aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/shaders
diff options
context:
space:
mode:
authorGravatar Yuqian Li <liyuqian@google.com>2017-12-13 19:54:51 +0000
committerGravatar Skia Commit-Bot <skia-commit-bot@chromium.org>2017-12-13 19:55:01 +0000
commit2c4e56c3669e0ee01fd4c3917856387a881a8e27 (patch)
tree33cd14acb432a116346437ba23f3072678b13cc6 /src/shaders
parentb5213b88e89dbbd17bf06de588d9d4e98cf9ce2f (diff)
Revert "Reimplement TwoPointConicalGradient_gpu"
This reverts commit 84f18c422ae98085c452d3f721ec32228e92f531. Reason for revert: GMs are incorrect on some mobile devices Original change's description: > Reimplement TwoPointConicalGradient_gpu > > 4.24% faster in gradient_conical_clamp_shallow_dither > 6.43% faster in gradient_conicalOutZero_clamp_hicolor > 10.41% faster in gradient_conicalOut_clamp_hicolor > 14.85% faster in gradient_conicalOutZero_clamp_3color > 16.72% faster in gradient_conicalOut_clamp > 24.30% faster in gradient_conicalOut_clamp_3color > > CQ_INCLUDE_TRYBOTS=skia.primary:Test-Android-Clang-Nexus7-GPU-Tegra3-arm-Release-All-Android,Test-Android-Clang-Nexus7-GPU-Tegra3-arm-Debug-All-Android > > Bug: skia: > Change-Id: I6bc1f24c9463fc9c2acbcba7bd4d55b37ade1613 > Reviewed-on: https://skia-review.googlesource.com/82161 > Reviewed-by: Greg Daniel <egdaniel@google.com> > Commit-Queue: Yuqian Li <liyuqian@google.com> TBR=egdaniel@google.com,fmalita@google.com,liyuqian@google.com Change-Id: Ieb20cce12a958abb8293218b89baf3d5a2aad0a8 No-Presubmit: true No-Tree-Checks: true No-Try: true Bug: skia: Cq-Include-Trybots: skia.primary:Test-Android-Clang-Nexus7-GPU-Tegra3-arm-Release-All-Android, Test-Android-Clang-Nexus7-GPU-Tegra3-arm-Debug-All-Android Reviewed-on: https://skia-review.googlesource.com/84801 Reviewed-by: Yuqian Li <liyuqian@google.com> Commit-Queue: Yuqian Li <liyuqian@google.com>
Diffstat (limited to 'src/shaders')
-rw-r--r--src/shaders/gradients/SkGradientShaderPriv.h2
-rw-r--r--src/shaders/gradients/SkTwoPointConicalGradient_gpu.cpp1455
2 files changed, 1169 insertions, 288 deletions
diff --git a/src/shaders/gradients/SkGradientShaderPriv.h b/src/shaders/gradients/SkGradientShaderPriv.h
index 28c4666d4c..9d82e82ef8 100644
--- a/src/shaders/gradients/SkGradientShaderPriv.h
+++ b/src/shaders/gradients/SkGradientShaderPriv.h
@@ -255,7 +255,7 @@ protected:
GrGradientEffect(ClassID classID, const CreateArgs&, bool isOpaque);
explicit GrGradientEffect(const GrGradientEffect&); // facilitates clone() implementations
- void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override;
+ void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const final;
// Helper function used by derived class factories to handle color space transformation and
// modulation by input alpha.
diff --git a/src/shaders/gradients/SkTwoPointConicalGradient_gpu.cpp b/src/shaders/gradients/SkTwoPointConicalGradient_gpu.cpp
index ae8ab9d3b4..a11a466976 100644
--- a/src/shaders/gradients/SkTwoPointConicalGradient_gpu.cpp
+++ b/src/shaders/gradients/SkTwoPointConicalGradient_gpu.cpp
@@ -9,152 +9,653 @@
#include "SkTwoPointConicalGradient.h"
#if SK_SUPPORT_GPU
+#include "GrCoordTransform.h"
+#include "GrPaint.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
#include "SkTwoPointConicalGradient_gpu.h"
+#include <cmath>
+
// For brevity
typedef GrGLSLProgramDataManager::UniformHandle UniformHandle;
-class TwoPointConicalEffect : public GrGradientEffect {
+static const SkScalar kErrorTol = 0.00001f;
+static const SkScalar kEdgeErrorTol = 5.f * kErrorTol;
+
+/**
+ * We have three general cases for 2pt conical gradients. First we always assume that
+ * the start radius <= end radius. Our first case (kInside_) is when the start circle
+ * is completely enclosed by the end circle. The second case (kOutside_) is the case
+ * when the start circle is either completely outside the end circle or the circles
+ * overlap. The final case (kEdge_) is when the start circle is inside the end one,
+ * but the two are just barely touching at 1 point along their edges.
+ */
+enum ConicalType {
+ kInside_ConicalType,
+ kOutside_ConicalType,
+ kEdge_ConicalType,
+};
+
+//////////////////////////////////////////////////////////////////////////////
+
+static void set_matrix_edge_conical(const SkTwoPointConicalGradient& shader,
+ SkMatrix* invLMatrix) {
+ // Inverse of the current local matrix is passed in then,
+ // translate to center1, rotate so center2 is on x axis.
+ const SkPoint& center1 = shader.getStartCenter();
+ const SkPoint& center2 = shader.getEndCenter();
+
+ invLMatrix->postTranslate(-center1.fX, -center1.fY);
+
+ SkPoint diff = center2 - center1;
+ SkScalar diffLen = diff.length();
+ if (0 != diffLen) {
+ SkScalar invDiffLen = SkScalarInvert(diffLen);
+ SkMatrix rot;
+ rot.setSinCos(-invDiffLen * diff.fY, invDiffLen * diff.fX);
+ invLMatrix->postConcat(rot);
+ }
+}
+
+class Edge2PtConicalEffect : public GrGradientEffect {
public:
- class DegeneratedGLSLProcessor; // radial (center0 == center1) or strip (r0 == r1) case
- class FocalGLSLProcessor; // all other cases where we can derive a focal point
-
- enum Type {
- kRadial_Type,
- kStrip_Type,
- kFocal_Type
- };
-
- struct Data {
- SkScalar fRadius0;
- SkScalar fDiffRadius;
- Type fType;
- bool fIsSwapped;
-
- // Construct from the shader, and set the matrix accordingly
- Data(const SkTwoPointConicalGradient& shader, SkMatrix& matrix);
-
- bool operator== (const Data& d) const {
- return fRadius0 == d.fRadius0 && fDiffRadius == d.fDiffRadius && fType == d.fType &&
- fIsSwapped == d.fIsSwapped;
- }
- };
+ class GLSLEdge2PtConicalProcessor;
+
+ static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args) {
+ return GrGradientEffect::AdjustFP(std::unique_ptr<Edge2PtConicalEffect>(
+ new Edge2PtConicalEffect(args)),
+ args);
+ }
+
+ const char* name() const override {
+ return "Two-Point Conical Gradient Edge Touching";
+ }
+
+ // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
+ SkScalar center() const { return fCenterX1; }
+ SkScalar diffRadius() const { return fDiffRadius; }
+ SkScalar radius() const { return fRadius0; }
+
+ std::unique_ptr<GrFragmentProcessor> clone() const override {
+ return std::unique_ptr<GrFragmentProcessor>(new Edge2PtConicalEffect(*this));
+ }
+
+private:
+ GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
+
+ bool onIsEqual(const GrFragmentProcessor& sBase) const override {
+ const Edge2PtConicalEffect& s = sBase.cast<Edge2PtConicalEffect>();
+ return (INHERITED::onIsEqual(sBase) &&
+ this->fCenterX1 == s.fCenterX1 &&
+ this->fRadius0 == s.fRadius0 &&
+ this->fDiffRadius == s.fDiffRadius);
+ }
- static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args, const Data& data);
+ explicit Edge2PtConicalEffect(const CreateArgs& args)
+ : INHERITED(kEdge2PtConicalEffect_ClassID, args,
+ false /* opaque: draws transparent black outside of the cone. */) {
+ const SkTwoPointConicalGradient& shader =
+ *static_cast<const SkTwoPointConicalGradient*>(args.fShader);
+ fCenterX1 = shader.getCenterX1();
+ fRadius0 = shader.getStartRadius();
+ fDiffRadius = shader.getDiffRadius();
+ // We should only be calling this shader if we are degenerate case with touching circles
+ // When deciding if we are in edge case, we scaled by the end radius for cases when the
+ // start radius was close to zero, otherwise we scaled by the start radius. In addition
+ // Our test for the edge case in set_matrix_circle_conical has a higher tolerance so we
+ // need the sqrt value below
+ SkASSERT(SkScalarAbs(SkScalarAbs(fDiffRadius) - fCenterX1) <
+ (fRadius0 < kErrorTol ? shader.getEndRadius() * kEdgeErrorTol :
+ fRadius0 * sqrt(kEdgeErrorTol)));
- SkScalar diffRadius() const { return fData.fDiffRadius; }
- SkScalar r0() const { return fData.fRadius0; }
- SkScalar r1() const { return fData.fRadius0 + fData.fDiffRadius; }
+ // We pass the linear part of the quadratic as a varying.
