diff options
Diffstat (limited to 'src/core')
-rw-r--r-- | src/core/SkColorSpace.cpp | 83 | ||||
-rw-r--r-- | src/core/SkColorSpace.h | 25 | ||||
-rw-r--r-- | src/core/SkMatrix44.cpp | 1004 |
3 files changed, 1055 insertions, 57 deletions
diff --git a/src/core/SkColorSpace.cpp b/src/core/SkColorSpace.cpp index 54495de940..f7e1ddb88f 100644 --- a/src/core/SkColorSpace.cpp +++ b/src/core/SkColorSpace.cpp @@ -12,50 +12,44 @@ void SkFloat3::dump() const { SkDebugf("[%7.4f %7.4f %7.4f]\n", fVec[0], fVec[1], fVec[2]); } -void SkFloat3x3::dump() const { - SkDebugf("[%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f] [%7.4f %7.4f %7.4f]\n", - fMat[0], fMat[1], fMat[2], - fMat[3], fMat[4], fMat[5], - fMat[6], fMat[7], fMat[8]); -} - ////////////////////////////////////////////////////////////////////////////////////////////////// static int32_t gUniqueColorSpaceID; -SkColorSpace::SkColorSpace(SkGammas gammas, const SkFloat3x3& toXYZD50, Named named) +SkColorSpace::SkColorSpace(SkGammas gammas, const SkMatrix44& toXYZD50, Named named) : fGammas(std::move(gammas)) , fToXYZD50(toXYZD50) - , fToXYZOffset({{ 0.0f, 0.0f, 0.0f }}) , fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID)) , fNamed(named) {} SkColorSpace::SkColorSpace(SkColorLookUpTable colorLUT, SkGammas gammas, - const SkFloat3x3& toXYZD50, const SkFloat3& toXYZOffset) + const SkMatrix44& toXYZD50) : fColorLUT(std::move(colorLUT)) , fGammas(std::move(gammas)) , fToXYZD50(toXYZD50) - , fToXYZOffset(toXYZOffset) , fUniqueID(sk_atomic_inc(&gUniqueColorSpaceID)) , fNamed(kUnknown_Named) {} -sk_sp<SkColorSpace> SkColorSpace::NewRGB(const SkFloat3x3& toXYZD50, SkGammas gammas) { +sk_sp<SkColorSpace> SkColorSpace::NewRGB(const SkMatrix44& toXYZD50, SkGammas gammas) { return sk_sp<SkColorSpace>(new SkColorSpace(std::move(gammas), toXYZD50, kUnknown_Named)); } -const SkFloat3x3 gSRGB_toXYZD50 {{ +const float gSRGB_toXYZD50[] { 0.4358f, 0.2224f, 0.0139f, // * R 0.3853f, 0.7170f, 0.0971f, // * G 0.1430f, 0.0606f, 0.7139f, // * B -}}; +}; sk_sp<SkColorSpace> SkColorSpace::NewNamed(Named named) { switch (named) { - case kSRGB_Named: - return sk_sp<SkColorSpace>(new SkColorSpace(SkGammas(2.2f, 2.2f, 2.2f), gSRGB_toXYZD50, + case kSRGB_Named: { + SkMatrix44 srgbToxyzD50(SkMatrix44::kUninitialized_Constructor); + srgbToxyzD50.set3x3ColMajorf(gSRGB_toXYZD50); + return sk_sp<SkColorSpace>(new SkColorSpace(SkGammas(2.2f, 2.2f, 2.2f), srgbToxyzD50, kSRGB_Named)); + } default: break; } @@ -414,29 +408,35 @@ bool SkColorSpace::LoadColorLUT(SkColorLookUpTable* colorLUT, uint32_t inputChan return true; } -bool load_matrix(SkFloat3x3* toXYZ, SkFloat3* toXYZOffset, const uint8_t* src, size_t len) { +bool load_matrix(SkMatrix44* toXYZ, const uint8_t* src, size_t len) { if (len < 48) { SkColorSpacePrintf("Matrix tag is too small (%d bytes).", len); return false; } - toXYZ->fMat[0] = SkFixedToFloat(read_big_endian_int(src)); - toXYZ->fMat[3] = SkFixedToFloat(read_big_endian_int(src + 4)); - toXYZ->fMat[6] = SkFixedToFloat(read_big_endian_int(src + 8)); - toXYZ->fMat[1] = SkFixedToFloat(read_big_endian_int(src + 12)); - toXYZ->fMat[4] = SkFixedToFloat(read_big_endian_int(src + 16)); - toXYZ->fMat[7] = SkFixedToFloat(read_big_endian_int(src + 20)); - toXYZ->fMat[2] = SkFixedToFloat(read_big_endian_int(src + 24)); - toXYZ->fMat[5] = SkFixedToFloat(read_big_endian_int(src + 28)); - toXYZ->fMat[8] = SkFixedToFloat(read_big_endian_int(src + 32)); - toXYZOffset->fVec[0] = SkFixedToFloat(read_big_endian_int(src + 36)); - toXYZOffset->fVec[1] = SkFixedToFloat(read_big_endian_int(src + 40)); - toXYZOffset->fVec[2] = SkFixedToFloat(read_big_endian_int(src + 44)); + float array[16]; + array[ 0] = SkFixedToFloat(read_big_endian_int(src)); + array[ 1] = SkFixedToFloat(read_big_endian_int(src + 4)); + array[ 2] = SkFixedToFloat(read_big_endian_int(src + 8)); + array[ 3] = 0; + array[ 4] = SkFixedToFloat(read_big_endian_int(src + 12)); + array[ 5] = SkFixedToFloat(read_big_endian_int(src + 16)); + array[ 6] = SkFixedToFloat(read_big_endian_int(src + 20)); + array[ 7] = 0; + array[ 8] = SkFixedToFloat(read_big_endian_int(src + 24)); + array[ 9] = SkFixedToFloat(read_big_endian_int(src + 28)); + array[10] = SkFixedToFloat(read_big_endian_int(src + 32)); + array[11] = 0; + array[12] = SkFixedToFloat(read_big_endian_int(src + 36)); // translate R + array[13] = SkFixedToFloat(read_big_endian_int(src + 40)); // translate G + array[14] = SkFixedToFloat(read_big_endian_int(src + 44)); + array[15] = 1; + toXYZ->setColMajorf(array); return true; } -bool SkColorSpace::LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkFloat3x3* toXYZ, - SkFloat3* toXYZOffset, const uint8_t* src, size_t len) { +bool SkColorSpace::LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkMatrix44* toXYZ, + const uint8_t* src, size_t len) { if (len < 32) { SkColorSpacePrintf("A to B tag is too small (%d bytes).", len); return false; @@ -493,7 +493,7 @@ bool SkColorSpace::LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkFl uint32_t offsetToMatrix = read_big_endian_int(src + 16); if (0 != offsetToMatrix && offsetToMatrix < len) { - if (!load_matrix(toXYZ, toXYZOffset, src + offsetToMatrix, len - offsetToMatrix)) { + if (!load_matrix(toXYZ, src + offsetToMatrix, len - offsetToMatrix)) { SkColorSpacePrintf("Failed to read matrix from A to B tag.