aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/core
diff options
context:
space:
mode:
authorGravatar Mike Reed <reed@google.com>2017-06-25 19:08:41 +0000
committerGravatar Mike Reed <reed@google.com>2017-06-25 19:55:03 +0000
commite08e639063dd5476b5a1a24c0f0dc8f1139bfd8d (patch)
tree5e13bc4a8a9a12bde6b24078e2bfe99d1971c8e6 /src/core
parent428266de3091e1d7430c0d32e65e41006302ec28 (diff)
Revert "Remove deadcode for sRGB image shading."
This reverts commit 51f6a0f89e55b2c0f102aa7963320a23c586e71d. Reason for revert: crazy attempt to fix chrome roll Original change's description: > Remove deadcode for sRGB image shading. > > Change-Id: I9d98da67d97b64ab55cf44b9ae447882dccda1ca > Reviewed-on: https://skia-review.googlesource.com/20695 > Reviewed-by: Mike Klein <mtklein@chromium.org> > Commit-Queue: Herb Derby <herb@google.com> TBR=mtklein@chromium.org,mtklein@google.com,herb@google.com,reed@google.com # Not skipping CQ checks because original CL landed > 1 day ago. Change-Id: Icab02936d6c18e50b8de353aa1cd4c225e15e0bf Reviewed-on: https://skia-review.googlesource.com/20800 Reviewed-by: Mike Reed <reed@google.com>
Diffstat (limited to 'src/core')
-rw-r--r--src/core/SkLinearBitmapPipeline.cpp686
-rw-r--r--src/core/SkLinearBitmapPipeline.h112
-rw-r--r--src/core/SkLinearBitmapPipeline_core.h255
-rw-r--r--src/core/SkLinearBitmapPipeline_matrix.h118
-rw-r--r--src/core/SkLinearBitmapPipeline_sample.h1041
-rw-r--r--src/core/SkLinearBitmapPipeline_tile.h412
6 files changed, 2624 insertions, 0 deletions
diff --git a/src/core/SkLinearBitmapPipeline.cpp b/src/core/SkLinearBitmapPipeline.cpp
new file mode 100644
index 0000000000..cf2dfdc09f
--- /dev/null
+++ b/src/core/SkLinearBitmapPipeline.cpp
@@ -0,0 +1,686 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "SkLinearBitmapPipeline.h"
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+#include <tuple>
+
+#include "SkArenaAlloc.h"
+#include "SkLinearBitmapPipeline_core.h"
+#include "SkLinearBitmapPipeline_matrix.h"
+#include "SkLinearBitmapPipeline_tile.h"
+#include "SkLinearBitmapPipeline_sample.h"
+#include "SkNx.h"
+#include "SkOpts.h"
+#include "SkPM4f.h"
+
+namespace {
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// Matrix Stage
+// PointProcessor uses a strategy to help complete the work of the different stages. The strategy
+// must implement the following methods:
+// * processPoints(xs, ys) - must mutate the xs and ys for the stage.
+// * maybeProcessSpan(span, next) - This represents a horizontal series of pixels
+// to work over.
+// span - encapsulation of span.
+// next - a pointer to the next stage.
+// maybeProcessSpan - returns false if it can not process the span and needs to fallback to
+// point lists for processing.
+template<typename Strategy, typename Next>
+class MatrixStage final : public SkLinearBitmapPipeline::PointProcessorInterface {
+public:
+ template <typename... Args>
+ MatrixStage(Next* next, Args&&... args)
+ : fNext{next}
+ , fStrategy{std::forward<Args>(args)...}{ }
+
+ MatrixStage(Next* next, MatrixStage* stage)
+ : fNext{next}
+ , fStrategy{stage->fStrategy} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ fStrategy.processPoints(&xs, &ys);
+ fNext->pointListFew(n, xs, ys);
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ fStrategy.processPoints(&xs, &ys);
+ fNext->pointList4(xs, ys);
+ }
+
+ // The span you pass must not be empty.