+ // float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z)
+ fBTransform = this->getCoordTransform();
+ SkMatrix& bMatrix = *fBTransform.accessMatrix();
+ SkScalar r0dr = fRadius0 * fDiffRadius;
+ bMatrix[SkMatrix::kMScaleX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMScaleX] +
+ r0dr * bMatrix[SkMatrix::kMPersp0]);
+ bMatrix[SkMatrix::kMSkewX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMSkewX] +
+ r0dr * bMatrix[SkMatrix::kMPersp1]);
+ bMatrix[SkMatrix::kMTransX] = -2 * (fCenterX1 * bMatrix[SkMatrix::kMTransX] +
+ r0dr * bMatrix[SkMatrix::kMPersp2]);
+ this->addCoordTransform(&fBTransform);
+ }
- const char* name() const override { return "Two-Point Conical Gradient"; }
+ explicit Edge2PtConicalEffect(const Edge2PtConicalEffect& that)
+ : INHERITED(that)
+ , fBTransform(that.fBTransform)
+ , fCenterX1(that.fCenterX1)
+ , fRadius0(that.fRadius0)
+ , fDiffRadius(that.fDiffRadius) {
+ this->addCoordTransform(&fBTransform);
+ }
- // Whether the focal point (0, 0) is on the end circle with center (1, 0) and radius r1. If this
- // is true, it's as if an aircraft is flying at Mach 1 and all circles (soundwaves) will go
- // through the focal point (aircraft). In our previous implementations, this was known as the
- // edge case where the inside circle touches the outside circle (on the focal point). If we were
- // to solve for t bruteforcely using a quadratic equation, this case implies that the quadratic
- // equation degenerates to a linear equation.
- bool isFocalOnCircle() const { return SkScalarNearlyZero(1 - this->r1()); }
- bool isSwapped() const { return fData.fIsSwapped; }
+ GR_DECLARE_FRAGMENT_PROCESSOR_TEST
- Type getType() const { return fData.fType; }
+ // @{
+ // Cache of values - these can change arbitrarily, EXCEPT
+ // we shouldn't change between degenerate and non-degenerate?!
- // Whether the t we solved is always valid (so we don't need to check r(t) > 0).
- bool isWellBehaved() const { return !this->isFocalOnCircle() && this->r1() > 1; }
+ GrCoordTransform fBTransform;
+ SkScalar fCenterX1;
+ SkScalar fRadius0;
+ SkScalar fDiffRadius;
- // Whether r0 == 0 so it's focal without any transformation
- bool isNativelyFocal() const { return SkScalarNearlyZero(fData.fRadius0); }
+ // @}
- bool isRadiusIncreasing() const { return fData.fDiffRadius > 0; }
+ typedef GrGradientEffect INHERITED;
+};
+
+class Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor : public GrGradientEffect::GLSLProcessor {
+public:
+ GLSLEdge2PtConicalProcessor(const GrProcessor&);
+
+ virtual void emitCode(EmitArgs&) override;
protected:
- void onGetGLSLProcessorKey(const GrShaderCaps& c, GrProcessorKeyBuilder* b) const override {
- INHERITED::onGetGLSLProcessorKey(c, b);
- uint32_t key = 0;
- key |= fData.fType;
- SkASSERT(key < (1 << 2));
- key |= (this->isFocalOnCircle() << 2);
- key |= (this->isWellBehaved() << 3);
- key |= (this->isRadiusIncreasing() << 4);
- key |= (this->isNativelyFocal() << 5);
- key |= (this->isSwapped() << 6);
- SkASSERT(key < (1 << 7));
- b->add32(key);
+ void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
+
+ UniformHandle fParamUni;
+
+ const char* fVSVaryingName;
+ const char* fFSVaryingName;
+
+ // @{
+ /// Values last uploaded as uniforms
+
+ SkScalar fCachedRadius;
+ SkScalar fCachedDiffRadius;
+
+ // @}
+
+private:
+ typedef GrGradientEffect::GLSLProcessor INHERITED;
+
+};
+
+GrGLSLFragmentProcessor* Edge2PtConicalEffect::onCreateGLSLInstance() const {
+ return new Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor(*this);
+}
+
+GR_DEFINE_FRAGMENT_PROCESSOR_TEST(Edge2PtConicalEffect);
+
+/*
+ * All Two point conical gradient test create functions may occasionally create edge case shaders
+ */
+#if GR_TEST_UTILS
+std::unique_ptr<GrFragmentProcessor> Edge2PtConicalEffect::TestCreate(GrProcessorTestData* d) {
+ SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
+ SkScalar radius1 = d->fRandom->nextUScalar1();
+ SkPoint center2;
+ SkScalar radius2;
+ do {
+ center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
+ // If the circles are identical the factory will give us an empty shader.
+ // This will happen if we pick identical centers
+ } while (center1 == center2);
+
+ // Below makes sure that circle one is contained within circle two
+ // and both circles are touching on an edge
+ SkPoint diff = center2 - center1;
+ SkScalar diffLen = diff.length();
+ radius2 = radius1 + diffLen;
+
+ RandomGradientParams params(d->fRandom);
+ auto shader = params.fUseColors4f ?
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors4f, params.fColorSpace, params.fStops,
+ params.fColorCount, params.fTileMode) :
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors, params.fStops,
+ params.fColorCount, params.fTileMode);
+ GrTest::TestAsFPArgs asFPArgs(d);
+ std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
+ GrAlwaysAssert(fp);
+ return fp;
+}
+#endif
+
+Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::GLSLEdge2PtConicalProcessor(const GrProcessor&)
+ : fVSVaryingName(nullptr)
+ , fFSVaryingName(nullptr)
+ , fCachedRadius(-SK_ScalarMax)
+ , fCachedDiffRadius(-SK_ScalarMax) {}
+
+void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::emitCode(EmitArgs& args) {
+ const Edge2PtConicalEffect& ge = args.fFp.cast<Edge2PtConicalEffect>();
+ GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
+ this->emitUniforms(uniformHandler, ge);
+ fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf3_GrSLType,
+ "Conical2FSParams");
+
+ SkString cName("c");
+ SkString tName("t");
+ SkString p0; // start radius
+ SkString p1; // start radius squared
+ SkString p2; // difference in radii (r1 - r0)
+
+
+ p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
+ p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
+ p2.appendf("%s.z", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
+
+ // We interpolate the linear component in coords[1].
