPipelineBuilder; + const SkMatrix& viewMatrix = *args.fViewMatrix; + + SkASSERT(pipelineBuilder->getStencil().isDisabled()); + + if (args.fAntiAlias) { + SkASSERT(pipelineBuilder->getRenderTarget()->isStencilBufferMultisampled()); + pipelineBuilder->enableState(GrPipelineBuilder::kHWAntialias_Flag); + } + + SkAutoTUnref<GrPath> p(get_gr_path(fResourceProvider, path, *args.fStroke)); + + if (path.isInverseFillType()) { + GR_STATIC_CONST_SAME_STENCIL(kInvertedStencilPass, + kKeep_StencilOp, + kZero_StencilOp, + // We know our rect will hit pixels outside the clip and the user bits will be 0 + // outside the clip. So we can't just fill where the user bits are 0. We also need to + // check that the clip bit is set. + kEqualIfInClip_StencilFunc, + 0xffff, + 0x0000, + 0xffff); + + pipelineBuilder->setStencil(kInvertedStencilPass); + + // fake inverse with a stencil and cover + SkAutoTUnref<GrPathProcessor> pp(GrPathProcessor::Create(GrColor_WHITE, viewMatrix)); + args.fTarget->stencilPath(*pipelineBuilder, pp, p, + convert_skpath_filltype(path.getFillType())); + + SkMatrix invert = SkMatrix::I(); + SkRect bounds = + SkRect::MakeLTRB(0, 0, SkIntToScalar(pipelineBuilder->getRenderTarget()->width()), + SkIntToScalar(pipelineBuilder->getRenderTarget()->height())); + SkMatrix vmi; + // mapRect through persp matrix may not be correct + if (!viewMatrix.hasPerspective() && viewMatrix.invert(&vmi)) { + vmi.mapRect(&bounds); + // theoretically could set bloat = 0, instead leave it because of matrix inversion + // precision. + SkScalar bloat = viewMatrix.getMaxScale() * SK_ScalarHalf; + bounds.outset(bloat, bloat); + } else { + if (!viewMatrix.invert(&invert)) { + return false; + } + } + const SkMatrix& viewM = viewMatrix.hasPerspective() ? SkMatrix::I() : viewMatrix; + args.fTarget->drawNonAARect(*pipelineBuilder, args.fColor, viewM, bounds, invert); + } else { + GR_STATIC_CONST_SAME_STENCIL(kStencilPass, + kZero_StencilOp, + kKeep_StencilOp, + kNotEqual_StencilFunc, + 0xffff, + 0x0000, + 0xffff); + + pipelineBuilder->setStencil(kStencilPass); + SkAutoTUnref<GrPathProcessor> pp(GrPathProcessor::Create(args.fColor, viewMatrix)); + args.fTarget->drawPath(*pipelineBuilder, pp, p, + convert_skpath_filltype(path.getFillType())); + } + + pipelineBuilder->stencil()->setDisabled(); + return true; +} diff --git a/src/gpu/batches/GrStencilAndCoverPathRenderer.h b/src/gpu/batches/GrStencilAndCoverPathRenderer.h new file mode 100644 index 0000000000..bb8cdb0dd7 --- /dev/null +++ b/src/gpu/batches/GrStencilAndCoverPathRenderer.h @@ -0,0 +1,45 @@ + +/* + * Copyright 2012 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrBuiltInPathRenderer_DEFINED +#define GrBuiltInPathRenderer_DEFINED + +#include "GrPathRenderer.h" + +class GrContext; +class GrGpu; + +/** + * Uses GrGpu::stencilPath followed by a cover rectangle. This subclass doesn't apply AA; it relies + * on the target having MSAA if AA is desired. + */ +class GrStencilAndCoverPathRenderer : public GrPathRenderer { +public: + + static GrPathRenderer* Create(GrResourceProvider*, const GrCaps&); + + +private: + StencilSupport onGetStencilSupport(const SkPath&, const GrStrokeInfo&) const override { + return GrPathRenderer::kStencilOnly_StencilSupport; + } + + bool onCanDrawPath(const CanDrawPathArgs&) const override; + + bool onDrawPath(const DrawPathArgs&) override; + + void onStencilPath(const StencilPathArgs&) override; + + GrStencilAndCoverPathRenderer(GrResourceProvider*); + + GrResourceProvider* fResourceProvider; + + typedef GrPathRenderer INHERITED; +}; + +#endif diff --git a/src/gpu/batches/GrTessellatingPathRenderer.cpp b/src/gpu/batches/GrTessellatingPathRenderer.cpp new file mode 100644 index 0000000000..bc9a6b5d04 --- /dev/null +++ b/src/gpu/batches/GrTessellatingPathRenderer.cpp @@ -0,0 +1,1660 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "GrTessellatingPathRenderer.h" + +#include "GrBatchFlushState.h" +#include "GrBatchTest.h" +#include "GrDefaultGeoProcFactory.h" +#include "GrPathUtils.h" +#include "GrVertices.h" +#include "GrResourceCache.h" +#include "GrResourceProvider.h" +#include "SkChunkAlloc.h" +#include "SkGeometry.h" + +#include "batches/GrVertexBatch.h" + +#include <stdio.h> + +/* + * This path renderer tessellates the path into triangles, uploads the triangles to a + * vertex buffer, and renders them with a single draw call. It does not currently do + * antialiasing, so it must be used in conjunction with multisampling. + * + * There are six stages to the algorithm: + * + * 1) Linearize the path contours into piecewise linear segments (path_to_contours()). + * 2) Build a mesh of edges connecting the vertices (build_edges()). + * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()). + * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplify()). + * 5) Tessellate the simplified mesh into monotone polygons (tessellate()). + * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_triangles()). + * + * The vertex sorting in step (3) is a merge sort, since it plays well with the linked list + * of vertices (and the necessity of inserting new vertices on intersection). + * + * Stages (4) and (5) use an active edge list, which a list of all edges for which the + * sweep line has crossed the top vertex, but not the bottom vertex. It's sorted + * left-to-right based on the point where both edges are active (when both top vertices + * have been seen, so the "lower" top vertex of the two). If the top vertices are equal + * (shared), it's sorted based on the last point where both edges are active, so the + * "upper" bottom vertex. + * + * The most complex step is the simplification (4). It's based on the Bentley-Ottman + * line-sweep algorithm, but due to floating point inaccuracy, the intersection points are + * not exact and may violate the mesh topology or active edge list ordering. We + * accommodate this by adjusting the topology of the mesh and AEL to match the intersection + * points. This occurs in three ways: + * + * A) Intersections may cause a shortened edge to no longer be ordered with respect to its + * neighbouring edges at the top or bottom vertex. This is handled by merging the + * edges (merge_collinear_edges()). + * B) Intersections may cause an edge to violate the left-to-right ordering of the + * active edge list. This is handled by splitting the neighbour edge on the + * intersected vertex (cleanup_active_edges()). + * C) Shortening an edge may cause an active edge to become inactive or an inactive edge + * to become active. This is handled by removing or inserting the edge in the active + * edge list (fix_active_state()). + * + * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygons and + * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Note that it + * currently uses a linked list for the active edge list, rather than a 2-3 tree as the + * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and removal also + * become O(lg N). In all the test cases, it was found that the cost of frequent O(lg N) + * insertions