\n"); } } @@ -551,10 +551,10 @@ sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* base, size_t len) { const ICCTag* g = ICCTag::Find(tags.get(), tagCount, kTAG_gXYZ); const ICCTag* b = ICCTag::Find(tags.get(), tagCount, kTAG_bXYZ); if (r && g && b) { - SkFloat3x3 toXYZ; - if (!load_xyz(&toXYZ.fMat[0], r->addr((const uint8_t*) base), r->fLength) || - !load_xyz(&toXYZ.fMat[3], g->addr((const uint8_t*) base), g->fLength) || - !load_xyz(&toXYZ.fMat[6], b->addr((const uint8_t*) base), b->fLength)) + float toXYZ[9]; + if (!load_xyz(&toXYZ[0], r->addr((const uint8_t*) base), r->fLength) || + !load_xyz(&toXYZ[3], g->addr((const uint8_t*) base), g->fLength) || + !load_xyz(&toXYZ[6], b->addr((const uint8_t*) base), b->fLength)) { return_null("Need valid rgb tags for XYZ space"); } @@ -577,7 +577,9 @@ sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* base, size_t len) { b->addr((const uint8_t*) base), b->fLength)) { SkColorSpacePrintf("Failed to read B gamma tag.\n"); } - return SkColorSpace::NewRGB(toXYZ, std::move(gammas)); + SkMatrix44 mat(SkMatrix44::kUninitialized_Constructor); + mat.set3x3ColMajorf(toXYZ); + return SkColorSpace::NewRGB(mat, std::move(gammas)); } // Recognize color profile specified by A2B0 tag. @@ -585,15 +587,14 @@ sk_sp<SkColorSpace> SkColorSpace::NewICC(const void* base, size_t len) { if (a2b0) { SkColorLookUpTable colorLUT; SkGammas gammas; - SkFloat3x3 toXYZ; - SkFloat3 toXYZOffset; - if (!SkColorSpace::LoadA2B0(&colorLUT, &gammas, &toXYZ, &toXYZOffset, + SkMatrix44 toXYZ(SkMatrix44::kUninitialized_Constructor); + if (!SkColorSpace::LoadA2B0(&colorLUT, &gammas, &toXYZ, a2b0->addr((const uint8_t*) base), a2b0->fLength)) { return_null("Failed to parse A2B0 tag"); } return sk_sp<SkColorSpace>(new SkColorSpace(std::move(colorLUT), std::move(gammas), - toXYZ, toXYZOffset)); + toXYZ)); } } diff --git a/src/core/SkColorSpace.h b/src/core/SkColorSpace.h index a1ccf13fe0..6498941d7d 100644 --- a/src/core/SkColorSpace.h +++ b/src/core/SkColorSpace.h @@ -22,6 +22,7 @@ // #include "SkRefCnt.h" +#include "SkMatrix44.h" struct SkFloat3 { float fVec[3]; @@ -29,12 +30,6 @@ struct SkFloat3 { void dump() const; }; -struct SkFloat3x3 { - float fMat[9]; - - void dump() const; -}; - class SkColorSpace : public SkRefCnt { private: struct SkGammaCurve { @@ -117,17 +112,16 @@ public: }; /** - * Return a colorspace instance, given a 3x3 transform from linear_RGB to D50_XYZ + * Return a colorspace instance, given a transform from linear_RGB to D50_XYZ * and the src-gamma, return a ColorSpace */ - static sk_sp<SkColorSpace> NewRGB(const SkFloat3x3& toXYZD50, SkGammas gammas); + static sk_sp<SkColorSpace> NewRGB(const SkMatrix44& toXYZD50, SkGammas gammas); static sk_sp<SkColorSpace> NewNamed(Named); static sk_sp<SkColorSpace> NewICC(const void*, size_t); const SkGammas& gammas() const { return fGammas; } - SkFloat3x3 xyz() const { return fToXYZD50; } - SkFloat3 xyzOffset() const { return fToXYZOffset; } + SkMatrix44 xyz() const { return fToXYZD50; } Named named() const { return fNamed; } uint32_t uniqueID() const { return fUniqueID; } @@ -140,18 +134,17 @@ private: uint32_t outputChannels, const uint8_t* src, size_t len); - static bool LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkFloat3x3* toXYZ, - SkFloat3* toXYZOffset, const uint8_t* src, size_t len); + static bool LoadA2B0(SkColorLookUpTable* colorLUT, SkGammas* gammas, SkMatrix44* toXYZ, + const uint8_t* src, size_t len); - SkColorSpace(SkGammas gammas, const SkFloat3x3& toXYZ, Named); + SkColorSpace(SkGammas gammas, const SkMatrix44& toXYZ, Named); SkColorSpace(SkColorLookUpTable colorLUT, SkGammas gammas, - const SkFloat3x3& toXYZ, const SkFloat3& toXYZOffset); + const SkMatrix44& toXYZ); const SkColorLookUpTable fColorLUT; const SkGammas fGammas; - const SkFloat3x3 fToXYZD50; - const SkFloat3 fToXYZOffset; + const SkMatrix44 fToXYZD50; const uint32_t fUniqueID; const Named fNamed; diff --git a/src/core/SkMatrix44.cpp b/src/core/SkMatrix44.cpp new file