+ SkASSERT(args.fTransformedCoords[0].getType() == args.fTransformedCoords[1].getType());
+ const char* coords2D;
+ SkString bVar;
+ GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
+ if (kHalf3_GrSLType == args.fTransformedCoords[0].getType()) {
+ fragBuilder->codeAppendf("\thalf3 interpolants = half3(%s.xy / %s.z, %s.x / %s.z);\n",
+ args.fTransformedCoords[0].c_str(),
+ args.fTransformedCoords[0].c_str(),
+ args.fTransformedCoords[1].c_str(),
+ args.fTransformedCoords[1].c_str());
+ coords2D = "interpolants.xy";
+ bVar = "interpolants.z";
+ } else {
+ coords2D = args.fTransformedCoords[0].c_str();
+ bVar.printf("%s.x", args.fTransformedCoords[1].c_str());
}
+ // output will default to transparent black (we simply won't write anything
+ // else to it if invalid, instead of discarding or returning prematurely)
+ fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
- GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
+ // c = (x^2)+(y^2) - params[1]
+ fragBuilder->codeAppendf("\thalf %s = dot(%s, %s) - %s;\n",
+ cName.c_str(), coords2D, coords2D, p1.c_str());
+
+ // linear case: t = -c/b
+ fragBuilder->codeAppendf("\thalf %s = -(%s / %s);\n", tName.c_str(),
+ cName.c_str(), bVar.c_str());
+
+ // if r(t) > 0, then t will be the x coordinate
+ fragBuilder->codeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
+ p2.c_str(), p0.c_str());
+ fragBuilder->codeAppend("\t");
+ this->emitColor(fragBuilder,
+ uniformHandler,
+ args.fShaderCaps,
+ ge,
+ tName.c_str(),
+ args.fOutputColor,
+ args.fInputColor,
+ args.fTexSamplers);
+ fragBuilder->codeAppend("\t}\n");
+}
+
+void Edge2PtConicalEffect::GLSLEdge2PtConicalProcessor::onSetData(
+ const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
+ INHERITED::onSetData(pdman, processor);
+ const Edge2PtConicalEffect& data = processor.cast<Edge2PtConicalEffect>();
+ SkScalar radius0 = data.radius();
+ SkScalar diffRadius = data.diffRadius();
+
+ if (fCachedRadius != radius0 ||
+ fCachedDiffRadius != diffRadius) {
+
+ pdman.set3f(fParamUni, radius0, radius0 * radius0, diffRadius);
+ fCachedRadius = radius0;
+ fCachedDiffRadius = diffRadius;
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+// Focal Conical Gradients
+//////////////////////////////////////////////////////////////////////////////
+
+static ConicalType set_matrix_focal_conical(const SkTwoPointConicalGradient& shader,
+ SkMatrix* invLMatrix, SkScalar* focalX) {
+ // Inverse of the current local matrix is passed in then,
+ // translate, scale, and rotate such that endCircle is unit circle on x-axis,
+ // and focal point is at the origin.
+ ConicalType conicalType;
+ const SkPoint& focal = shader.getStartCenter();
+ const SkPoint& centerEnd = shader.getEndCenter();
+ SkScalar radius = shader.getEndRadius();
+ SkScalar invRadius = 1.f / radius;
+
+ SkMatrix matrix;
+
+ matrix.setTranslate(-centerEnd.fX, -centerEnd.fY);
+ matrix.postScale(invRadius, invRadius);
+
+ SkPoint focalTrans;
+ matrix.mapPoints(&focalTrans, &focal, 1);
+ *focalX = focalTrans.length();
+
+ if (0.f != *focalX) {
+ SkScalar invFocalX = SkScalarInvert(*focalX);
+ SkMatrix rot;
+ rot.setSinCos(-invFocalX * focalTrans.fY, invFocalX * focalTrans.fX);
+ matrix.postConcat(rot);
+ }
+
+ matrix.postTranslate(-(*focalX), 0.f);
+
+ // If the focal point is touching the edge of the circle it will
+ // cause a degenerate case that must be handled separately
+ // kEdgeErrorTol = 5 * kErrorTol was picked after manual testing the
+ // stability trade off versus the linear approx used in the Edge Shader
+ if (SkScalarAbs(1.f - (*focalX)) < kEdgeErrorTol) {
+ return kEdge_ConicalType;
+ }
+
+ // Scale factor 1 / (1 - focalX * focalX)
+ SkScalar oneMinusF2 = 1.f - *focalX * *focalX;
+ SkScalar s = SkScalarInvert(oneMinusF2);
+
+
+ if (s >= 0.f) {
+ conicalType = kInside_ConicalType;
+ matrix.postScale(s, s * SkScalarSqrt(oneMinusF2));
+ } else {
+ conicalType = kOutside_ConicalType;
+ matrix.postScale(s, s);
+ }
+
+ invLMatrix->postConcat(matrix);
+
+ return conicalType;
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
+class FocalOutside2PtConicalEffect : public GrGradientEffect {
+public:
+ class GLSLFocalOutside2PtConicalProcessor;
+
+ static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args, SkScalar focalX,
+ bool isFlipped) {
+ return GrGradientEffect::AdjustFP(std::unique_ptr<FocalOutside2PtConicalEffect>(
+ new FocalOutside2PtConicalEffect(args, focalX, isFlipped)),
+ args);
+ }
+
+ const char* name() const override {
+ return "Two-Point Conical Gradient Focal Outside";
+ }
std::unique_ptr<GrFragmentProcessor> clone() const override {
- return std::unique_ptr<GrFragmentProcessor>(new TwoPointConicalEffect(*this));
+ return std::unique_ptr<GrFragmentProcessor>(new FocalOutside2PtConicalEffect(*this));
}
+ bool isFlipped() const { return fIsFlipped; }
+ SkScalar focal() const { return fFocalX; }
+
+private:
+ GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
+
bool onIsEqual(const GrFragmentProcessor& sBase) const override {
- const TwoPointConicalEffect& s = sBase.cast<TwoPointConicalEffect>();
- return (INHERITED::onIsEqual(sBase) && fData == s.fData);
+ const FocalOutside2PtConicalEffect& s = sBase.cast<FocalOutside2PtConicalEffect>();
+ return (INHERITED::onIsEqual(sBase) &&
+ this->fFocalX == s.fFocalX &&
+ this->fIsFlipped == s.fIsFlipped);
}
- explicit TwoPointConicalEffect(const CreateArgs& args, const Data data)
- : INHERITED(kTwoPointConicalEffect_ClassID, args,
- false /* opaque: draws transparent black outside of the cone. */)
- , fData(data) {}
+ FocalOutside2PtConicalEffect(const CreateArgs& args, SkScalar focalX, bool isFlipped)
+ : INHERITED(kFocalOutside2PtConicalEffect_ClassID, args,
+ false /* opaque: draws transparent black outside of the cone. */)
+ , fFocalX(focalX)
+ , fIsFlipped(isFlipped) {}
- explicit TwoPointConicalEffect(const TwoPointConicalEffect& that)
- : INHERITED(that)
- , fData(that.fData) {}
+ explicit FocalOutside2PtConicalEffect(const FocalOutside2PtConicalEffect& that)
+ : INHERITED(that), fFocalX(that.fFocalX), fIsFlipped(that.fIsFlipped) {
+ }
GR_DECLARE_FRAGMENT_PROCESSOR_TEST
- Data fData;
+ SkScalar fFocalX;
+ bool fIsFlipped;
typedef GrGradientEffect INHERITED;
};
-GR_DEFINE_FRAGMENT_PROCESSOR_TEST(TwoPointConicalEffect);
+class FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor
+ : public GrGradientEffect::GLSLProcessor {
+public:
+ GLSLFocalOutside2PtConicalProcessor(const GrProcessor&);
+
+ virtual void emitCode(EmitArgs&) override;
+
+protected:
+ void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
+
+ UniformHandle fParamUni;
+
+ const char* fVSVaryingName;
+ const char* fFSVaryingName;
+
+ // @{
+ /// Values last uploaded as uniforms
+
+ SkScalar fCachedFocal;
+ SkScalar fCachedFlipSign;
+
+ // @}
+
+private:
+ typedef GrGradientEffect::GLSLProcessor INHERITED;
+
+};
+
+GrGLSLFragmentProcessor* FocalOutside2PtConicalEffect::onCreateGLSLInstance() const {
+ return new FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor(*this);
+}
+
+GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalOutside2PtConicalEffect);
+/*
+ * All Two point conical gradient test create functions may occasionally create edge case shaders
+ */
#if GR_TEST_UTILS
-std::unique_ptr<GrFragmentProcessor> TwoPointConicalEffect::TestCreate(
+std::unique_ptr<GrFragmentProcessor> FocalOutside2PtConicalEffect::TestCreate(
GrProcessorTestData* d) {
SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
- SkPoint center2 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
- SkScalar radius1 = d->fRandom->nextUScalar1();
- SkScalar radius2 = d->fRandom->nextUScalar1();
-
- constexpr int kTestTypeMask = (1 << 2) - 1,
- kTestNativelyFocalBit = (1 << 2),
- kTestFocalOnCircleBit = (1 << 3),
- kTestSwappedBit = (1 << 4);
- // We won't treat isWellDefined and isRadiusIncreasing specially beacuse they
- // should have high probability to be turned on and off as we're getting random
- // radii and centers.