and removals was greater than the cost of infrequent O(N) lookups with the + * linked list implementation. With the latter, all removals are O(1), and most insertions + * are O(1), since we know the adjacent edge in the active edge list based on the topology. + * Only type 2 vertices (see paper) require the O(N) lookups, and these are much less + * frequent. There may be other data structures worth investigating, however. + * + * Note that the orientation of the line sweep algorithms is determined by the aspect ratio of the + * path bounds. When the path is taller than it is wide, we sort vertices based on increasing Y + * coordinate, and secondarily by increasing X coordinate. When the path is wider than it is tall, + * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordinate. This is so + * that the "left" and "right" orientation in the code remains correct (edges to the left are + * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90 + * degrees counterclockwise, rather that transposing. + */ +#define LOGGING_ENABLED 0 +#define WIREFRAME 0 + +#if LOGGING_ENABLED +#define LOG printf +#else +#define LOG(...) +#endif + +#define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args + +namespace { + +struct Vertex; +struct Edge; +struct Poly; + +template <class T, T* T::*Prev, T* T::*Next> +void insert(T* t, T* prev, T* next, T** head, T** tail) { + t->*Prev = prev; + t->*Next = next; + if (prev) { + prev->*Next = t; + } else if (head) { + *head = t; + } + if (next) { + next->*Prev = t; + } else if (tail) { + *tail = t; + } +} + +template <class T, T* T::*Prev, T* T::*Next> +void remove(T* t, T** head, T** tail) { + if (t->*Prev) { + t->*Prev->*Next = t->*Next; + } else if (head) { + *head = t->*Next; + } + if (t->*Next) { + t->*Next->*Prev = t->*Prev; + } else if (tail) { + *tail = t->*Prev; + } + t->*Prev = t->*Next = nullptr; +} + +/** + * Vertices are used in three ways: first, the path contours are converted into a + * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices + * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing + * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid + * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of + * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since + * an individual Vertex from the path mesh may belong to multiple + * MonotonePolys, so the original Vertices cannot be re-used. + */ + +struct Vertex { + Vertex(const SkPoint& point) + : fPoint(point), fPrev(nullptr), fNext(nullptr) + , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr) + , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr) + , fProcessed(false) +#if LOGGING_ENABLED + , fID (-1.0f) +#endif + {} + SkPoint fPoint; // Vertex position + Vertex* fPrev; // Linked list of contours, then Y-sorted vertices. + Vertex* fNext; // " + Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. + Edge* fLastEdgeAbove; // " + Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. + Edge* fLastEdgeBelow; // " + bool fProcessed; // Has this vertex been seen in simplify()? +#if LOGGING_ENABLED + float fID; // Identifier used for logging. +#endif +}; + +/***************************************************************************************/ + +typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b); + +struct Comparator { + CompareFunc sweep_lt; + CompareFunc sweep_gt; +}; + +bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) { + return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX; +} + +bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) { + return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY; +} + +bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) { + return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX; +} + +bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) { + return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY; +} + +inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) { + *data++ = v->fPoint; + return data; +} + +SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) { +#if WIREFRAME + data = emit_vertex(v0, data); + data = emit_vertex(v1, data); + data = emit_vertex(v1, data); + data = emit_vertex(v2, data); + data = emit_vertex(v2, data); + data = emit_vertex(v0, data); +#else + data = emit_vertex(v0, data); + data = emit_vertex(v1, data); + data = emit_vertex(v2, data); +#endif + return data; +} + +struct EdgeList { + EdgeList() : fHead(nullptr), fTail(nullptr) {} + Edge* fHead; + Edge* fTail; +}; + +/** + * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and + * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf(). + * Note that an Edge will give occasionally dist() != 0 for its own endpoints (because floating + * point). For speed, that case is only tested by the callers which require it (e.g., + * cleanup_active_edges()). Edges also handle checking for intersection with other edges. + * Currently, this converts the edges to the parametric form, in order to avoid doing a division + * until an intersection has been confirmed. This is slightly slower in the "found" case, but + * a lot faster in the "not found" case. + * + * The coefficients of the line equation stored in double precision to avoid catastrphic + * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures that the result is + * correct in float, since it's a polynomial of degree 2. The intersect() function, being + * degree 5, is still subject to catastrophic cancellation. We deal with that by assuming its + * output may be incorrect, and adjusting the mesh topology to match (see comment at the top of + * this file). + */ + +struct Edge { + Edge(Vertex* top, Vertex* bottom, int winding) + : fWinding(winding) + , fTop(top) + , fBottom(bottom) + , fLeft(nullptr) + , fRight(nullptr) + , fPrevEdgeAbove(nullptr) + , fNextEdgeAbove(nullptr) + , fPrevEdgeBelow(nullptr) + , fNextEdgeBelow(nullptr) + , fLeftPoly(nullptr) + , fRightPoly(nullptr) { + recompute(); + } + int fWinding; // 1 == edge goes downward; -1 = edge goes upward. + Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt). + Vertex* fBottom; // The bottom vertex in vertex-sort-order. + Edge* fLeft; // The linked list of edges in the active edge list. + Edge* fRight; // " + Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above". + Edge* fNextEdgeAbove; // " + Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below". + Edge* fNextEdgeBelow; // " + Poly* fLeftPoly; // The Poly to the left of this edge, if any. + Poly* fRightPoly; // The Poly to the right of this edge, if any. + double fDX; // The line equation for this edge, in implicit form. + double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line. + double fC; + double dist(const SkPoint& p) const { + return fDY * p.fX - fDX * p.fY + fC; + } + bool isRightOf(Vertex* v) const { + return dist(v->fPoint) < 0.0; + } + bool isLeftOf(Vertex* v) const { + return dist(v->fPoint) > 0.0; + } + void