+ void pointSpan(Span span) override {
+ SkASSERT(!span.isEmpty());
+ if (!fStrategy.maybeProcessSpan(span, fNext)) {
+ span_fallback(span, this);
+ }
+ }
+
+private:
+ Next* const fNext;
+ Strategy fStrategy;
+};
+
+template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
+using TranslateMatrix = MatrixStage<TranslateMatrixStrategy, Next>;
+
+template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
+using ScaleMatrix = MatrixStage<ScaleMatrixStrategy, Next>;
+
+template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
+using AffineMatrix = MatrixStage<AffineMatrixStrategy, Next>;
+
+template <typename Next = SkLinearBitmapPipeline::PointProcessorInterface>
+using PerspectiveMatrix = MatrixStage<PerspectiveMatrixStrategy, Next>;
+
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// Tile Stage
+
+template<typename XStrategy, typename YStrategy, typename Next>
+class CombinedTileStage final : public SkLinearBitmapPipeline::PointProcessorInterface {
+public:
+ CombinedTileStage(Next* next, SkISize dimensions)
+ : fNext{next}
+ , fXStrategy{dimensions.width()}
+ , fYStrategy{dimensions.height()}{ }
+
+ CombinedTileStage(Next* next, CombinedTileStage* stage)
+ : fNext{next}
+ , fXStrategy{stage->fXStrategy}
+ , fYStrategy{stage->fYStrategy} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ fXStrategy.tileXPoints(&xs);
+ fYStrategy.tileYPoints(&ys);
+ fNext->pointListFew(n, xs, ys);
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ fXStrategy.tileXPoints(&xs);
+ fYStrategy.tileYPoints(&ys);
+ fNext->pointList4(xs, ys);
+ }
+
+ // The span you pass must not be empty.
+ void pointSpan(Span span) override {
+ SkASSERT(!span.isEmpty());
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+
+ if (span.count() == 1) {
+ // DANGER:
+ // The explicit casts from float to Sk4f are not usually necessary, but are here to
+ // work around an MSVC 2015u2 c++ code generation bug. This is tracked using skia bug
+ // 5566.
+ this->pointListFew(1, Sk4f{span.startX()}, Sk4f{span.startY()});
+ return;
+ }
+
+ SkScalar x = X(start);
+ SkScalar y = fYStrategy.tileY(Y(start));
+ Span yAdjustedSpan{{x, y}, length, count};
+
+ if (!fXStrategy.maybeProcessSpan(yAdjustedSpan, fNext)) {
+ span_fallback(span, this);
+ }
+ }
+
+private:
+ Next* const fNext;
+ XStrategy fXStrategy;
+ YStrategy fYStrategy;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// Specialized Samplers
+
+// RGBA8888UnitRepeatSrc - A sampler that takes advantage of the fact the the src and destination
+// are the same format and do not need in transformations in pixel space. Therefore, there is no
+// need to convert them to HiFi pixel format.
+class RGBA8888UnitRepeatSrc final : public SkLinearBitmapPipeline::SampleProcessorInterface,
+ public SkLinearBitmapPipeline::DestinationInterface {
+public:
+ RGBA8888UnitRepeatSrc(const uint32_t* src, int32_t width)
+ : fSrc{src}, fWidth{width} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ SkASSERT(fDest + n <= fEnd);
+ // At this point xs and ys should be >= 0, so trunc is the same as floor.