-
- int mask = d->fRandom->nextU();
- int type = mask & kTestTypeMask;
- if (type == TwoPointConicalEffect::kRadial_Type) {
- center2 = center1;
- } else if (type == TwoPointConicalEffect::kStrip_Type) {
- radius1 = SkTMax(radius1, .1f); // Make sure that the radius is non-zero
- radius2 = radius1;
- } else { // kFocal_Type
- if (kTestNativelyFocalBit & mask) {
- radius1 = 0;
- }
- if (kTestFocalOnCircleBit & mask) {
- radius2 = radius1 + SkPoint::Distance(center1, center2);
- }
- if (kTestSwappedBit & mask) {
- std::swap(radius1, radius2);
- radius2 = 0;
- }
+ SkScalar radius1 = 0.f;
+ SkPoint center2;
+ SkScalar radius2;
+ do {
+ center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
+ // Need to make sure the centers are not the same or else focal point will be inside
+ } while (center1 == center2);
+
+ SkPoint diff = center2 - center1;
+ SkScalar diffLen = diff.length();
+ // Below makes sure that the focal point is not contained within circle two
+ radius2 = d->fRandom->nextRangeF(0.f, diffLen);
+
+ RandomGradientParams params(d->fRandom);
+ auto shader = params.fUseColors4f ?
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors4f, params.fColorSpace, params.fStops,
+ params.fColorCount, params.fTileMode) :
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors, params.fStops,
+ params.fColorCount, params.fTileMode);
+ GrTest::TestAsFPArgs asFPArgs(d);
+ std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
+ GrAlwaysAssert(fp);
+ return fp;
+}
+#endif
+
+FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor
+ ::GLSLFocalOutside2PtConicalProcessor(const GrProcessor& processor)
+ : fVSVaryingName(nullptr)
+ , fFSVaryingName(nullptr)
+ , fCachedFocal(SK_ScalarMax)
+ , fCachedFlipSign(SK_ScalarMax) {}
+
+void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::emitCode(EmitArgs& args) {
+ const FocalOutside2PtConicalEffect& ge = args.fFp.cast<FocalOutside2PtConicalEffect>();
+ GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
+ this->emitUniforms(uniformHandler, ge);
+ fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf3_GrSLType,
+ "Conical2FSParams");
+ SkString tName("t");
+ // TODO: get rid of these locals?
+ SkString p0; // focalX
+ SkString p1; // 1 - focalX * focalX
+ p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
+ p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
+
+ // params.x = focalX
+ // params.y = 1 - focalX * focalX
+ // params.z = flipSign
+ GrShaderVar params = uniformHandler->getUniformVariable(fParamUni);
+
+ // if we have a float3 from being in perspective, convert it to a float2 first
+ GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
+ SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
+ const char* coords2D = coords2DString.c_str();
+
+ // t = p.x * focal.x +/- sqrt(p.x^2 + (1 - focal.x^2) * p.y^2)
+
+ // output will default to transparent black (we simply won't write anything
+ // else to it if invalid, instead of discarding or returning prematurely)
+ fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
+
+ fragBuilder->codeAppendf("\thalf xs = %s.x * %s.x;\n", coords2D, coords2D);
+ fragBuilder->codeAppendf("\thalf ys = %s.y * %s.y;\n", coords2D, coords2D);
+ fragBuilder->codeAppendf("\thalf d = xs + %s * ys;\n", p1.c_str());
+ fragBuilder->codeAppendf("\thalf %s = %s.x * %s + sqrt(d);\n",
+ tName.c_str(), coords2D, p0.c_str());
+
+ fragBuilder->codeAppendf("\tif (%s.z * %s >= 0.0 && d >= 0.0) {\n",
+ params.c_str(), tName.c_str());
+ fragBuilder->codeAppend("\t\t");
+ this->emitColor(fragBuilder,
+ uniformHandler,
+ args.fShaderCaps,
+ ge,
+ tName.c_str(),
+ args.fOutputColor,
+ args.fInputColor,
+ args.fTexSamplers);
+ fragBuilder->codeAppend("\t}\n");
+}
+
+void FocalOutside2PtConicalEffect::GLSLFocalOutside2PtConicalProcessor::onSetData(
+ const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
+ INHERITED::onSetData(pdman, processor);
+ const FocalOutside2PtConicalEffect& data = processor.cast<FocalOutside2PtConicalEffect>();
+ SkScalar focal = data.focal();
+ SkScalar flipSign = data.isFlipped() ? -1 : 1;
+
+ if (fCachedFocal != focal || fCachedFlipSign != flipSign) {
+ SkScalar oneMinus2F = 1.f - focal * focal;
+
+ pdman.set3f(fParamUni, focal, oneMinus2F, flipSign);
+ fCachedFocal = focal;
+ fCachedFlipSign = flipSign;
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
+class FocalInside2PtConicalEffect : public GrGradientEffect {
+public:
+ class GLSLFocalInside2PtConicalProcessor;
+
+ static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args, SkScalar focalX) {
+ return GrGradientEffect::AdjustFP(std::unique_ptr<FocalInside2PtConicalEffect>(
+ new FocalInside2PtConicalEffect(args, focalX)),
+ args);
}
- if (SkScalarNearlyZero(radius1 - radius2) &&
- SkScalarNearlyZero(SkPoint::Distance(center1, center2))) {
- radius2 += .1f; // make sure that we're not degenerated
+ const char* name() const override {
+ return "Two-Point Conical Gradient Focal Inside";
}
+
+ std::unique_ptr<GrFragmentProcessor> clone() const override {
+ return std::unique_ptr<GrFragmentProcessor>(new FocalInside2PtConicalEffect(*this));
+ }
+
+ SkScalar focal() const { return fFocalX; }
+
+ typedef FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor GLSLProcessor;
+
+private:
+ GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
+
+ bool onIsEqual(const GrFragmentProcessor& sBase) const override {
+ const FocalInside2PtConicalEffect& s = sBase.cast<FocalInside2PtConicalEffect>();
+ return (INHERITED::onIsEqual(sBase) &&
+ this->fFocalX == s.fFocalX);
+ }
+
+ FocalInside2PtConicalEffect(const CreateArgs& args, SkScalar focalX)
+ : INHERITED(kFocalInside2PtConicalEffect_ClassID, args,
+ args.fShader->colorsAreOpaque()), fFocalX(focalX) {}
+
+ explicit FocalInside2PtConicalEffect(const FocalInside2PtConicalEffect& that)
+ : INHERITED(that), fFocalX(that.fFocalX) {}
+
+ GR_DECLARE_FRAGMENT_PROCESSOR_TEST
+
+ SkScalar fFocalX;
+
+ typedef GrGradientEffect INHERITED;
+};
+
+class FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor
+ : public GrGradientEffect::GLSLProcessor {
+public:
+ GLSLFocalInside2PtConicalProcessor(const GrProcessor&);
+
+ virtual void emitCode(EmitArgs&) override;
+
+protected:
+ void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
+
+ UniformHandle fFocalUni;
+
+ const char* fVSVaryingName;
+ const char* fFSVaryingName;
+
+ // @{
+ /// Values last uploaded as uniforms
+
+ SkScalar fCachedFocal;
+
+ // @}
+
+private:
+ typedef GrGradientEffect::GLSLProcessor INHERITED;
+
+};
+
+GrGLSLFragmentProcessor* FocalInside2PtConicalEffect::onCreateGLSLInstance() const {
+ return new FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor(*this);
+}
+
+GR_DEFINE_FRAGMENT_PROCESSOR_TEST(FocalInside2PtConicalEffect);
+
+/*
+ * All Two point conical gradient test create functions may occasionally create edge case shaders
+ */
+#if GR_TEST_UTILS
+std::unique_ptr<GrFragmentProcessor> FocalInside2PtConicalEffect::TestCreate(
+ GrProcessorTestData* d) {
+ SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
+ SkScalar radius1 = 0.f;
+ SkPoint center2;
+ SkScalar radius2;
+ do {
+ center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
+ // Below makes sure radius2 is larger enouch such that the focal point
+ // is inside the end circle
+ SkScalar increase = d->fRandom->nextUScalar1();
+ SkPoint diff = center2 - center1;
+ SkScalar diffLen = diff.length();
+ radius2 = diffLen + increase;
+ // If the circles are identical the factory will give us an empty shader.
+ } while (radius1 == radius2 && center1 == center2);
+
RandomGradientParams params(d->fRandom);
auto shader = params.fUseColors4f ?
SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
@@ -170,163 +671,580 @@ std::unique_ptr<GrFragmentProcessor> TwoPointConicalEffect::TestCreate(
}
#endif
+FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor
+ ::GLSLFocalInside2PtConicalProcessor(const GrProcessor&)
+ : fVSVaryingName(nullptr)
+ , fFSVaryingName(nullptr)
+ , fCachedFocal(SK_ScalarMax) {}
+
+void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::emitCode(EmitArgs& args) {
+ const FocalInside2PtConicalEffect& ge = args.fFp.cast<FocalInside2PtConicalEffect>();
+ GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
+ this->emitUniforms(uniformHandler, ge);
+ fFocalUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType,
+ "Conical2FSParams");
+ SkString tName("t");
+
+ // this is the distance along x-axis from the end center to focal point in
+ // transformed coordinates
+ GrShaderVar focal = uniformHandler->getUniformVariable(fFocalUni);
+
+ // if we have a float3 from being in perspective, convert it to a float2 first
+ GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
+ SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
+ const char* coords2D = coords2DString.c_str();
+
+ // t = p.x * focalX + length(p)
+ fragBuilder->codeAppendf("\thalf %s = %s.x * %s + length(%s);\n", tName.c_str(),
+ coords2D, focal.c_str(), coords2D);
+
+ this->emitColor(fragBuilder,
+ uniformHandler,
+ args.fShaderCaps,
+ ge,
+ tName.c_str(),
+ args.fOutputColor,
+ args.fInputColor,
+ args.fTexSamplers);
+}
+
+void FocalInside2PtConicalEffect::GLSLFocalInside2PtConicalProcessor::onSetData(
+ const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
+ INHERITED::onSetData(pdman, processor);
+ const FocalInside2PtConicalEffect& data = processor.cast<FocalInside2PtConicalEffect>();
+ SkScalar focal = data.focal();
+
+ if (fCachedFocal != focal) {
+ pdman.set1f(fFocalUni, SkScalarToFloat(focal));
+ fCachedFocal = focal;
+ }
+}
+
//////////////////////////////////////////////////////////////////////////////
-// DegeneratedGLSLProcessor
+// Circle Conical Gradients
//////////////////////////////////////////////////////////////////////////////
-class TwoPointConicalEffect::DegeneratedGLSLProcessor : public GrGradientEffect::GLSLProcessor {
-protected:
- void emitCode(EmitArgs& args) override {
- const TwoPointConicalEffect& ge = args.fFp.cast<TwoPointConicalEffect>();
- GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
- this->emitUniforms(uniformHandler, ge);
- fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType,
- "Conical2FSParams");
-
- SkString p0; // r0 for radial case, r0^2 for strip case
- p0.appendf("%s", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
- const char* tName = "t"; // the gradient
-
- GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
- SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
- const char* p = coords2D.c_str();
-
- if (ge.getType() == kRadial_Type) {
- fragBuilder->codeAppendf("\thalf %s = length(%s) - %s;", tName, p, p0.c_str());
- } else {
- // output will default to transparent black (we simply won't write anything
- // else to it if invalid, instead of discarding or returning prematurely)
- fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
- fragBuilder->codeAppendf("\thalf temp = %s - %s.y * %s.y;", p0.c_str(), p, p);
- fragBuilder->codeAppendf("\tif (temp >= 0) {");
- fragBuilder->codeAppendf("\t\thalf %s = %s.x + sqrt(temp);", tName, p);
- fragBuilder->codeAppend("\t\t");
- }
+struct CircleConicalInfo {
+ SkPoint fCenterEnd;
+ SkScalar fA;
+ SkScalar fB;
+ SkScalar fC;
- this->emitColor(fragBuilder,
- uniformHandler,
- args.fShaderCaps,
- ge,
- tName,
- args.fOutputColor,
- args.fInputColor,
- args.fTexSamplers);
-
- if (ge.getType() != kRadial_Type) {
- fragBuilder->codeAppendf("\t}");
- }
+ bool operator==(const CircleConicalInfo& other) const {
+ return fCenterEnd == other.fCenterEnd
+ && fA == other.fA
+ && fB == other.fB
+ && fC == other.fC;
+ }
+
+ bool operator!=(const CircleConicalInfo& other) const { return !(*this == other); }
+
+ // true when endRadius < startRadius
+ bool isFlipped() const {
+ // B = (endRadius/startRadius - 1) * C
+ return std::signbit(fB) != std::signbit(fC);
+ }
+};
+
+// Returns focal distance along x-axis in transformed coords
+static ConicalType set_matrix_circle_conical(const SkTwoPointConicalGradient& shader,
+ SkMatrix* invLMatrix, CircleConicalInfo* info) {
+ // Inverse of the current local matrix is passed in then,
+ // translate and scale such that start circle is on the origin and has radius 1
+ const SkPoint& centerStart = shader.getStartCenter();
+ const SkPoint& centerEnd = shader.getEndCenter();
+ SkScalar radiusStart = shader.getStartRadius();
+ SkScalar radiusEnd = shader.getEndRadius();
+
+ SkMatrix matrix;
+
+ matrix.setTranslate(-centerStart.fX, -centerStart.fY);
+
+ SkScalar invStartRad = 1.f / radiusStart;
+ matrix.postScale(invStartRad, invStartRad);
+
+ radiusEnd /= radiusStart;
+
+ SkPoint centerEndTrans;
+ matrix.mapPoints(&centerEndTrans, &centerEnd, 1);
+
+ SkScalar A = centerEndTrans.fX * centerEndTrans.fX + centerEndTrans.fY * centerEndTrans.fY
+ - radiusEnd * radiusEnd + 2 * radiusEnd - 1;
+
+ // Check to see if start circle is inside end circle with edges touching.
+ // If touching we return that it is of kEdge_ConicalType, and leave the matrix setting
+ // to the edge shader. kEdgeErrorTol = 5 * kErrorTol was picked after manual testing
+ // so that C = 1 / A is stable, and the linear approximation used in the Edge shader is
+ // still accurate.
+ if (SkScalarAbs(A) < kEdgeErrorTol) {
+ return kEdge_ConicalType;
+ }
+
+ SkScalar C = 1.f / A;
+ SkScalar B = (radiusEnd - 1.f) * C;
+
+ matrix.postScale(C, C);
+
+ invLMatrix->postConcat(matrix);
+
+ info->fCenterEnd = centerEndTrans;
+ info->fA = A;
+ info->fB = B;
+ info->fC = C;
+
+ // if A ends up being negative, the start circle is contained completely inside the end cirlce
+ if (A < 0.f) {
+ return kInside_ConicalType;
}
+ return kOutside_ConicalType;
+}
+
+class CircleInside2PtConicalEffect : public GrGradientEffect {
+public:
+ class GLSLCircleInside2PtConicalProcessor;
+
+ static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args,
+ const CircleConicalInfo& info) {
+ return GrGradientEffect::AdjustFP(std::unique_ptr<CircleInside2PtConicalEffect>(
+ new CircleInside2PtConicalEffect(args, info)),
+ args);
+ }
+
+ const char* name() const override { return "Two-Point Conical Gradient Inside"; }
+
+ std::unique_ptr<GrFragmentProcessor> clone() const override {
+ return std::unique_ptr<GrFragmentProcessor>(new CircleInside2PtConicalEffect(*this));
+ }
+
+ SkScalar centerX() const { return fInfo.fCenterEnd.fX; }
+ SkScalar centerY() const { return fInfo.fCenterEnd.fY; }
+ SkScalar A() const { return fInfo.fA; }
+ SkScalar B() const { return fInfo.fB; }
+ SkScalar C() const { return fInfo.fC; }
+ bool isFlipped() const { return fInfo.isFlipped(); }
+
+private:
+ GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
- void onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& p) override {
- INHERITED::onSetData(pdman, p);
- const TwoPointConicalEffect& data = p.cast<TwoPointConicalEffect>();
- // kRadialType should imply r1 - r0 = 1 (after our transformation) so r0 = r0 / (r1 - r0)
- SkASSERT(data.getType() == kStrip_Type || SkScalarNearlyZero(data.r1() - data.r0() - 1));
- pdman.set1f(fParamUni, data.getType() == kRadial_Type ? data.r0() : data.r0() * data.r0());
+ bool onIsEqual(const GrFragmentProcessor& sBase) const override {
+ const CircleInside2PtConicalEffect& s = sBase.cast<CircleInside2PtConicalEffect>();
+ return INHERITED::onIsEqual(sBase) && fInfo == s.fInfo;
}
+ CircleInside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info)
+ : INHERITED(kCircleInside2PtConicalEffect_ClassID, args,
+ args.fShader->colorsAreOpaque()), fInfo(info) {}
+
+ explicit CircleInside2PtConicalEffect(const CircleInside2PtConicalEffect& that)
+ : INHERITED(that), fInfo(that.fInfo) {}
+
+ GR_DECLARE_FRAGMENT_PROCESSOR_TEST
+
+ const CircleConicalInfo fInfo;
+
+ typedef GrGradientEffect INHERITED;
+};
+
+class CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor
+ : public GrGradientEffect::GLSLProcessor {
+public:
+ GLSLCircleInside2PtConicalProcessor(const GrProcessor&);
+
+ virtual void emitCode(EmitArgs&) override;
+
+protected:
+ void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
+
+ UniformHandle fCenterUni;
UniformHandle fParamUni;
+ const char* fVSVaryingName;
+ const char* fFSVaryingName;
+
+ // @{
+ /// Values last uploaded as uniforms
+
+ SkScalar fCachedCenterX;
+ SkScalar fCachedCenterY;
+ SkScalar fCachedA;
+ SkScalar fCachedB;
+ SkScalar fCachedC;
+ SkScalar fCachedFlipSign;
+
+ // @}
+
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
+
};
-//////////////////////////////////////////////////////////////////////////////
-// FocalGLSLProcessor
+GrGLSLFragmentProcessor* CircleInside2PtConicalEffect::onCreateGLSLInstance() const {
+ return new CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor(*this);
+}
+
+GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleInside2PtConicalEffect);
+
+/*
+ * All Two point conical gradient test create functions may occasionally create edge case shaders
+ */
+#if GR_TEST_UTILS
+std::unique_ptr<GrFragmentProcessor> CircleInside2PtConicalEffect::TestCreate(
+ GrProcessorTestData* d) {
+ SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
+ SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0
+ SkPoint center2;
+ SkScalar radius2;
+ do {
+ center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
+ // Below makes sure that circle one is contained within circle two
+ SkScalar increase = d->fRandom->nextUScalar1();
+ SkPoint diff = center2 - center1;
+ SkScalar diffLen = diff.length();
+ radius2 = radius1 + diffLen + increase;
+ // If the circles are identical the factory will give us an empty shader.