recompute() { + fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; + fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; + fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - + static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; + } + bool intersect(const Edge& other, SkPoint* p) { + LOG("intersecting %g -> %g with %g -> %g\n", + fTop->fID, fBottom->fID, + other.fTop->fID, other.fBottom->fID); + if (fTop == other.fTop || fBottom == other.fBottom) { + return false; + } + double denom = fDX * other.fDY - fDY * other.fDX; + if (denom == 0.0) { + return false; + } + double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX; + double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY; + double sNumer = dy * other.fDX - dx * other.fDY; + double tNumer = dy * fDX - dx * fDY; + // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. + // This saves us doing the divide below unless absolutely necessary. + if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) + : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { + return false; + } + double s = sNumer / denom; + SkASSERT(s >= 0.0 && s <= 1.0); + p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); + p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); + return true; + } + bool isActive(EdgeList* activeEdges) const { + return activeEdges && (fLeft || fRight || activeEdges->fHead == this); + } +}; + +/***************************************************************************************/ + +struct Poly { + Poly(int winding) + : fWinding(winding) + , fHead(nullptr) + , fTail(nullptr) + , fActive(nullptr) + , fNext(nullptr) + , fPartner(nullptr) + , fCount(0) + { +#if LOGGING_ENABLED + static int gID = 0; + fID = gID++; + LOG("*** created Poly %d\n", fID); +#endif + } + typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side; + struct MonotonePoly { + MonotonePoly() + : fSide(kNeither_Side) + , fHead(nullptr) + , fTail(nullptr) + , fPrev(nullptr) + , fNext(nullptr) {} + Side fSide; + Vertex* fHead; + Vertex* fTail; + MonotonePoly* fPrev; + MonotonePoly* fNext; + bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { + Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc); + bool done = false; + if (fSide == kNeither_Side) { + fSide = side; + } else { + done = side != fSide; + } + if (fHead == nullptr) { + fHead = fTail = newV; + } else if (fSide == kRight_Side) { + newV->fPrev = fTail; + fTail->fNext = newV; + fTail = newV; + } else { + newV->fNext = fHead; + fHead->fPrev = newV; + fHead = newV; + } + return done; + } + + SkPoint* emit(SkPoint* data) { + Vertex* first = fHead; + Vertex* v = first->fNext; + while (v != fTail) { + SkASSERT(v && v->fPrev && v->fNext); + Vertex* prev = v->fPrev; + Vertex* curr = v; + Vertex* next = v->fNext; + double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX; + double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY; + double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX; + double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY; + if (ax * by - ay * bx >= 0.0) { + data = emit_triangle(prev, curr, next, data); + v->fPrev->fNext = v->fNext; + v->fNext->fPrev = v->fPrev; + if (v->fPrev == first) { + v = v->fNext; + } else { + v = v->fPrev; + } + } else { + v = v->fNext; + } + } + return data; + } + }; + Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { + LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY, + side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither"); + Poly* partner = fPartner; + Poly* poly = this; + if (partner) { + fPartner = partner->fPartner = nullptr; + } + if (!fActive) { + fActive = ALLOC_NEW(MonotonePoly, (), alloc); + } + if (fActive->addVertex(v, side, alloc)) { + if (fTail) { + fActive->fPrev = fTail; + fTail->fNext = fActive; + fTail = fActive; + } else { + fHead = fTail = fActive; + } + if (partner) { + partner->addVertex(v, side, alloc); + poly = partner; + } else { + Vertex* prev = fActive->fSide == Poly::kLeft_Side ? + fActive->fHead->fNext : fActive->fTail->fPrev; + fActive = ALLOC_NEW(MonotonePoly, , alloc); + fActive->addVertex(prev, Poly::kNeither_Side, alloc); + fActive->addVertex(v, side, alloc); + } + } + fCount++; + return poly; + } + void end(Vertex* v, SkChunkAlloc& alloc) { + LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY); + if (fPartner) { + fPartner = fPartner->fPartner = nullptr; + } + addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, alloc); + } + SkPoint* emit(SkPoint *data) { + if (fCount < 3) { + return data; + } + LOG("emit() %d, size %d\n", fID, fCount); + for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) { + data = m->emit(data); + } + return data; + } + int fWinding; + MonotonePoly* fHead; + MonotonePoly* fTail; + MonotonePoly* fActive; + Poly* fNext; + Poly* fPartner; + int fCount; +#if LOGGING_ENABLED + int fID; +#endif +}; + +/***************************************************************************************/ + +bool coincident(const SkPoint& a, const SkPoint& b) { + return a == b; +} + +Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { + Poly* poly = ALLOC_NEW(Poly, (winding), alloc); + poly->addVertex(v, Poly::kNeither_Side, alloc); + poly->fNext = *head; + *head = poly; + return poly; +} + +Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, + SkChunkAlloc& alloc) { + Vertex* v = ALLOC_NEW(Vertex, (p), alloc); +#if LOGGING_ENABLED + static float gID = 0.0f; + v->fID = gID++; +#endif + if (prev) { + prev->fNext = v; + v->fPrev = prev; + } else { + *head = v; + } + return v; +} + +Vertex* generate_quadratic_points(const SkPoint& p0, + const SkPoint& p1, + const SkPoint& p2, + SkScalar tolSqd, + Vertex* prev, + Vertex** head, + int pointsLeft, + SkChunkAlloc& alloc) { + SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2); + if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) { + return append_point_to_contour(p2, prev, head, alloc); + } + + const SkPoint q[] = { + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, + }; + const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; + + pointsLeft >>= 1; + prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft, alloc); + prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft, alloc); + return prev; +} + +Vertex* generate_cubic_points(const SkPoint& p0, + const SkPoint& p1, + const SkPoint& p2, + const SkPoint& p3, + SkScalar tolSqd, + Vertex* prev, + Vertex** head, + int pointsLeft, + SkChunkAlloc& alloc) { + SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3); + SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3); + if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || + !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) { + return append_point_to_contour(p3, prev, head, alloc); + } + const SkPoint q[] = { + { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, + { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, + { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } + }; + const SkPoint r[] = { + { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, + { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } + }; + const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; + pointsLeft >>= 1; + prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLeft, alloc); + prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLeft, alloc); + return prev; +} + +// Stage 1: convert the input path to a set of linear contours (linked list of Vertices). + +void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds, + Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) { + + SkScalar toleranceSqd = tolerance * tolerance; + + SkPoint pts[4]; + bool done = false; + *isLinear = true; + SkPath::Iter iter(path, false); + Vertex* prev = nullptr; + Vertex* head = nullptr; + if (path.isInverseFillType()) { + SkPoint quad[4]; + clipBounds.toQuad(quad); + for (int i = 3; i >= 0; i--) { + prev = append_point_to_contour(quad[i], prev, &head, alloc); + } + head->fPrev = prev; + prev->fNext = head; + *contours++ = head; + head = prev = nullptr; + } + SkAutoConicToQuads converter; + while (!done) { + SkPath::Verb verb = iter.next(pts); + switch (verb) { + case SkPath::kConic_Verb: { + SkScalar weight = iter.conicWeight(); + const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd); + for (int i = 0; i < converter.countQuads(); ++i) { + int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, tolerance); + prev = generate_quadratic_points(quadPts[0], quadPts[1], quadPts[2], + toleranceSqd, prev, &head, pointsLeft, alloc); + quadPts += 2; + } + *isLinear = false; + break; + } + case SkPath::kMove_Verb: + if (head) { + head->fPrev = prev; + prev->fNext = head; + *contours++ = head; + } + head = prev = nullptr; + prev = append_point_to_contour(pts[0], prev, &head, alloc); + break; + case SkPath::kLine_Verb: { + prev = append_point_to_contour(pts[1], prev, &head, alloc); + break; + } + case SkPath::kQuad_Verb: { + int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance); + prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleranceSqd, prev, + &head, pointsLeft, alloc); + *isLinear = false; + break; + } + case SkPath::kCubic_Verb: { + int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance); + prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3], + toleranceSqd, prev, &head, pointsLeft, alloc); + *isLinear = false; + break; + } + case SkPath::kClose_Verb: + if (head) { + head->fPrev = prev; + prev->fNext = head; + *contours++ = head; + } + head = prev = nullptr; + break; + case SkPath::kDone_Verb: + if (head) { + head->fPrev = prev; + prev->fNext = head; + *contours++ = head; + } + done = true; + break; + } + } +} + +inline bool apply_fill_type(SkPath::FillType fillType, int winding) { + switch (fillType) { + case SkPath::kWinding_FillType: + return winding != 0; + case SkPath::kEvenOdd_FillType: + return (winding & 1) != 0; + case SkPath::kInverseWinding_FillType: + return winding == 1; + case SkPath::kInverseEvenOdd_FillType: + return (winding & 1) == 1; + default: + SkASSERT(false); + return false; + } +} + +Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) { + int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; + Vertex* top = winding < 0 ? next : prev; + Vertex* bottom = winding < 0 ? prev : next; + return ALLOC_NEW(Edge, (top, bottom, winding), alloc); +} + +void remove_edge(Edge* edge, EdgeList* edges) { + LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); + SkASSERT(edge->isActive(edges)); + remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail); +} + +void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) { + LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); + SkASSERT(!edge->isActive(edges)); + Edge* next = prev ? prev->fRight : edges->fHead; + insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail); +} + +void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) { + if (v->fFirstEdgeAbove) { + *left = v->fFirstEdgeAbove->fLeft; + *right = v->fLastEdgeAbove->fRight; + return; + } + Edge* next = nullptr; + Edge* prev; + for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) { + if (prev->isLeftOf(v)) { + break; + } + next = prev; + } + *left = prev; + *right = next; + return; +} + +void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** left, Edge** right) { + Edge* prev = nullptr; + Edge* next; + for (next = edges->fHead; next != nullptr; next = next->fRight) { + if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRightOf(edge->fTop)) || + (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftOf(next->fTop)) || + (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) && + next->isRightOf(edge->fBottom)) || + (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) && + edge->isLeftOf(next->fBottom))) { + break; + } + prev = next; + } + *left = prev; + *right = next; + return; +} + +void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) { + if (edge->isActive(activeEdges)) { + if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { + remove_edge(edge, activeEdges); + } + } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { + Edge* left; + Edge* right; + find_enclosing_edges(edge, activeEdges, c, &left, &right); + insert_edge(edge, left, activeEdges); + } +} + +void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) { + if (edge->fTop->fPoint == edge->fBottom->fPoint || + c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { + return; + } + LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID); + Edge* prev = nullptr; + Edge* next; + for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { + if (next->isRightOf(edge->fTop)) { + break; + } + prev = next; + } + insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( + edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); +} + +void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) { + if (edge->fTop->fPoint == edge->fBottom->fPoint || + c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { + return; + } + LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, v->fID); + Edge* prev = nullptr; + Edge* next; + for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { + if (next->isRightOf(edge->fBottom)) { + break; + } + prev = next; + } + insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( + edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); +} + +void remove_edge_above(Edge* edge) { + LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, + edge->fBottom->fID); + remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( + edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); +} + +void remove_edge_below(Edge* edge) { + LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBottom->fID, + edge->fTop->fID); + remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( + edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); +} + +void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) { + if (edge->fWinding != 0) { + return; + } + LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID); + remove_edge_above(edge); + remove_edge_below(edge); + if (edge->isActive(edges)) { + remove_edge(edge, edges); + } +} + +void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c); + +void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) { + remove_edge_below(edge); + edge->fTop = v; + edge->recompute(); + insert_edge_below(edge, v, c); + fix_active_state(edge, activeEdges, c); + merge_collinear_edges(edge, activeEdges, c); +} + +void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) { + remove_edge_above(edge); + edge->fBottom = v; + edge->recompute(); + insert_edge_above(edge, v, c); + fix_active_state(edge, activeEdges, c); + merge_collinear_edges(edge, activeEdges, c); +} + +void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) { + if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { + LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", + edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, + edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); + other->fWinding += edge->fWinding; + erase_edge_if_zero_winding(other, activeEdges); + edge->fWinding = 0; + erase_edge_if_zero_winding(edge, activeEdges); + } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { + other->fWinding += edge->fWinding; + erase_edge_if_zero_winding(other, activeEdges); + set_bottom(edge, other->fTop, activeEdges, c); + } else { + edge->fWinding += other->fWinding; + erase_edge_if_zero_winding(edge, activeEdges); + set_bottom(other, edge->fTop, activeEdges, c); + } +} + +void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c) { + if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { + LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", + edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, + edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); + other->fWinding += edge->fWinding; + erase_edge_if_zero_winding(other, activeEdges); + edge->fWinding = 0; + erase_edge_if_zero_winding(edge, activeEdges); + } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { + edge->fWinding += other->fWinding; + erase_edge_if_zero_winding(edge, activeEdges); + set_top(other, edge->fBottom, activeEdges, c); + } else { + other->fWinding += edge->fWinding; + erase_edge_if_zero_winding(other, activeEdges); + set_top(edge, other->fBottom, activeEdges, c); + } +} + +void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) { + if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop || + !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) { + merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c); + } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop || + !edge->isLeftOf(edge->fNextEdgeAbove->fTop))) { + merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c); + } + if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom || + !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))) { + merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c); + } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->fBottom || + !edge->isLeftOf(edge->fNextEdgeBelow->fBottom))) { + merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c); + } +} + +void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc); + +void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) { + Vertex* top = edge->fTop; + Vertex* bottom = edge->fBottom; + if (edge->fLeft) { + Vertex* leftTop = edge->fLeft->fTop; + Vertex* leftBottom = edge->fLeft->fBottom; + if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) { + split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc); + } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) { + split_edge(edge, leftTop, activeEdges, c, alloc); + } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) && + !edge->fLeft->isLeftOf(bottom)) { + split_edge(edge->fLeft, bottom, activeEdges, c, alloc); + } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) { + split_edge(edge, leftBottom, activeEdges, c, alloc); + } + } + if (edge->fRight) { + Vertex* rightTop = edge->fRight->fTop; + Vertex* rightBottom = edge->fRight->fBottom; + if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) { + split_edge(edge->fRight, top, activeEdges, c, alloc); + } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) { + split_edge(edge, rightTop, activeEdges, c, alloc); + } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) && + !edge->fRight->isRightOf(bottom)) { + split_edge(edge->fRight, bottom, activeEdges, c, alloc); + } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) && + !edge->isLeftOf(rightBottom)) { + split_edge(edge, rightBottom, activeEdges, c, alloc); + } + } +} + +void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) { + LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", + edge->fTop->fID, edge->fBottom->fID, + v->fID, v->fPoint.fX, v->fPoint.fY); + if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) { + set_top(edge, v, activeEdges, c); + } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) { + set_bottom(edge, v, activeEdges, c); + } else { + Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), alloc); + insert_edge_below(newEdge, v, c); + insert_edge_above(newEdge, edge->fBottom, c); + set_bottom(edge, v, activeEdges, c); + cleanup_active_edges(edge, activeEdges, c, alloc); + fix_active_state(newEdge, activeEdges, c); + merge_collinear_edges(newEdge, activeEdges, c); + } +} + +void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) { + LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY, + src->fID, dst->fID); + for (Edge* edge = src->fFirstEdgeAbove; edge;) { + Edge* next = edge->fNextEdgeAbove; + set_bottom(edge, dst, nullptr, c); + edge = next; + } + for (Edge* edge = src->fFirstEdgeBelow; edge;) { + Edge* next = edge->fNextEdgeBelow; + set_top(edge, dst, nullptr, c); + edge = next; + } + remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr); +} + +Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c, + SkChunkAlloc& alloc) { + SkPoint p; + if (!edge || !other) { + return nullptr; + } + if (edge->intersect(*other, &p)) { + Vertex* v; + LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); + if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) { + split_edge(other, edge->fTop, activeEdges, c, alloc); + v = edge->fTop; + } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fPoint)) { + split_edge(other, edge->fBottom, activeEdges, c, alloc); + v = edge->fBottom; + } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint)) { + split_edge(edge, other->fTop, activeEdges, c, alloc); + v = other->fTop; + } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->fPoint)) { + split_edge(edge, other->fBottom, activeEdges, c, alloc); + v = other->fBottom; + } else { + Vertex* nextV = edge->fTop; + while (c.sweep_lt(p, nextV->fPoint)) { + nextV = nextV->fPrev; + } + while (c.sweep_lt(nextV->fPoint, p)) { + nextV = nextV->fNext; + } + Vertex* prevV = nextV->fPrev; + if (coincident(prevV->fPoint, p)) { + v = prevV; + } else if (coincident(nextV->fPoint, p)) { + v = nextV; + } else { + v = ALLOC_NEW(Vertex, (p), alloc); + LOG("inserting between %g (%g, %g) and %g (%g, %g)\n", + prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY, + nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY); +#if LOGGING_ENABLED + v->fID = (nextV->fID + prevV->fID) * 0.5f; +#endif + v->fPrev = prevV; + v->fNext = nextV; + prevV->fNext = v; + nextV->fPrev = v; + } + split_edge(edge, v, activeEdges, c, alloc); + split_edge(other, v, activeEdges, c, alloc); + } + return v; + } + return nullptr; +} + +void sanitize_contours(Vertex** contours, int contourCnt) { + for (int i = 0; i < contourCnt; ++i) { + SkASSERT(contours[i]); + for (Vertex* v = contours[i];;) { + if (coincident(v->fPrev->fPoint, v->fPoint)) { + LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY); + if (v->fPrev == v) { + contours[i] = nullptr; + break; + } + v->fPrev->fNext = v->fNext; + v->fNext->fPrev = v->fPrev; + if (contours[i] == v) { + contours[i] = v->fNext; + } + v = v->fPrev; + } else { + v = v->fNext; + if (v == contours[i]) break; + } + } + } +} + +void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) { + for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) { + if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) { + v->fPoint = v->fPrev->fPoint; + } + if (coincident(v->fPrev->fPoint, v->fPoint)) { + merge_vertices(v->fPrev, v, vertices, c, alloc); + } + } +} + +// Stage 2: convert the contours to a mesh of edges connecting the vertices. + +Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) { + Vertex* vertices = nullptr; + Vertex* prev = nullptr; + for (int i = 0; i < contourCnt; ++i) { + for (Vertex* v = contours[i]; v != nullptr;) { + Vertex* vNext = v->fNext; + Edge* edge = new_edge(v->fPrev, v, alloc, c); + if (edge->fWinding > 0) { + insert_edge_below(edge, v->fPrev, c); + insert_edge_above(edge, v, c); + } else { + insert_edge_below(edge, v, c); + insert_edge_above(edge, v->fPrev, c); + } + merge_collinear_edges(edge, nullptr, c); + if (prev) { + prev->fNext = v; + v->fPrev = prev; + } else { + vertices = v; + } + prev = v; + v = vNext; + if (v == contours[i]) break; + } + } + if (prev) { + prev->fNext = vertices->fPrev = nullptr; + } + return vertices; +} + +// Stage 3: sort the vertices by increasing sweep direction. + +Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c); + +void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) { + Vertex* fast; + Vertex* slow; + if (!v || !v->fNext) { + *pFront = v; + *pBack = nullptr; + } else { + slow = v; + fast = v->fNext; + + while (fast != nullptr) { + fast = fast->fNext; + if (fast != nullptr) { + slow = slow->fNext; + fast = fast->fNext; + } + } + + *pFront = v; + *pBack = slow->fNext; + slow->fNext->fPrev = nullptr; + slow->fNext = nullptr; + } +} + +void merge_sort(Vertex** head, Comparator& c) { + if (!*head || !(*head)->fNext) { + return; + } + + Vertex* a; + Vertex* b; + front_back_split(*head, &a, &b); + + merge_sort(&a, c); + merge_sort(&b, c); + + *head = sorted_merge(a, b, c); +} + +inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) { + insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, nullptr, head, tail); +} + +inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) { + insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail); +} + +Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) { + Vertex* head = nullptr; + Vertex* tail = nullptr; + + while (a && b) { + if (c.sweep_lt(a->fPoint, b->fPoint)) { + Vertex* next = a->fNext; + append_vertex(a, &head, &tail); + a = next; + } else { + Vertex* next = b->fNext; + append_vertex(b, &head, &tail); + b = next; + } + } + if (a) { + append_vertex_list(a, &head, &tail); + } + if (b) { + append_vertex_list(b, &head, &tail); + } + return head; +} + +// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. + +void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) { + LOG("simplifying complex polygons\n"); + EdgeList activeEdges; + for (Vertex* v = vertices; v != nullptr; v = v->fNext) { + if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { + continue; + } +#if LOGGING_ENABLED + LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); +#endif + Edge* leftEnclosingEdge = nullptr; + Edge* rightEnclosingEdge = nullptr; + bool restartChecks; + do { + restartChecks = false; + find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); + if (v->fFirstEdgeBelow) { + for (Edge* edge = v->fFirstEdgeBelow; edge != nullptr; edge = edge->fNextEdgeBelow) { + if (check_for_intersection(edge, leftEnclosingEdge, &activeEdges, c, alloc)) { + restartChecks = true; + break; + } + if (check_for_intersection(edge, rightEnclosingEdge, &activeEdges, c, alloc)) { + restartChecks = true; + break; + } + } + } else { + if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge, + &activeEdges, c, alloc)) { + if (c.sweep_lt(pv->fPoint, v->fPoint)) { + v = pv; + } + restartChecks = true; + } + + } + } while (restartChecks); + for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { + remove_edge(e, &activeEdges); + } + Edge* leftEdge = leftEnclosingEdge; + for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { + insert_edge(e, leftEdge, &activeEdges); + leftEdge = e; + } + v->fProcessed = true; + } +} + +// Stage 5: Tessellate the simplified mesh into monotone polygons. + +Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { + LOG("tessellating simple polygons\n"); + EdgeList activeEdges; + Poly* polys = nullptr; + for (Vertex* v = vertices; v != nullptr; v = v->fNext) { + if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { + continue; + } +#if LOGGING_ENABLED + LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); +#endif + Edge* leftEnclosingEdge = nullptr; + Edge* rightEnclosingEdge = nullptr; + find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); + Poly* leftPoly = nullptr; + Poly* rightPoly = nullptr; + if (v->fFirstEdgeAbove) { + leftPoly = v->fFirstEdgeAbove->fLeftPoly; + rightPoly = v->fLastEdgeAbove->fRightPoly; + } else { + leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr; + rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr; + } +#if LOGGING_ENABLED + LOG("edges above:\n"); + for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { + LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, + e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); + } + LOG("edges below:\n"); + for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { + LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, + e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); + } +#endif + if (v->fFirstEdgeAbove) { + if (leftPoly) { + leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); + } + if (rightPoly) { + rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); + } + for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) { + Edge* leftEdge = e; + Edge* rightEdge = e->fNextEdgeAbove; + SkASSERT(rightEdge->isRightOf(leftEdge->fTop)); + remove_edge(leftEdge, &activeEdges); + if (leftEdge->fRightPoly) { + leftEdge->fRightPoly->end(v, alloc); + } + if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fRightPoly) { + rightEdge->fLeftPoly->end(v, alloc); + } + } + remove_edge(v->fLastEdgeAbove, &activeEdges); + if (!v->fFirstEdgeBelow) { + if (leftPoly && rightPoly && leftPoly != rightPoly) { + SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr); + rightPoly->fPartner = leftPoly; + leftPoly->fPartner = rightPoly; + } + } + } + if (v->fFirstEdgeBelow) { + if (!v->fFirstEdgeAbove) { + if (leftPoly && leftPoly == rightPoly) { + // Split the poly. + if (leftPoly->fActive->fSide == Poly::kLeft_Side) { + leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, leftPoly->fWinding, + alloc); + leftPoly->addVertex(v, Poly::kRight_Side, alloc); + rightPoly->addVertex(v, Poly::kLeft_Side, alloc); + leftEnclosingEdge->fRightPoly = leftPoly; + } else { + rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, rightPoly->fWinding, + alloc); + rightPoly->addVertex(v, Poly::kLeft_Side, alloc); + leftPoly->addVertex(v, Poly::kRight_Side, alloc); + rightEnclosingEdge->fLeftPoly = rightPoly; + } + } else { + if (leftPoly) { + leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); + } + if (rightPoly) { + rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); + } + } + } + Edge* leftEdge = v->fFirstEdgeBelow; + leftEdge->fLeftPoly = leftPoly; + insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); + for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; + rightEdge = rightEdge->fNextEdgeBelow) { + insert_edge(rightEdge, leftEdge, &activeEdges); + int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0; + winding += leftEdge->fWinding; + if (winding != 0) { + Poly* poly = new_poly(&polys, v, winding, alloc); + leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; + } + leftEdge = rightEdge; + } + v->fLastEdgeBelow->fRightPoly = rightPoly; + } +#if LOGGING_ENABLED + LOG("\nactive edges:\n"); + for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) { + LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, + e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRightPoly->fID : -1); + } +#endif + } + return polys; +} + +// This is a driver function which calls stages 2-5 in turn. + +Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) { +#if LOGGING_ENABLED + for (int i = 0; i < contourCnt; ++i) { + Vertex* v = contours[i]; + SkASSERT(v); + LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); + for (v = v->fNext; v != contours[i]; v = v->fNext) { + LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); + } + } +#endif + sanitize_contours(contours, contourCnt); + Vertex* vertices = build_edges(contours, contourCnt, c, alloc); + if (!vertices) { + return nullptr; + } + + // Sort vertices in Y (secondarily in X). + merge_sort(&vertices, c); + merge_coincident_vertices(&vertices, c, alloc); +#if LOGGING_ENABLED + for (Vertex* v = vertices; v != nullptr; v = v->fNext) { + static float gID = 0.0f; + v->fID = gID++; + } +#endif + simplify(vertices, c, alloc); + return tessellate(vertices, alloc); +} + +// Stage 6: Triangulate the monotone polygons into a vertex buffer. + +SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) { + SkPoint* d = data; + for (Poly* poly = polys; poly; poly = poly->fNext) { + if (apply_fill_type(fillType, poly->fWinding)) { + d = poly->emit(d); + } + } + return d; +} + +struct TessInfo { + SkScalar fTolerance; + int fVertexCount; +}; + +bool cache_match(GrVertexBuffer* vertexBuffer, SkScalar tol, int* vertexCount) { + if (!vertexBuffer) { + return false; + } + const SkData* data = vertexBuffer->getUniqueKey().getCustomData(); + SkASSERT(data); + const TessInfo* info = static_cast<const TessInfo*>(data->data()); + if (info->fTolerance == 0 || info->fTolerance < 3.0f * tol) { + *vertexCount = info->fVertexCount; + return true; + } + return false; +} + +}; + +GrTessellatingPathRenderer::GrTessellatingPathRenderer() { +} + +namespace { + +// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. +class PathInvalidator : public SkPathRef::GenIDChangeListener { +public: + explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {} +private: + GrUniqueKeyInvalidatedMessage fMsg; + + void onChange() override { + SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg); + } +}; + +} // namespace + +bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { + // This path renderer can draw all fill styles, all stroke styles except hairlines, but does + // not do antialiasing. It can do convex and concave paths, but we'll leave the convex ones to + // simpler algorithms. + return !IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr) && + !args.fAntiAlias && !args.fPath->isConvex(); +} + +class TessellatingPathBatch : public GrVertexBatch { +public: + + static GrDrawBatch* Create(const GrColor& color, + const SkPath& path, + const GrStrokeInfo& stroke, + const SkMatrix& viewMatrix, + SkRect clipBounds) { + return new TessellatingPathBatch(color, path, stroke, viewMatrix, clipBounds); + } + + const char* name() const override { return "TessellatingPathBatch"; } + + void getInvariantOutputColor(GrInitInvariantOutput* out) const override { + out->setKnownFourComponents(fColor); + } + + void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { + out->setUnknownSingleComponent(); + } + +private: + void initBatchTracker(const GrPipelineOptimizations& opt) override { + // Handle any color overrides + if (!opt.readsColor()) { + fColor = GrColor_ILLEGAL; + } + opt.getOverrideColorIfSet(&fColor); + fPipelineInfo = opt; + } + + int tessellate(GrUniqueKey* key, + GrResourceProvider* resourceProvider, + SkAutoTUnref<GrVertexBuffer>& vertexBuffer, + bool canMapVB) { + SkPath path; + GrStrokeInfo stroke(fStroke); + if (stroke.isDashed()) { + if (!stroke.applyDashToPath(&path, &stroke, fPath)) { + return 0; + } + } else { + path = fPath; + } + if (!stroke.isFillStyle()) { + stroke.setResScale(SkScalarAbs(fViewMatrix.getMaxScale())); + if (!stroke.applyToPath(&path, path)) { + return 0; + } + stroke.setFillStyle(); + } + SkRect pathBounds = path.getBounds(); + Comparator c; + if (pathBounds.width() > pathBounds.height()) { + c.sweep_lt = sweep_lt_horiz; + c.sweep_gt = sweep_gt_horiz; + } else { + c.sweep_lt = sweep_lt_vert; + c.sweep_gt = sweep_gt_vert; + } + SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance; + SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds); + int contourCnt; + int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol); + if (maxPts <= 0) { + return 0; + } + if (maxPts > ((int)SK_MaxU16 + 1)) { + SkDebugf("Path not rendered, too many verts (%d)\n", maxPts); + return 0; + } + SkPath::FillType fillType = path.getFillType(); + if (SkPath::IsInverseFillType(fillType)) { + contourCnt++; + } + + LOG("got %d pts, %d contours\n", maxPts, contourCnt); + SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]); + + // For the initial size of the chunk allocator, estimate based on the point count: + // one vertex per point for the initial passes, plus two for the vertices in the + // resulting Polys, since the same point may end up in two Polys. Assume minimal + // connectivity of one Edge per Vertex (will grow for intersections). + SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge))); + bool isLinear; + path_to_contours(path, tol, fClipBounds, contours.get(), alloc, &isLinear); + Poly* polys; + polys = contours_to_polys(contours.get(), contourCnt, c, alloc); + int vertexCount = 0; + for (Poly* poly = polys; poly; poly = poly->fNext) { + if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { + vertexCount += (poly->fCount - 2) * (WIREFRAME ? 