diff options
author | mtklein <mtklein@chromium.org> | 2015-12-16 11:15:56 -0800 |
---|---|---|
committer | Commit bot <commit-bot@chromium.org> | 2015-12-16 11:15:57 -0800 |
commit | 78e0aef610d762009ef7f4eb51a83771443be665 (patch) | |
tree | bedc5205a24d3f472ac966f5eb0744cf037d9270 /src/opts | |
parent | 431dded51cd257e20e42aff4249151b5218838b5 (diff) |
SSE 4.1 SrcOver blits: color32, blitmask.
This is mainly warmup for an AVX2 version.
The machine I'm typing this on just doesn't support AVX2.
This strategy should translate easily down to SSSE3 and SSE2.
Xfermode_SrcOver: 2.73ms -> 2.62ms (0.96x) (That's Color32.)
Xfermode_SrcOver_aa: 3.48ms -> 3.09ms (0.89x) (That's BlitMask_D32_A8.)
AA text blits (text_16_AA_{88,FF,WT,BK}) show speedups in the range of 5 to 20%.
Unlike previous versions of this code, all the div255() are exactly (x+127)/255.
This won't fix any major bugs, but it does correct our bias in the middle.
There will be many diffs, all minor.
I've punted for now on pmaddubsw for lerping. I do intend to try that,
but I want this (relatively simple) code as my basis for comparison.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1526883004
CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot
Review URL: https://codereview.chromium.org/1526883004
Diffstat (limited to 'src/opts')
-rw-r--r-- | src/opts/SkOpts_sse41.cpp | 173 |
1 files changed, 173 insertions, 0 deletions
diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp index bbb77e3b8d..16ba87ad87 100644 --- a/src/opts/SkOpts_sse41.cpp +++ b/src/opts/SkOpts_sse41.cpp @@ -10,10 +10,183 @@ #define SK_OPTS_NS sk_sse41 #include "SkBlurImageFilter_opts.h" +#ifndef SK_SUPPORT_LEGACY_X86_BLITS + +// This file deals mostly with unpacked 8-bit values, +// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top. + +// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. +struct m128ix2 { __m128i lo, hi; }; + +// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels. +static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } +static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); } + +// pack() converts back, from 4 unpacked pixels to 4 packed pixels. +static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); } + +// These nextN() functions abstract over the difference between iterating over +// an array of values and returning a constant value, for uint8_t and uint32_t. +// The nextN() taking pointers increment that pointer past where they read. +// +// nextN() returns N unpacked pixels or 4N unpacked coverage values. + +static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); } +static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); } +static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; } + +static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); } +static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); } +static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; } + +static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); } +static inline __m128i next2(const uint8_t*& ptr) { + auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr); + ptr += 2; + const int _ = ~0; + return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)); +} +static inline m128ix2 next4(const uint8_t*& ptr) { + auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr); + ptr += 4; + const int _ = ~0; + auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)), + hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_)); + return { lo, hi }; +} + +static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); } +static inline __m128i next2(const uint32_t*& ptr) { + auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr)); + ptr += 2; + return r; +} +static inline m128ix2 next4(const uint32_t*& ptr) { + auto packed = _mm_loadu_si128((const __m128i*)ptr); + ptr += 4; + return { unpacklo(packed), unpackhi(packed) }; +} + +// Divide by 255 with rounding. +// (x+127)/255 == ((x+128)*257)>>16. +// Sometimes we can be more efficient by breaking this into two parts. +static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } +static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } +static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } + +// (x*y+127)/255, a byte multiply. +static inline __m128i scale(__m128i x, __m128i y) { + return div255(_mm_mullo_epi16(x, y)); +} + +// (255 - x). +static inline __m128i inv(__m128i x) { + return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16. +} + +// ARGB argb -> AAAA aaaa +static inline __m128i alphas(__m128i px) { + const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. + const int _ = ~0; + return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); +} + +// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. +template <typename Dst, typename Src, typename Cov, typename Fn> +static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { + // We don't want to muck with the callers' pointers, so we make them const and copy here. + Dst d = dst; + Src s = src; + Cov c = cov; + + // Writing this as a single while-loop helps hoist loop invariants from fn. + while (n) { + if (n >= 4) { + auto d4 = next4(d), + s4 = next4(s), + c4 = next4(c); + auto lo = fn(d4.lo, s4.lo, c4.lo), + hi = fn(d4.hi, s4.hi, c4.hi); + _mm_storeu_si128((__m128i*)t, pack(lo,hi)); + t += 4; + n -= 4; + continue; + } + if (n & 2) { + auto r = fn(next2(d), next2(s), next2(c)); + _mm_storel_epi64((__m128i*)t, pack(r,r)); + t += 2; + } + if (n & 1) { + auto r = fn(next1(d), next1(s), next1(c)); + *t = _mm_cvtsi128_si32(pack(r,r)); + } + return; + } +} + +namespace sk_sse41 { + +// SrcOver, with a constant source and full coverage. +static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { + // We want to calculate s + (d * inv(alphas(s)) + 127)/255. + // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. + + // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. + // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. + __m128i s = next2(src), + s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), + A = inv(alphas(s)); + + const uint8_t cov = 0xff; + loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { + return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); + }); +} + +// SrcOver, with a constant source and variable coverage. +// If the source is opaque, SrcOver becomes Src. +static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, + const SkAlpha* cov, size_t covRB, + SkColor color, int w, int h) { + if (SkColorGetA(color) == 0xFF) { + const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); + while (h --> 0) { + loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { + // Src blend mode: a simple lerp from d to s by c. + // TODO: try a pmaddubsw version? + return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s))); + }); + dst += dstRB / sizeof(*dst); + cov += covRB / sizeof(*cov); + } + } else { + const SkPMColor src = SkPreMultiplyColor(color); + while (h --> 0) { + loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { + // SrcOver blend mode, with coverage folded into source alpha. + __m128i sc = scale(s,c), + AC = inv(alphas(sc)); + return _mm_add_epi16(sc, scale(d,AC)); + }); + dst += dstRB / sizeof(*dst); + cov += covRB / sizeof(*cov); + } + } +} + +} // namespace sk_sse41 +#endif + namespace SkOpts { void Init_sse41() { box_blur_xx = sk_sse41::box_blur_xx; box_blur_xy = sk_sse41::box_blur_xy; box_blur_yx = sk_sse41::box_blur_yx; + + #ifndef SK_SUPPORT_LEGACY_X86_BLITS + blit_row_color32 = sk_sse41::blit_row_color32; + blit_mask_d32_a8 = sk_sse41::blit_mask_d32_a8; + #endif } } |