+ } while (radius1 == radius2 && center1 == center2);
+
+ RandomGradientParams params(d->fRandom);
+ auto shader = params.fUseColors4f ?
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors4f, params.fColorSpace, params.fStops,
+ params.fColorCount, params.fTileMode) :
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors, params.fStops,
+ params.fColorCount, params.fTileMode);
+ GrTest::TestAsFPArgs asFPArgs(d);
+ std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
+ GrAlwaysAssert(fp);
+ return fp;
+}
+#endif
+
+CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor
+ ::GLSLCircleInside2PtConicalProcessor(const GrProcessor& processor)
+ : fVSVaryingName(nullptr)
+ , fFSVaryingName(nullptr)
+ , fCachedCenterX(SK_ScalarMax)
+ , fCachedCenterY(SK_ScalarMax)
+ , fCachedA(SK_ScalarMax)
+ , fCachedB(SK_ScalarMax)
+ , fCachedC(SK_ScalarMax)
+ , fCachedFlipSign(SK_ScalarMax) {}
+
+void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::emitCode(EmitArgs& args) {
+ const CircleInside2PtConicalEffect& ge = args.fFp.cast<CircleInside2PtConicalEffect>();
+ GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
+ this->emitUniforms(uniformHandler, ge);
+ fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
+ "Conical2FSCenter");
+ fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType,
+ "Conical2FSParams");
+ SkString tName("t");
+
+ GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni);
+ // params.x = A
+ // params.y = B
+ // params.z = C
+ // params.w = flipSign
+ GrShaderVar params = uniformHandler->getUniformVariable(fParamUni);
+
+ // if we have a float3 from being in perspective, convert it to a float2 first
+ GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
+ SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
+ const char* coords2D = coords2DString.c_str();
+
+ // p = coords2D
+ // e = center end
+ // r = radius end
+ // A = dot(e, e) - r^2 + 2 * r - 1
+ // B = (r -1) / A
+ // C = 1 / A
+ // d = dot(e, p) + B
+ // t = d +/- sqrt(d^2 - A * dot(p, p) + C)
+ fragBuilder->codeAppendf("\thalf pDotp = dot(%s, %s);\n", coords2D, coords2D);
+ fragBuilder->codeAppendf("\thalf d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
+ params.c_str());
+ fragBuilder->codeAppendf("\thalf %s = d + %s.w * sqrt(d * d - %s.x * pDotp + %s.z);\n",
+ tName.c_str(), params.c_str(), params.c_str(), params.c_str());
+
+ this->emitColor(fragBuilder,
+ uniformHandler,
+ args.fShaderCaps,
+ ge,
+ tName.c_str(),
+ args.fOutputColor,
+ args.fInputColor,
+ args.fTexSamplers);
+}
+
+void CircleInside2PtConicalEffect::GLSLCircleInside2PtConicalProcessor::onSetData(
+ const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
+ INHERITED::onSetData(pdman, processor);
+ const CircleInside2PtConicalEffect& data = processor.cast<CircleInside2PtConicalEffect>();
+ SkScalar centerX = data.centerX();
+ SkScalar centerY = data.centerY();
+ SkScalar A = data.A();
+ SkScalar B = data.B();
+ SkScalar C = data.C();
+ SkScalar flipSign = data.isFlipped() ? -1 : 1;
+
+ if (fCachedCenterX != centerX || fCachedCenterY != centerY) {
+ pdman.set2f(fCenterUni, centerX, centerY);
+ fCachedCenterX = centerX;
+ fCachedCenterY = centerY;
+ }
+
+ if (fCachedA != A || fCachedB != B || fCachedC != C || fCachedFlipSign != flipSign) {
+ pdman.set4f(fParamUni, A, B, C, flipSign);
+ fCachedA = A;
+ fCachedB = B;
+ fCachedC = C;
+ fCachedFlipSign = flipSign;
+ }
+}
+
//////////////////////////////////////////////////////////////////////////////
-class TwoPointConicalEffect::FocalGLSLProcessor : public GrGradientEffect::GLSLProcessor {
-protected:
- void emitCode(EmitArgs& args) override {
- const TwoPointConicalEffect& ge = args.fFp.cast<TwoPointConicalEffect>();
- GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
- this->emitUniforms(uniformHandler, ge);
- fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
- "Conical2FSParams");
-
- SkString p0; // 1 / r1
- SkString p1; // r0 / (r1 - r0)
- p0.appendf("%s.x", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
- p1.appendf("%s.y", uniformHandler->getUniformVariable(fParamUni).getName().c_str());
- const char* tName = "t"; // the gradient
-
- GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
- SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
- const char* p = coords2D.c_str();
-
- if (ge.isFocalOnCircle()) {
- fragBuilder->codeAppendf("\thalf %s_prime = dot(%s, %s) / %s.x;", tName, p, p, p);
- } else if (ge.isWellBehaved()) {
- // empty sign is positive
- char sign = ge.isRadiusIncreasing() ? ' ' : '-';
- fragBuilder->codeAppendf("\thalf %s_prime = %clength(%s) - %s.x * %s;",
- tName, sign, p, p, p0.c_str());
- } else {
- char sign = ge.isSwapped() ? '-' : ' ';
- fragBuilder->codeAppendf("\thalf temp = %s.x * %s.x - %s.y * %s.y;", p, p, p, p);
- fragBuilder->codeAppendf("\thalf %s_prime = (%csqrt(temp) - %s.x * %s);",
- tName, sign, p, p0.c_str());
- }
- // "- 0" is much faster than "- p1" so we specialize the navtively focal case where p1 = 0.