mode 100644 index 0000000000..34b5327519 --- /dev/null +++ b/src/core/SkMatrix44.cpp @@ -0,0 +1,1004 @@ +/* + * Copyright 2011 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include "SkMatrix44.h" + +static inline bool eq4(const SkMScalar* SK_RESTRICT a, + const SkMScalar* SK_RESTRICT b) { + return (a[0] == b[0]) & (a[1] == b[1]) & (a[2] == b[2]) & (a[3] == b[3]); +} + +bool SkMatrix44::operator==(const SkMatrix44& other) const { + if (this == &other) { + return true; + } + + if (this->isTriviallyIdentity() && other.isTriviallyIdentity()) { + return true; + } + + const SkMScalar* SK_RESTRICT a = &fMat[0][0]; + const SkMScalar* SK_RESTRICT b = &other.fMat[0][0]; + +#if 0 + for (int i = 0; i < 16; ++i) { + if (a[i] != b[i]) { + return false; + } + } + return true; +#else + // to reduce branch instructions, we compare 4 at a time. + // see bench/Matrix44Bench.cpp for test. + if (!eq4(&a[0], &b[0])) { + return false; + } + if (!eq4(&a[4], &b[4])) { + return false; + } + if (!eq4(&a[8], &b[8])) { + return false; + } + return eq4(&a[12], &b[12]); +#endif +} + +/////////////////////////////////////////////////////////////////////////////// + +int SkMatrix44::computeTypeMask() const { + unsigned mask = 0; + + if (0 != perspX() || 0 != perspY() || 0 != perspZ() || 1 != fMat[3][3]) { + return kTranslate_Mask | kScale_Mask | kAffine_Mask | kPerspective_Mask; + } + + if (0 != transX() || 0 != transY() || 0 != transZ()) { + mask |= kTranslate_Mask; + } + + if (1 != scaleX() || 1 != scaleY() || 1 != scaleZ()) { + mask |= kScale_Mask; + } + + if (0 != fMat[1][0] || 0 != fMat[0][1] || 0 != fMat[0][2] || + 0 != fMat[2][0] || 0 != fMat[1][2] || 0 != fMat[2][1]) { + mask |= kAffine_Mask; + } + + return mask; +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkMatrix44::asColMajorf(float dst[]) const { + const SkMScalar* src = &fMat[0][0]; +#ifdef SK_MSCALAR_IS_DOUBLE + for (int i = 0; i < 16; ++i) { + dst[i] = SkMScalarToFloat(src[i]); + } +#elif defined SK_MSCALAR_IS_FLOAT + memcpy(dst, src, 16 * sizeof(float)); +#endif +} + +void SkMatrix44::asColMajord(double dst[]) const { + const SkMScalar* src = &fMat[0][0]; +#ifdef SK_MSCALAR_IS_DOUBLE + memcpy(dst, src, 16 * sizeof(double)); +#elif defined SK_MSCALAR_IS_FLOAT + for (int i = 0; i < 16; ++i) { + dst[i] = SkMScalarToDouble(src[i]); + } +#endif +} + +void SkMatrix44::asRowMajorf(float dst[]) const { + const SkMScalar* src = &fMat[0][0]; + for (int i = 0; i < 4; ++i) { + dst[0] = SkMScalarToFloat(src[0]); + dst[4] = SkMScalarToFloat(src[1]); + dst[8] = SkMScalarToFloat(src[2]); + dst[12] = SkMScalarToFloat(src[3]); + src += 4; + dst += 1; + } +} + +void SkMatrix44::asRowMajord(double dst[]) const { + const SkMScalar* src = &fMat[0][0]; + for (int i = 0; i < 4; ++i) { + dst[0] = SkMScalarToDouble(src[0]); + dst[4] = SkMScalarToDouble(src[1]); + dst[8] = SkMScalarToDouble(src[2]); + dst[12] = SkMScalarToDouble(src[3]); + src += 4; + dst += 1; + } +} + +void SkMatrix44::setColMajorf(const float src[]) { + SkMScalar* dst = &fMat[0][0]; +#ifdef SK_MSCALAR_IS_DOUBLE + for (int i = 0; i < 16; ++i) { + dst[i] = SkMScalarToFloat(src[i]); + } +#elif defined SK_MSCALAR_IS_FLOAT + memcpy(dst, src, 16 * sizeof(float)); +#endif + + this->dirtyTypeMask(); +} + +void SkMatrix44::setColMajord(const double src[]) { + SkMScalar* dst = &fMat[0][0]; +#ifdef SK_MSCALAR_IS_DOUBLE + memcpy(dst, src, 16 * sizeof(double)); +#elif defined SK_MSCALAR_IS_FLOAT + for (int i = 0; i < 16; ++i) { + dst[i] = SkDoubleToMScalar(src[i]); + } +#endif + + this->dirtyTypeMask(); +} + +void SkMatrix44::setRowMajorf(const float src[]) { + SkMScalar* dst = &fMat[0][0]; + for (int i = 0; i < 4; ++i) { + dst[0] = SkMScalarToFloat(src[0]); + dst[4] = SkMScalarToFloat(src[1]); + dst[8] = SkMScalarToFloat(src[2]); + dst[12] = SkMScalarToFloat(src[3]); + src += 4; + dst += 1; + } + this->dirtyTypeMask(); +} + +void SkMatrix44::setRowMajord(const double src[]) { + SkMScalar* dst = &fMat[0][0]; + for (int i = 0; i < 4; ++i) { + dst[0] = SkDoubleToMScalar(src[0]); + dst[4] = SkDoubleToMScalar(src[1]); + dst[8] = SkDoubleToMScalar(src[2]); + dst[12] = SkDoubleToMScalar(src[3]); + src += 4; + dst += 1; + } + this->dirtyTypeMask(); +} + +/////////////////////////////////////////////////////////////////////////////// + +const SkMatrix44& SkMatrix44::I() { + static const SkMatrix44 gIdentity44(kIdentity_Constructor); + return gIdentity44; +} + +void SkMatrix44::setIdentity() { + fMat[0][0] = 1; + fMat[0][1] = 0; + fMat[0][2] = 0; + fMat[0][3] = 0; + fMat[1][0] = 0; + fMat[1][1] = 1; + fMat[1][2] = 0; + fMat[1][3] = 0; + fMat[2][0] = 0; + fMat[2][1] = 0; + fMat[2][2] = 1; + fMat[2][3] = 