6 : 3); + } + } + if (0 == vertexCount) { + return 0; + } + + size_t size = vertexCount * sizeof(SkPoint); + if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) { + vertexBuffer.reset(resourceProvider->createVertexBuffer( + size, GrResourceProvider::kStatic_BufferUsage, 0)); + } + if (!vertexBuffer.get()) { + SkDebugf("Could not allocate vertices\n"); + return 0; + } + SkPoint* verts; + if (canMapVB) { + verts = static_cast<SkPoint*>(vertexBuffer->map()); + } else { + verts = new SkPoint[vertexCount]; + } + SkDEBUGCODE(SkPoint* end = ) polys_to_triangles(polys, fillType, verts); + SkASSERT(static_cast<int>(end - verts) == vertexCount); + LOG("vertex count: %d\n", vertexCount); + if (canMapVB) { + vertexBuffer->unmap(); + } else { + vertexBuffer->updateData(verts, vertexCount * sizeof(SkPoint)); + delete[] verts; + } + + + if (!fPath.isVolatile()) { + TessInfo info; + info.fTolerance = isLinear ? 0 : tol; + info.fVertexCount = vertexCount; + SkAutoTUnref<SkData> data(SkData::NewWithCopy(&info, sizeof(info))); + key->setCustomData(data.get()); + resourceProvider->assignUniqueKeyToResource(*key, vertexBuffer.get()); + SkPathPriv::AddGenIDChangeListener(fPath, new PathInvalidator(*key)); + } + return vertexCount; + } + + void onPrepareDraws(Target* target) override { + // construct a cache key from the path's genID and the view matrix + static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); + GrUniqueKey key; + int clipBoundsSize32 = + fPath.isInverseFillType() ? sizeof(fClipBounds) / sizeof(uint32_t) : 0; + int strokeDataSize32 = fStroke.computeUniqueKeyFragmentData32Cnt(); + GrUniqueKey::Builder builder(&key, kDomain, 2 + clipBoundsSize32 + strokeDataSize32); + builder[0] = fPath.getGenerationID(); + builder[1] = fPath.getFillType(); + // For inverse fills, the tessellation is dependent on clip bounds. + if (fPath.isInverseFillType()) { + memcpy(&builder[2], &fClipBounds, sizeof(fClipBounds)); + } + fStroke.asUniqueKeyFragment(&builder[2 + clipBoundsSize32]); + builder.finish(); + GrResourceProvider* rp = target->resourceProvider(); + SkAutoTUnref<GrVertexBuffer> vertexBuffer(rp->findAndRefTByUniqueKey<GrVertexBuffer>(key)); + int vertexCount; + SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance; + SkScalar tol = GrPathUtils::scaleToleranceToSrc( + screenSpaceTol, fViewMatrix, fPath.getBounds()); + if (!cache_match(vertexBuffer.get(), tol, &vertexCount)) { + bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags(); + vertexCount = tessellate(&key, rp, vertexBuffer, canMapVB); + } + + if (vertexCount == 0) { + return; + } + + SkAutoTUnref<const GrGeometryProcessor> gp; + { + using namespace GrDefaultGeoProcFactory; + + Color color(fColor); + LocalCoords localCoords(fPipelineInfo.readsLocalCoords() ? + LocalCoords::kUsePosition_Type : + LocalCoords::kUnused_Type); + Coverage::Type coverageType; + if (fPipelineInfo.readsCoverage()) { + coverageType = Coverage::kSolid_Type; + } else { + coverageType = Coverage::kNone_Type; + } + Coverage coverage(coverageType); + gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords, + fViewMatrix)); + } + + target->initDraw(gp, this->pipeline()); + SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); + + GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType + : kTriangles_GrPrimitiveType; + GrVertices vertices; + vertices.init(primitiveType, vertexBuffer.get(), 0, vertexCount); + target->draw(vertices); + } + + bool onCombineIfPossible(GrBatch*, const GrCaps&) override { return false; } + + TessellatingPathBatch(const GrColor& color, + const SkPath& path, + const GrStrokeInfo& stroke, + const SkMatrix& viewMatrix, + const SkRect& clipBounds) + : fColor(color) + , fPath(path) + , fStroke(stroke) + , fViewMatrix(viewMatrix) + , fClipBounds(clipBounds) { + this->initClassID<TessellatingPathBatch>(); + + fBounds = path.getBounds(); + if (!stroke.isFillStyle()) { + SkScalar radius = SkScalarHalf(stroke.getWidth()); + if (stroke.getJoin() == SkPaint::kMiter_Join) { + SkScalar scale = stroke.getMiter(); + if (scale > SK_Scalar1) { + radius = SkScalarMul(radius, scale); + } + } + fBounds.outset(radius, radius); + } + viewMatrix.mapRect(&fBounds); + } + + GrColor fColor; + SkPath fPath; + GrStrokeInfo fStroke; + SkMatrix fViewMatrix; + SkRect fClipBounds; // in source space + GrPipelineOptimizations fPipelineInfo; +}; + +bool GrTessellatingPathRenderer::onDrawPath(const DrawPathArgs& args) { + SkASSERT(!args.fAntiAlias); + const GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget(); + if (nullptr == rt) { + return false; + } + + SkIRect clipBoundsI; + args.fPipelineBuilder->clip().getConservativeBounds(rt, &clipBoundsI); + SkRect clipBounds = SkRect::Make(clipBoundsI); + SkMatrix vmi; + if (!args.fViewMatrix->invert(&vmi)) { + return false; + } + vmi.mapRect(&clipBounds); + SkAutoTUnref<GrDrawBatch> batch(TessellatingPathBatch::Create(args.fColor, *args.fPath, + *args.fStroke, *args.fViewMatrix, + clipBounds)); + args.fTarget->drawBatch(*args.fPipelineBuilder, batch); + + return true; +} + +/////////////////////////////////////////////////////////////////////////////////////////////////// + +#ifdef GR_TEST_UTILS + +DRAW_BATCH_TEST_DEFINE(TesselatingPathBatch) { + GrColor color = GrRandomColor(random); + SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random); + SkPath path = GrTest::TestPath(random); + SkRect clipBounds = GrTest::TestRect(random); + SkMatrix vmi; + bool result = viewMatrix.invert(&vmi); + if (!result) { + SkFAIL("Cannot invert matrix\n"); + } + vmi.mapRect(&clipBounds); + GrStrokeInfo strokeInfo = GrTest::TestStrokeInfo(random); + return TessellatingPathBatch::Create(color, path, strokeInfo, viewMatrix, clipBounds); +} + +#endif diff --git a/src/gpu/batches/GrTessellatingPathRenderer.h b/src/gpu/batches/GrTessellatingPathRenderer.h new file mode 100644 index 0000000000..7598ceb065 --- /dev/null +++ b/src/gpu/batches/GrTessellatingPathRenderer.h @@ -0,0 +1,33 @@ +/* + * Copyright 2015 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#ifndef GrTessellatingPathRenderer_DEFINED +#define GrTessellatingPathRenderer_DEFINED + +#include "GrPathRenderer.h" + +/** + * Subclass that renders the path by converting to screen-space trapezoids plus + * extra 1-pixel geometry for AA. + */ +class SK_API GrTessellatingPathRenderer : public GrPathRenderer { +public: + GrTessellatingPathRenderer(); + +private: + bool onCanDrawPath(const CanDrawPathArgs& ) const override; + + StencilSupport onGetStencilSupport(const SkPath&, const GrStrokeInfo&) const override { + return GrPathRenderer::kNoSupport_StencilSupport; + } + + bool onDrawPath(const DrawPathArgs&) override; + + typedef GrPathRenderer INHERITED; +}; + +#endif |