- fragBuilder->codeAppendf("\thalf %s = %s_prime - %s;", tName, tName,
- ge.isNativelyFocal() ? "0" : p1.c_str());
+class CircleOutside2PtConicalEffect : public GrGradientEffect {
+public:
+ class GLSLCircleOutside2PtConicalProcessor;
- if (ge.isSwapped()) {
- fragBuilder->codeAppendf("\t%s = 1 - %s;", tName, tName);
- }
+ static std::unique_ptr<GrFragmentProcessor> Make(const CreateArgs& args,
+ const CircleConicalInfo& info) {
+ return GrGradientEffect::AdjustFP(std::unique_ptr<CircleOutside2PtConicalEffect>(
+ new CircleOutside2PtConicalEffect(args, info)),
+ args);
+ }
- if (!ge.isWellBehaved()) {
- // output will default to transparent black (we simply won't write anything
- // else to it if invalid, instead of discarding or returning prematurely)
- fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
- // r(t) must be nonnegative
- char direction = ge.isRadiusIncreasing() ? '>' : '<';
- fragBuilder->codeAppendf("\tif (%s_prime %c= 0.0) {\n", tName, direction);
- fragBuilder->codeAppend("\t\t");
- }
- this->emitColor(fragBuilder,
- uniformHandler,
- args.fShaderCaps,
- ge,
- tName,
- args.fOutputColor,
- args.fInputColor,
- args.fTexSamplers);
- if (!ge.isWellBehaved()) {
- fragBuilder->codeAppend("\t};");
- }
+ const char* name() const override { return "Two-Point Conical Gradient Outside"; }
+
+ std::unique_ptr<GrFragmentProcessor> clone() const override {
+ return std::unique_ptr<GrFragmentProcessor>(new CircleOutside2PtConicalEffect(*this));
}
- void onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& p) override {
- INHERITED::onSetData(pdman, p);
- const TwoPointConicalEffect& data = p.cast<TwoPointConicalEffect>();
- SkScalar r0 = data.r0();
- SkScalar r1 = data.r1();
- pdman.set2f(fParamUni, 1 / r1, r0 / (r1 - r0));
+ SkScalar centerX() const { return fInfo.fCenterEnd.fX; }
+ SkScalar centerY() const { return fInfo.fCenterEnd.fY; }
+ SkScalar A() const { return fInfo.fA; }
+ SkScalar B() const { return fInfo.fB; }
+ SkScalar C() const { return fInfo.fC; }
+ SkScalar tLimit() const { return fTLimit; }
+ bool isFlipped() const { return fInfo.isFlipped(); }
+
+private:
+ GrGLSLFragmentProcessor* onCreateGLSLInstance() const override;
+
+ bool onIsEqual(const GrFragmentProcessor& sBase) const override {
+ const CircleOutside2PtConicalEffect& s = sBase.cast<CircleOutside2PtConicalEffect>();
+ return INHERITED::onIsEqual(sBase) && fInfo == s.fInfo && fTLimit == s.fTLimit;
+ }
+
+ CircleOutside2PtConicalEffect(const CreateArgs& args, const CircleConicalInfo& info)
+ : INHERITED(kCircleOutside2PtConicalEffect_ClassID, args,
+ false /* opaque: draws transparent black outside of the cone. */)
+ , fInfo(info) {
+ const SkTwoPointConicalGradient& shader =
+ *static_cast<const SkTwoPointConicalGradient*>(args.fShader);
+ if (shader.getStartRadius() != shader.getEndRadius()) {
+ fTLimit = shader.getStartRadius() / (shader.getStartRadius() - shader.getEndRadius());
+ } else {
+ fTLimit = SK_ScalarMin;
+ }
}
+ explicit CircleOutside2PtConicalEffect(const CircleOutside2PtConicalEffect& that)
+ : INHERITED(that)
+ , fInfo(that.fInfo)
+ , fTLimit(that.fTLimit) {}
+
+ GR_DECLARE_FRAGMENT_PROCESSOR_TEST
+
+ const CircleConicalInfo fInfo;
+ SkScalar fTLimit;
+
+ typedef GrGradientEffect INHERITED;
+};
+
+class CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor
+ : public GrGradientEffect::GLSLProcessor {
+public:
+ GLSLCircleOutside2PtConicalProcessor(const GrProcessor&);
+
+ virtual void emitCode(EmitArgs&) override;
+
+protected:
+ void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override;
+
+ UniformHandle fCenterUni;
UniformHandle fParamUni;
+ UniformHandle fFlipSignUni;
+
+ const char* fVSVaryingName;
+ const char* fFSVaryingName;
+
+ // @{
+ /// Values last uploaded as uniforms
+
+ SkScalar fCachedCenterX;
+ SkScalar fCachedCenterY;
+ SkScalar fCachedA;
+ SkScalar fCachedB;
+ SkScalar fCachedC;
+ SkScalar fCachedTLimit;
+ SkScalar fCachedFlipSign;
+
+ // @}
private:
typedef GrGradientEffect::GLSLProcessor INHERITED;
+
};
-//////////////////////////////////////////////////////////////////////////////
+GrGLSLFragmentProcessor* CircleOutside2PtConicalEffect::onCreateGLSLInstance() const {
+ return new CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor(*this);
+}
-GrGLSLFragmentProcessor* TwoPointConicalEffect::onCreateGLSLInstance() const {
- if (fData.fType == kRadial_Type || fData.fType == kStrip_Type) {
- return new DegeneratedGLSLProcessor;
- }
- return new FocalGLSLProcessor;
+GR_DEFINE_FRAGMENT_PROCESSOR_TEST(CircleOutside2PtConicalEffect);
+
+/*
+ * All Two point conical gradient test create functions may occasionally create edge case shaders
+ */
+#if GR_TEST_UTILS
+std::unique_ptr<GrFragmentProcessor> CircleOutside2PtConicalEffect::TestCreate(
+ GrProcessorTestData* d) {
+ SkPoint center1 = {d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1()};
+ SkScalar radius1 = d->fRandom->nextUScalar1() + 0.0001f; // make sure radius1 != 0
+ SkPoint center2;
+ SkScalar radius2;
+ SkScalar diffLen;
+ do {
+ center2.set(d->fRandom->nextUScalar1(), d->fRandom->nextUScalar1());
+ // If the circles share a center than we can't be in the outside case
+ } while (center1 == center2);
+ SkPoint diff = center2 - center1;
+ diffLen = diff.length();
+ // Below makes sure that circle one is not contained within circle two
+ // and have radius2 >= radius to match sorting on cpu side
+ radius2 = radius1 + d->fRandom->nextRangeF(0.f, diffLen);
+
+ RandomGradientParams params(d->fRandom);
+ auto shader = params.fUseColors4f ?