0; + fMat[3][0] = 0; + fMat[3][1] = 0; + fMat[3][2] = 0; + fMat[3][3] = 1; + this->setTypeMask(kIdentity_Mask); +} + +void SkMatrix44::set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02, + SkMScalar m10, SkMScalar m11, SkMScalar m12, + SkMScalar m20, SkMScalar m21, SkMScalar m22) { + fMat[0][0] = m00; fMat[0][1] = m01; fMat[0][2] = m02; fMat[0][3] = 0; + fMat[1][0] = m10; fMat[1][1] = m11; fMat[1][2] = m12; fMat[1][3] = 0; + fMat[2][0] = m20; fMat[2][1] = m21; fMat[2][2] = m22; fMat[2][3] = 0; + fMat[3][0] = 0; fMat[3][1] = 0; fMat[3][2] = 0; fMat[3][3] = 1; + this->dirtyTypeMask(); +} + +void SkMatrix44::set3x3ColMajorf(const float src[]) { + fMat[0][0] = src[0]; fMat[0][1] = src[3]; fMat[0][2] = src[6]; fMat[0][3] = 0; + fMat[1][0] = src[1]; fMat[1][1] = src[4]; fMat[1][2] = src[7]; fMat[1][3] = 0; + fMat[2][0] = src[2]; fMat[2][1] = src[5]; fMat[2][2] = src[8]; fMat[2][3] = 0; + fMat[3][0] = 0; fMat[3][1] = 0; fMat[3][2] = 0; fMat[3][3] = 1; + this->dirtyTypeMask(); +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkMatrix44::setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { + this->setIdentity(); + + if (!dx && !dy && !dz) { + return; + } + + fMat[3][0] = dx; + fMat[3][1] = dy; + fMat[3][2] = dz; + this->setTypeMask(kTranslate_Mask); +} + +void SkMatrix44::preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { + if (!dx && !dy && !dz) { + return; + } + + for (int i = 0; i < 4; ++i) { + fMat[3][i] = fMat[0][i] * dx + fMat[1][i] * dy + fMat[2][i] * dz + fMat[3][i]; + } + this->dirtyTypeMask(); +} + +void SkMatrix44::postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz) { + if (!dx && !dy && !dz) { + return; + } + + if (this->getType() & kPerspective_Mask) { + for (int i = 0; i < 4; ++i) { + fMat[i][0] += fMat[i][3] * dx; + fMat[i][1] += fMat[i][3] * dy; + fMat[i][2] += fMat[i][3] * dz; + } + } else { + fMat[3][0] += dx; + fMat[3][1] += dy; + fMat[3][2] += dz; + this->dirtyTypeMask(); + } +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkMatrix44::setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { + this->setIdentity(); + + if (1 == sx && 1 == sy && 1 == sz) { + return; + } + + fMat[0][0] = sx; + fMat[1][1] = sy; + fMat[2][2] = sz; + this->setTypeMask(kScale_Mask); +} + +void SkMatrix44::preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { + if (1 == sx && 1 == sy && 1 == sz) { + return; + } + + // The implementation matrix * pureScale can be shortcut + // by knowing that pureScale components effectively scale + // the columns of the original matrix. + for (int i = 0; i < 4; i++) { + fMat[0][i] *= sx; + fMat[1][i] *= sy; + fMat[2][i] *= sz; + } + this->dirtyTypeMask(); +} + +void SkMatrix44::postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz) { + if (1 == sx && 1 == sy && 1 == sz) { + return; + } + + for (int i = 0; i < 4; i++) { + fMat[i][0] *= sx; + fMat[i][1] *= sy; + fMat[i][2] *= sz; + } + this->dirtyTypeMask(); +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkMatrix44::setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z, + SkMScalar radians) { + double len2 = (double)x * x + (double)y * y + (double)z * z; + if (1 != len2) { + if (0 == len2) { + this->setIdentity(); + return; + } + double scale = 1 / sqrt(len2); + x = SkDoubleToMScalar(x * scale); + y = SkDoubleToMScalar(y * scale); + z = SkDoubleToMScalar(z * scale); + } + this->setRotateAboutUnit(x, y, z, radians); +} + +void SkMatrix44::setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z, + SkMScalar radians) { + double c = cos(radians); + double s = sin(radians); + double C = 1 - c; + double xs = x * s; + double ys = y * s; + double zs = z * s; + double xC = x * C; + double yC = y * C; + double zC = z * C; + double xyC = x * yC; + double yzC = y * zC; + double zxC = z * xC; + + // if you're looking at wikipedia, remember that we're column major. + this->set3x3(SkDoubleToMScalar(x * xC + c), // scale x + SkDoubleToMScalar(xyC + zs), // skew x + SkDoubleToMScalar(zxC - ys), // trans x + + SkDoubleToMScalar(xyC - zs), // skew y + SkDoubleToMScalar(y * yC + c), // scale y + SkDoubleToMScalar(yzC + xs), // trans y + + SkDoubleToMScalar(zxC + ys), // persp x + SkDoubleToMScalar(yzC - xs), // persp y + SkDoubleToMScalar(z * zC + c)); // persp 2 +} + +/////////////////////////////////////////////////////////////////////////////// + +static bool bits_isonly(int value, int mask) { + return 0 == (value & ~mask); +} + +void SkMatrix44::setConcat(const SkMatrix44& a, const SkMatrix44& b) { + const SkMatrix44::TypeMask a_mask = a.getType(); + const SkMatrix44::TypeMask b_mask = b.getType(); + + if (kIdentity_Mask == a_mask) { + *this = b; + return; + } + if (kIdentity_Mask == b_mask) { + *this = a; + return; + } + + bool useStorage = (this == &a || this == &b); + SkMScalar storage[16]; + SkMScalar* result = useStorage ? storage : &fMat[0][0]; + + // Both matrices are at most scale+translate + if (bits_isonly(a_mask | b_mask, kScale_Mask | kTranslate_Mask)) { + result[0] = a.fMat[0][0] * b.fMat[0][0]; + result[1] = result[2] = result[3] = result[4] = 0; + result[5] = a.fMat[1][1] * b.fMat[1][1]; + result[6] = result[7] = result[8] = result[9] = 0; + result[10] = a.fMat[2][2] * b.fMat[2][2]; + result[11] = 0; + result[12] = a.fMat[0][0] * b.fMat[3][0] + a.fMat[3][0]; + result[13] = a.fMat[1][1] * b.fMat[3][1] + a.fMat[3][1]; + result[14] = a.fMat[2][2] * b.fMat[3][2] + a.fMat[3][2]; + result[15] = 1; + } else { + for (int j = 0; j < 4; j++) { + for (int i = 0; i < 4; i++) { + double value = 0; + for (int k = 0; k < 4; k++) { + value += SkMScalarToDouble(a.fMat[k][i]) * b.fMat[j][k]; + } + *result++ = SkDoubleToMScalar(value); + } + } + } + + if (useStorage) { + memcpy(fMat, storage, sizeof(storage)); + } + this->dirtyTypeMask(); +} + +/////////////////////////////////////////////////////////////////////////////// + +/** We always perform the calculation in doubles, to avoid prematurely losing + precision along the way. This relies on the compiler automatically + promoting our SkMScalar values to double (if needed). + */ +double SkMatrix44::determinant() const { + if (this->isIdentity()) { + return 1; + } + if (this->isScaleTranslate()) { + return fMat[0][0] * fMat[1][1] * fMat[2][2] * fMat[3][3]; + } + + double a00 = fMat[0][0]; + double a01 = fMat[0][1]; + double a02 = fMat[0][2]; + double a03 = fMat[0][3]; + double a10 = fMat[1][0]; + double a11 = fMat[1][1]; + double a12 = fMat[1][2]; + double a13 = fMat[1][3]; + double a20 = fMat[2][0]; + double a21 = fMat[2][1]; + double a22 = fMat[2][2]; + double a23 = fMat[2][3]; + double a30 = fMat[3][0]; + double a31 = fMat[3][1]; + double a32 = fMat[3][2]; + double a33 = fMat[3][3]; + + double b00 = a00 * a11 - a01 * a10; + double b01 = a00 * a12 - a02 * a10; + double b02 = a00 * a13 - a03 * a10; + double b03 = a01 * a12 - a02 * a11; + double b04 = a01 * a13 - a03 * a11; + double b05 = a02 * a13 - a03 * a12; + double b06 = a20 * a31 - a21 * a30; + double b07 = a20 * a32 - a22 * a30; + double b08 = a20 * a33 - a23 * a30; + double b09 = a21 * a32 - a22 * a31; + double b10 = a21 * a33 - a23 * a31; + double b11 = a22 * a33 - a23 * a32; + + // Calculate the determinant + return b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; +} + +/////////////////////////////////////////////////////////////////////////////// + +static bool is_matrix_finite(const SkMatrix44& matrix) { + SkMScalar accumulator = 0; + for (int row = 0; row < 4; ++row) { + for (int col = 0; col < 4; ++col) { + accumulator *= matrix.get(row, col); + } + } + return accumulator == 0; +} + +bool SkMatrix44::invert(SkMatrix44* storage) const { + if (this->isIdentity()) { + if (storage) { + storage->setIdentity(); + } + return true; + } + + if (this->isTranslate()) { + if (storage) { + storage->setTranslate(-fMat[3][0], -fMat[3][1], -fMat[3][2]); + } + return true; + } + + SkMatrix44 tmp(kUninitialized_Constructor); + // Use storage if it's available and distinct from this matrix. + SkMatrix44* inverse = (storage && storage != this) ? storage : &tmp; + if (this->isScaleTranslate()) { + if (0 == fMat[0][0] * fMat[1][1] * fMat[2][2]) { + return false; + } + + double invXScale = 1 / fMat[0][0]; + double invYScale = 1 / fMat[1][1]; + double invZScale = 1 / fMat[2][2]; + + inverse->fMat[0][0] = SkDoubleToMScalar(invXScale); + inverse->fMat[0][1] = 0; + inverse->fMat[0][2] = 0; + inverse->fMat[0][3] = 0; + + inverse->fMat[1][0] = 0; + inverse->fMat[1][1] = SkDoubleToMScalar(invYScale); + inverse->fMat[1][2] = 0; + inverse->fMat[1][3] = 0; + + inverse->fMat[2][0] = 0; + inverse->fMat[2][1] = 0; + inverse->fMat[2][2] = SkDoubleToMScalar(invZScale); + inverse->fMat[2][3] = 0; + + inverse->fMat[3][0] = SkDoubleToMScalar(-fMat[3][0] * invXScale); + inverse->fMat[3][1] = SkDoubleToMScalar(-fMat[3][1] * invYScale); + inverse->fMat[3][2] = SkDoubleToMScalar(-fMat[3][2] * invZScale); + inverse->fMat[3][3] = 1; + + inverse->setTypeMask(this->getType()); + + if (!is_matrix_finite(*inverse)) { + return false; + } + if (storage && inverse != storage) { + *storage = *inverse; + } + return true; + } + + double a00 = fMat[0][0]; + double a01 = fMat[0][1]; + double a02 = fMat[0][2]; + double a03 = fMat[0][3]; + double a10 = fMat[1][0]; + double a11 = fMat[1][1]; + double a12 = fMat[1][2]; + double a13 = fMat[1][3]; + double a20 = fMat[2][0]; + double a21 = fMat[2][1]; + double a22 = fMat[2][2]; + double a23 = fMat[2][3]; + double a30 = fMat[3][0]; + double a31 = fMat[3][1]; + double a32 = fMat[3][2]; + double a33 = fMat[3][3]; + + if (!