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors4f, params.fColorSpace, params.fStops,
+ params.fColorCount, params.fTileMode) :
+ SkGradientShader::MakeTwoPointConical(center1, radius1, center2, radius2,
+ params.fColors, params.fStops,
+ params.fColorCount, params.fTileMode);
+ GrTest::TestAsFPArgs asFPArgs(d);
+ std::unique_ptr<GrFragmentProcessor> fp = as_SB(shader)->asFragmentProcessor(asFPArgs.args());
+ GrAlwaysAssert(fp);
+ return fp;
}
+#endif
+
+CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor
+ ::GLSLCircleOutside2PtConicalProcessor(const GrProcessor& processor)
+ : fVSVaryingName(nullptr)
+ , fFSVaryingName(nullptr)
+ , fCachedCenterX(SK_ScalarMax)
+ , fCachedCenterY(SK_ScalarMax)
+ , fCachedA(SK_ScalarMax)
+ , fCachedB(SK_ScalarMax)
+ , fCachedC(SK_ScalarMax)
+ , fCachedTLimit(SK_ScalarMax)
+ , fCachedFlipSign(SK_ScalarMax) {}
+
+void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::emitCode(EmitArgs& args) {
+ const CircleOutside2PtConicalEffect& ge = args.fFp.cast<CircleOutside2PtConicalEffect>();
+ GrGLSLUniformHandler* uniformHandler = args.fUniformHandler;
+ this->emitUniforms(uniformHandler, ge);
+ fCenterUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf2_GrSLType,
+ "Conical2FSCenter");
+ fParamUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType,
+ "Conical2FSParams");
+ fFlipSignUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf_GrSLType,
+ "Conical2FSFlipSign");
+ SkString tName("t");
+
+ GrShaderVar center = uniformHandler->getUniformVariable(fCenterUni);
+ // params.x = A
+ // params.y = B
+ // params.z = C
+ GrShaderVar params = uniformHandler->getUniformVariable(fParamUni);
+ GrShaderVar flipsign = uniformHandler->getUniformVariable(fFlipSignUni);
+
+ // if we have a float3 from being in perspective, convert it to a float2 first
+ GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
+ SkString coords2DString = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]);
+ const char* coords2D = coords2DString.c_str();
+
+ // output will default to transparent black (we simply won't write anything
+ // else to it if invalid, instead of discarding or returning prematurely)
+ fragBuilder->codeAppendf("\t%s = half4(0.0,0.0,0.0,0.0);\n", args.fOutputColor);
+
+ // p = coords2D
+ // e = center end
+ // r = radius end
+ // A = dot(e, e) - r^2 + 2 * r - 1
+ // B = (r -1) / A
+ // C = 1 / A
+ // d = dot(e, p) + B
+ // t = d +/- sqrt(d^2 - A * dot(p, p) + C)
-std::unique_ptr<GrFragmentProcessor> TwoPointConicalEffect::Make(
- const GrGradientEffect::CreateArgs& args, const Data& data) {
- return GrGradientEffect::AdjustFP(
- std::unique_ptr<TwoPointConicalEffect>(new TwoPointConicalEffect(args, data)),
- args);
+ fragBuilder->codeAppendf("\thalf pDotp = dot(%s, %s);\n", coords2D, coords2D);
+ fragBuilder->codeAppendf("\thalf d = dot(%s, %s) + %s.y;\n", coords2D, center.c_str(),
+ params.c_str());
+ fragBuilder->codeAppendf("\thalf deter = d * d - %s.x * pDotp + %s.z;\n", params.c_str(),
+ params.c_str());
+ fragBuilder->codeAppendf("\thalf %s = d + sqrt(deter);\n",
+ tName.c_str());
+
+ fragBuilder->codeAppendf("\tif (%s * (%s - %s.w) >= 0 && deter >= 0.0) {\n",
+ flipsign.c_str(), tName.c_str(), params.c_str());
+ fragBuilder->codeAppend("\t\t");
+ this->emitColor(fragBuilder,
+ uniformHandler,
+ args.fShaderCaps,
+ ge,
+ tName.c_str(),
+ args.fOutputColor,
+ args.fInputColor,
+ args.fTexSamplers);
+ fragBuilder->codeAppend("\t}\n");
}
+void CircleOutside2PtConicalEffect::GLSLCircleOutside2PtConicalProcessor::onSetData(
+ const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) {
+ INHERITED::onSetData(pdman, processor);
+ const CircleOutside2PtConicalEffect& data = processor.cast<CircleOutside2PtConicalEffect>();
+ SkScalar centerX = data.centerX();
+ SkScalar centerY = data.centerY();
+ SkScalar A = data.A();
+ SkScalar B = data.B();
+ SkScalar C = data.C();
+ SkScalar tLimit = data.tLimit();
+ SkScalar flipSign = data.isFlipped() ? -1 : 1;
+
+ if (fCachedCenterX != centerX || fCachedCenterY != centerY) {
+ pdman.set2f(fCenterUni, centerX, centerY);
+ fCachedCenterX = centerX;
+ fCachedCenterY = centerY;
+ }
+
+ if (fCachedA != A || fCachedB != B || fCachedC != C || fCachedTLimit != tLimit) {
+ pdman.set4f(fParamUni, A, B, C, tLimit);
+ fCachedA = A;
+ fCachedB = B;
+ fCachedC = C;
+ fCachedTLimit = tLimit;
+ }
+
+ if (fCachedFlipSign != flipSign) {
+ pdman.set1f(fFlipSignUni, flipSign);
+ fCachedFlipSign = flipSign;
+ }
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
std::unique_ptr<GrFragmentProcessor> Gr2PtConicalGradientEffect::Make(
const GrGradientEffect::CreateArgs& args) {
const SkTwoPointConicalGradient& shader =
@@ -345,70 +1263,33 @@ std::unique_ptr<GrFragmentProcessor> Gr2PtConicalGradientEffect::Make(
}
GrGradientEffect::CreateArgs newArgs(args.fContext, args.fShader, &matrix, args.fWrapMode,
- args.fDstColorSpace);
- // Data and matrix has to be prepared before constructing TwoPointConicalEffect so its parent
- // class can have the right matrix to work with during construction.
- TwoPointConicalEffect::Data data(shader, matrix);
- return TwoPointConicalEffect::Make(newArgs, data);
-}
+ args.fDstColorSpace);
-TwoPointConicalEffect::Data::Data(const SkTwoPointConicalGradient& shader, SkMatrix& matrix) {
- fIsSwapped = false;
- if (SkScalarNearlyZero(shader.getCenterX1())) {
- fType = kRadial_Type;
- SkScalar dr = shader.getDiffRadius();
- // Map center to (0, 0) and scale dr to 1
- matrix.postTranslate(-shader.getStartCenter().fX, -shader.getStartCenter().fY);
- matrix.postScale(1 / dr, 1 / dr);
- fRadius0 = shader.getStartRadius() / dr;
- fDiffRadius = 1;
- } else {
- // Map centers to (0, 0), (1, 0)
- const SkPoint centers[2] = { shader.getStartCenter(), shader.getEndCenter() };
- const SkPoint unitvec[2] = { { 0, 0 },{ 1, 0 } };
- SkMatrix gradientMatrix;
- // The radial case is already handled so this must succeed
- SkAssertResult(gradientMatrix.setPolyToPoly(centers, unitvec, 2));
- matrix.postConcat(gradientMatrix);
- fRadius0 = shader.getStartRadius() / shader.getCenterX1();
- fDiffRadius = shader.getDiffRadius() / shader.getCenterX1();
-
- if (SkScalarNearlyZero(shader.getDiffRadius())) {
- fType = kStrip_Type;
- } else { // focal case
- fType = kFocal_Type;
- if (SkScalarNearlyZero(shader.getEndRadius())) {
- // swap r0, r1
- matrix.postTranslate(-1, 0);
- matrix.postScale(-1, 1);
- fRadius0 = 0;
- fDiffRadius = -fDiffRadius;
- fIsSwapped = true;
- }
-
- // Map {focal point, (1, 0)} to {(0, 0), (1, 0)}
- SkScalar focalX = - fRadius0 / fDiffRadius;
- const SkPoint from[2] = { {focalX, 0}, {1, 0} };
- const SkPoint to[2] = { {0, 0}, {1, 0} };
- SkMatrix focalMatrix;
- focalMatrix.setPolyToPoly(from, to, 2);
- matrix.postConcat(focalMatrix);
- fRadius0 /= SkScalarAbs(1 - focalX);
- fDiffRadius /= SkScalarAbs(1 - focalX);
-
- SkScalar r0 = fRadius0;
- SkScalar r1 = fRadius0 + fDiffRadius;
- // The following transformations are not reflected on data; they're just to accelerate
- // the shader computation by saving some arithmatic operations.
- bool isFocalOnCircle = SkScalarNearlyZero(1 - r1);
- if (isFocalOnCircle) {
- matrix.postScale(0.5, 0.5); // r1 = 1 so r1 + 1 = 2 and 0.5 = 1 / (r1 + 1)
- } else {
- matrix.postScale(r1 / (r1 * r1 - 1), 1 / sqrt(SkScalarAbs(r1 * r1 - 1)));
- }
- matrix.postScale(r1 / (r1 - r0), r1 / (r1 - r0));
+ if (shader.getStartRadius() < kErrorTol) {
+ SkScalar focalX;
+ ConicalType type = set_matrix_focal_conical(shader, &matrix, &focalX);
+ if (type == kInside_ConicalType) {
+ return FocalInside2PtConicalEffect::Make(newArgs, focalX);
+ } else if(type == kEdge_ConicalType) {
+ set_matrix_edge_conical(shader, &matrix);
+ return Edge2PtConicalEffect::Make(newArgs);
+ } else {
+ const bool isFlipped = shader.getStartRadius() > shader.getEndRadius();
+ return FocalOutside2PtConicalEffect::Make(newArgs, focalX, isFlipped);
}
}
+
+ CircleConicalInfo info;
+ ConicalType type = set_matrix_circle_conical(shader, &matrix, &info);
+
+ if (type == kInside_ConicalType) {
+ return CircleInside2PtConicalEffect::Make(newArgs, info);
+ } else if (type == kEdge_ConicalType) {
+ set_matrix_edge_conical(shader, &matrix);
+ return Edge2PtConicalEffect::Make(newArgs);
+ } else {
+ return CircleOutside2PtConicalEffect::Make(newArgs, info);
+ }
}
#endif