(this->getType() & kPerspective_Mask)) { + // If we know the matrix has no perspective, then the perspective + // component is (0, 0, 0, 1). We can use this information to save a lot + // of arithmetic that would otherwise be spent to compute the inverse + // of a general matrix. + + SkASSERT(a03 == 0); + SkASSERT(a13 == 0); + SkASSERT(a23 == 0); + SkASSERT(a33 == 1); + + double b00 = a00 * a11 - a01 * a10; + double b01 = a00 * a12 - a02 * a10; + double b03 = a01 * a12 - a02 * a11; + double b06 = a20 * a31 - a21 * a30; + double b07 = a20 * a32 - a22 * a30; + double b08 = a20; + double b09 = a21 * a32 - a22 * a31; + double b10 = a21; + double b11 = a22; + + // Calculate the determinant + double det = b00 * b11 - b01 * b10 + b03 * b08; + + double invdet = 1.0 / det; + // If det is zero, we want to return false. However, we also want to return false + // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are + // handled by checking that 1/det is finite. + if (!sk_float_isfinite(invdet)) { + return false; + } + + b00 *= invdet; + b01 *= invdet; + b03 *= invdet; + b06 *= invdet; + b07 *= invdet; + b08 *= invdet; + b09 *= invdet; + b10 *= invdet; + b11 *= invdet; + + inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10); + inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11); + inverse->fMat[0][2] = SkDoubleToMScalar(b03); + inverse->fMat[0][3] = 0; + inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11); + inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08); + inverse->fMat[1][2] = SkDoubleToMScalar(-b01); + inverse->fMat[1][3] = 0; + inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08); + inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10); + inverse->fMat[2][2] = SkDoubleToMScalar(b00); + inverse->fMat[2][3] = 0; + inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06); + inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06); + inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00); + inverse->fMat[3][3] = 1; + + inverse->setTypeMask(this->getType()); + if (!is_matrix_finite(*inverse)) { + return false; + } + if (storage && inverse != storage) { + *storage = *inverse; + } + return true; + } + + double b00 = a00 * a11 - a01 * a10; + double b01 = a00 * a12 - a02 * a10; + double b02 = a00 * a13 - a03 * a10; + double b03 = a01 * a12 - a02 * a11; + double b04 = a01 * a13 - a03 * a11; + double b05 = a02 * a13 - a03 * a12; + double b06 = a20 * a31 - a21 * a30; + double b07 = a20 * a32 - a22 * a30; + double b08 = a20 * a33 - a23 * a30; + double b09 = a21 * a32 - a22 * a31; + double b10 = a21 * a33 - a23 * a31; + double b11 = a22 * a33 - a23 * a32; + + // Calculate the determinant + double det = b00 * b11 - b01 * b10 + b02 * b09 + b03 * b08 - b04 * b07 + b05 * b06; + + double invdet = 1.0 / det; + // If det is zero, we want to return false. However, we also want to return false + // if 1/det overflows to infinity (i.e. det is denormalized). Both of these are + // handled by checking that 1/det is finite. + if (!sk_float_isfinite(invdet)) { + return false; + } + + b00 *= invdet; + b01 *= invdet; + b02 *= invdet; + b03 *= invdet; + b04 *= invdet; + b05 *= invdet; + b06 *= invdet; + b07 *= invdet; + b08 *= invdet; + b09 *= invdet; + b10 *= invdet; + b11 *= invdet; + + inverse->fMat[0][0] = SkDoubleToMScalar(a11 * b11 - a12 * b10 + a13 * b09); + inverse->fMat[0][1] = SkDoubleToMScalar(a02 * b10 - a01 * b11 - a03 * b09); + inverse->fMat[0][2] = SkDoubleToMScalar(a31 * b05 - a32 * b04 + a33 * b03); + inverse->fMat[0][3] = SkDoubleToMScalar(a22 * b04 - a21 * b05 - a23 * b03); + inverse->fMat[1][0] = SkDoubleToMScalar(a12 * b08 - a10 * b11 - a13 * b07); + inverse->fMat[1][1] = SkDoubleToMScalar(a00 * b11 - a02 * b08 + a03 * b07); + inverse->fMat[1][2] = SkDoubleToMScalar(a32 * b02 - a30 * b05 - a33 * b01); + inverse->fMat[1][3] = SkDoubleToMScalar(a20 * b05 - a22 * b02 + a23 * b01); + inverse->fMat[2][0] = SkDoubleToMScalar(a10 * b10 - a11 * b08 + a13 * b06); + inverse->fMat[2][1] = SkDoubleToMScalar(a01 * b08 - a00 * b10 - a03 * b06); + inverse->fMat[2][2] = SkDoubleToMScalar(a30 * b04 - a31 * b02 + a33 * b00); + inverse->fMat[2][3] = SkDoubleToMScalar(a21 * b02 - a20 * b04 - a23 * b00); + inverse->fMat[3][0] = SkDoubleToMScalar(a11 * b07 - a10 * b09 - a12 * b06); + inverse->fMat[3][1] = SkDoubleToMScalar(a00 * b09 - a01 * b07 + a02 * b06); + inverse->fMat[3][2] = SkDoubleToMScalar(a31 * b01 - a30 * b03 - a32 * b00); + inverse->fMat[3][3] = SkDoubleToMScalar(a20 * b03 - a21 * b01 + a22 * b00); + inverse->dirtyTypeMask(); + + inverse->setTypeMask(this->getType()); + if (!is_matrix_finite(*inverse)) { + return false; + } + if (storage && inverse != storage) { + *storage = *inverse; + } + return true; +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkMatrix44::transpose() { + SkTSwap(fMat[0][1], fMat[1][0]); + SkTSwap(fMat[0][2], fMat[2][0]); + SkTSwap(fMat[0][3], fMat[3][0]); + SkTSwap(fMat[1][2], fMat[2][1]); + SkTSwap(fMat[1][3], fMat[3][1]); + SkTSwap(fMat[2][3], fMat[3][2]); + + if (!this->isTriviallyIdentity()) { + this->dirtyTypeMask(); + } +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkMatrix44::mapScalars(const SkScalar src[4], SkScalar dst[4]) const { + SkScalar storage[4]; + SkScalar* result = (src == dst) ? storage : dst; + + for (int i = 0; i < 4; i++) { + SkMScalar value = 0; + for (int j = 0; j < 4; j++) { + value += fMat[j][i] * src[j]; + } + result[i] = SkMScalarToScalar(value); + } + + if (storage == result) { + memcpy(dst, storage, sizeof(storage)); + } +} + +#ifdef SK_MSCALAR_IS_DOUBLE + +void SkMatrix44::mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const { + SkMScalar storage[4]; + SkMScalar* result = (src == dst) ? storage : dst; + + for (int i = 0; i < 4; i++) { + SkMScalar value = 0; + for (int j = 0; j < 4; j++) { + value += fMat[j][i] * src[j]; + } + result[i] = value; + } + + if (storage == result) { + memcpy(dst, storage, sizeof(storage)); + } +} + +#endif + +typedef void (*Map2Procf)(const SkMScalar mat[][4], const float src2[], int count, float dst4[]); +typedef void (*Map2Procd)(const SkMScalar mat[][4], const double src2[], int count, double dst4[]); + +static void map2_if(const SkMScalar mat[][4], const float* SK_RESTRICT src2, + int count, float* SK_RESTRICT dst4) { + for (int i = 0; i < count; ++i) { + dst4[0] = src2[0]; + dst4[1] = src2[1]; + dst4[2] = 0; + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_id(const SkMScalar mat[][4], const double* SK_RESTRICT src2, + int count, double* SK_RESTRICT dst4) { + for (int i = 0; i < count; ++i) { + dst4[0] = src2[0]; + dst4[1] = src2[1]; + dst4[2] = 0; + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_tf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, + int count, float* SK_RESTRICT dst4) { + const float mat30 = SkMScalarToFloat(mat[3][0]); + const float mat31 = SkMScalarToFloat(mat[3][1]); + const float mat32 = SkMScalarToFloat(mat[3][2]); + for (int n = 0; n < count; ++n) { + dst4[0] = src2[0] + mat30; + dst4[1] = src2[1] + mat31; + dst4[2] = mat32; + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_td(const SkMScalar mat[][4], const double* SK_RESTRICT src2, + int count, double* SK_RESTRICT dst4) { + for (int n = 0; n < count; ++n) { + dst4[0] = src2[0] + mat[3][0]; + dst4[1] = src2[1] + mat[3][1]; + dst4[2] = mat[3][2]; + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_sf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, + int count, float* SK_RESTRICT dst4) { + const float mat32 = SkMScalarToFloat(mat[3][2]); + for (int n = 0; n < count; ++n) { + dst4[0] = SkMScalarToFloat(mat[0][0] * src2[0] + mat[3][0]); + dst4[1] = SkMScalarToFloat(mat[1][1] * src2[1] + mat[3][1]); + dst4[2] = mat32; + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_sd(const SkMScalar mat[][4], const double* SK_RESTRICT src2, + int count, double* SK_RESTRICT dst4) { + for (int n = 0; n < count; ++n) { + dst4[0] = mat[0][0] * src2[0] + mat[3][0]; + dst4[1] = mat[1][1] * src2[1] + mat[3][1]; + dst4[2] = mat[3][2]; + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_af(const SkMScalar mat[][4], const float* SK_RESTRICT src2, + int count, float* SK_RESTRICT dst4) { + SkMScalar r; + for (int n = 0; n < count; ++n) { + SkMScalar sx = SkFloatToMScalar(src2[0]); + SkMScalar sy = SkFloatToMScalar(src2[1]); + r = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; + dst4[0] = SkMScalarToFloat(r); + r = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; + dst4[1] = SkMScalarToFloat(r); + r = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; + dst4[2] = SkMScalarToFloat(r); + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_ad(const SkMScalar mat[][4], const double* SK_RESTRICT src2, + int count, double* SK_RESTRICT dst4) { + for (int n = 0; n < count; ++n) { + double sx = src2[0]; + double sy = src2[1]; + dst4[0] = mat[0][0] * sx + mat[1][0] * sy + mat[3][0]; + dst4[1] = mat[0][1] * sx + mat[1][1] * sy + mat[3][1]; + dst4[2] = mat[0][2] * sx + mat[1][2] * sy + mat[3][2]; + dst4[3] = 1; + src2 += 2; + dst4 += 4; + } +} + +static void map2_pf(const SkMScalar mat[][4], const float* SK_RESTRICT src2, + int count, float* SK_RESTRICT dst4) { + SkMScalar r; + for (int n = 0; n < count; ++n) { + SkMScalar sx = SkFloatToMScalar(src2[0]); + SkMScalar sy = SkFloatToMScalar(src2[1]); + for (int i = 0; i < 4; i++) { + r = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; + dst4[i] = SkMScalarToFloat(r); + } + src2 += 2; + dst4 += 4; + } +} + +static void map2_pd(const SkMScalar mat[][4], const double* SK_RESTRICT src2, + int count, double* SK_RESTRICT dst4) { + for (int n = 0; n < count; ++n) { + double sx = src2[0]; + double sy = src2[1]; + for (int i = 0; i < 4; i++) { + dst4[i] = mat[0][i] * sx + mat[1][i] * sy + mat[3][i]; + } + src2 += 2; + dst4 += 4; + } +} + +void SkMatrix44::map2(const float src2[], int count, float dst4[]) const { + static const Map2Procf gProc[] = { + map2_if, map2_tf, map2_sf, map2_sf, map2_af, map2_af, map2_af, map2_af + }; + + TypeMask mask = this->getType(); + Map2Procf proc = (mask & kPerspective_Mask) ? map2_pf : gProc[mask]; + proc(fMat, src2, count, dst4); +} + +void SkMatrix44::map2(const double src2[], int count, double dst4[]) const { + static const Map2Procd gProc[] = { + map2_id, map2_td, map2_sd, map2_sd, map2_ad, map2_ad, map2_ad, map2_ad + }; + + TypeMask mask = this->getType(); + Map2Procd proc = (mask & kPerspective_Mask) ? map2_pd : gProc[mask]; + proc(fMat, src2, count, dst4); +} + +bool SkMatrix44::preserves2dAxisAlignment (SkMScalar epsilon) const { + + // Can't check (mask & kPerspective_Mask) because Z isn't relevant here. + if (0 != perspX() || 0 != perspY()) return false; + + // A matrix with two non-zeroish values in any of the upper right + // rows or columns will skew. If only one value in each row or + // column is non-zeroish, we get a scale plus perhaps a 90-degree + // rotation. + int col0 = 0; + int col1 = 0; + int row0 = 0; + int row1 = 0; + + // Must test against epsilon, not 0, because we can get values + // around 6e-17 in the matrix that "should" be 0. + + if (SkMScalarAbs(fMat[0][0]) > epsilon) { + col0++; + row0++; + } + if (SkMScalarAbs(fMat[0][1]) > epsilon) { + col1++; + row0++; + } + if (SkMScalarAbs(fMat[1][0]) > epsilon) { + col0++; + row1++; + } + if (SkMScalarAbs(fMat[1][1]) > epsilon) { + col1++; + row1++; + } + if (col0 > 1 || col1 > 1 || row0 > 1 || row1 > 1) { + return false; + } + + return true; +} + +/////////////////////////////////////////////////////////////////////////////// + +void SkMatrix44::dump() const { + static const char* format = + "[%g %g %g %g][%g %g %g %g][%g %g %g %g][%g %g %g %g]\n"; +#if 0 + SkDebugf(format, + fMat[0][0], fMat[1][0], fMat[2][0], fMat[3][0], + fMat[0][1], fMat[1][1], fMat[2][1], fMat[3][1], + fMat[0][2], fMat[1][2], fMat[2][2], fMat[3][2], + fMat[0][3], fMat[1][3], fMat[2][3], fMat[3][3]); +#else + SkDebugf(format, + fMat[0][0], fMat[0][1], fMat[0][2], fMat[0][3], + fMat[1][0], fMat[1][1], fMat[1][2], fMat[1][3], + fMat[2][0], fMat[2][1], fMat[2][2], fMat[2][3], + fMat[3][0], fMat[3][1], fMat[3][2], fMat[3][3]); +#endif +} + +/////////////////////////////////////////////////////////////////////////////// + +static void initFromMatrix(SkMScalar dst[4][4], const SkMatrix& src) { + dst[0][0] = SkScalarToMScalar(src[SkMatrix::kMScaleX]); + dst[1][0] = SkScalarToMScalar(src[SkMatrix::kMSkewX]); + dst[2][0] = 0; + dst[3][0] = SkScalarToMScalar(src[SkMatrix::kMTransX]); + dst[0][1] = SkScalarToMScalar(src[SkMatrix::kMSkewY]); + dst[1][1] = SkScalarToMScalar(src[SkMatrix::kMScaleY]); + dst[2][1] = 0; + dst[3][1] = SkScalarToMScalar(src[SkMatrix::kMTransY]); + dst[0][2] = 0; + dst[1][2] = 0; + dst[2][2] = 1; + dst[3][2] = 0; + dst[0][3] = SkScalarToMScalar(src[SkMatrix::kMPersp0]); + dst[1][3] = SkScalarToMScalar(src[SkMatrix::kMPersp1]); + dst[2][3] = 0; + dst[3][3] = SkScalarToMScalar(src[SkMatrix::kMPersp2]); +} + +SkMatrix44::SkMatrix44(const SkMatrix& src) { + this->operator=(src); +} + +SkMatrix44& SkMatrix44::operator=(const SkMatrix& src) { + initFromMatrix(fMat, src); + + if (src.isIdentity()) { + this->setTypeMask(kIdentity_Mask); + } else { + this->dirtyTypeMask(); + } + return *this; +} + +SkMatrix44::operator SkMatrix() const { + SkMatrix dst; + + dst[SkMatrix::kMScaleX] = SkMScalarToScalar(fMat[0][0]); + dst[SkMatrix::kMSkewX] = SkMScalarToScalar(fMat[1][0]); + dst[SkMatrix::kMTransX] = SkMScalarToScalar(fMat[3][0]); + + dst[SkMatrix::kMSkewY] = SkMScalarToScalar(fMat[0][1]); + dst[SkMatrix::kMScaleY] = SkMScalarToScalar(fMat[1][1]); + dst[SkMatrix::kMTransY] = SkMScalarToScalar(fMat[3][1]); + + dst[SkMatrix::kMPersp0] = SkMScalarToScalar(fMat[0][3]); + dst[SkMatrix::kMPersp1] = SkMScalarToScalar(fMat[1][3]); + dst[SkMatrix::kMPersp2] = SkMScalarToScalar(fMat[3][3]); + + return dst; +} |