+ Sk4i iXs = SkNx_cast<int>(xs);
+ Sk4i iYs = SkNx_cast<int>(ys);
+
+ if (n >= 1) *fDest++ = *this->pixelAddress(iXs[0], iYs[0]);
+ if (n >= 2) *fDest++ = *this->pixelAddress(iXs[1], iYs[1]);
+ if (n >= 3) *fDest++ = *this->pixelAddress(iXs[2], iYs[2]);
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ SkASSERT(fDest + 4 <= fEnd);
+ Sk4i iXs = SkNx_cast<int>(xs);
+ Sk4i iYs = SkNx_cast<int>(ys);
+ *fDest++ = *this->pixelAddress(iXs[0], iYs[0]);
+ *fDest++ = *this->pixelAddress(iXs[1], iYs[1]);
+ *fDest++ = *this->pixelAddress(iXs[2], iYs[2]);
+ *fDest++ = *this->pixelAddress(iXs[3], iYs[3]);
+ }
+
+ void pointSpan(Span span) override {
+ SkASSERT(fDest + span.count() <= fEnd);
+ if (span.length() != 0.0f) {
+ int32_t x = SkScalarTruncToInt(span.startX());
+ int32_t y = SkScalarTruncToInt(span.startY());
+ const uint32_t* src = this->pixelAddress(x, y);
+ memmove(fDest, src, span.count() * sizeof(uint32_t));
+ fDest += span.count();
+ }
+ }
+
+ void repeatSpan(Span span, int32_t repeatCount) override {
+ SkASSERT(fDest + span.count() * repeatCount <= fEnd);
+
+ int32_t x = SkScalarTruncToInt(span.startX());
+ int32_t y = SkScalarTruncToInt(span.startY());
+ const uint32_t* src = this->pixelAddress(x, y);
+ uint32_t* dest = fDest;
+ while (repeatCount --> 0) {
+ memmove(dest, src, span.count() * sizeof(uint32_t));
+ dest += span.count();
+ }
+ fDest = dest;
+ }
+
+ void setDestination(void* dst, int count) override {
+ fDest = static_cast<uint32_t*>(dst);
+ fEnd = fDest + count;
+ }
+
+private:
+ const uint32_t* pixelAddress(int32_t x, int32_t y) {
+ return &fSrc[fWidth * y + x];
+ }
+ const uint32_t* const fSrc;
+ const int32_t fWidth;
+ uint32_t* fDest;
+ uint32_t* fEnd;
+};
+
+// RGBA8888UnitRepeatSrc - A sampler that takes advantage of the fact the the src and destination
+// are the same format and do not need in transformations in pixel space. Therefore, there is no
+// need to convert them to HiFi pixel format.
+class RGBA8888UnitRepeatSrcOver final : public SkLinearBitmapPipeline::SampleProcessorInterface,
+ public SkLinearBitmapPipeline::DestinationInterface {
+public:
+ RGBA8888UnitRepeatSrcOver(const uint32_t* src, int32_t width)
+ : fSrc{src}, fWidth{width} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ SkASSERT(fDest + n <= fEnd);
+ // At this point xs and ys should be >= 0, so trunc is the same as floor.
+ Sk4i iXs = SkNx_cast<int>(xs);
+ Sk4i iYs = SkNx_cast<int>(ys);
+
+ if (n >= 1) blendPixelAt(iXs[0], iYs[0]);
+ if (n >= 2) blendPixelAt(iXs[1], iYs[1]);
+ if (n >= 3) blendPixelAt(iXs[2], iYs[2]);
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ SkASSERT(fDest + 4 <= fEnd);
+ Sk4i iXs = SkNx_cast<int>(xs);
+ Sk4i iYs = SkNx_cast<int>(ys);
+ blendPixelAt(iXs[0], iYs[0]);
+ blendPixelAt(iXs[1], iYs[1]);
+ blendPixelAt(iXs[2], iYs[2]);
+ blendPixelAt(iXs[3], iYs[3]);
+ }
+
+ void pointSpan(Span span) override {
+ if (span.length() != 0.0f) {
+ this->repeatSpan(span, 1);
+ }
+ }
+
+ void repeatSpan(Span span, int32_t repeatCount) override {
+ SkASSERT(fDest + span.count() * repeatCount <= fEnd);
+ SkASSERT(span.count() > 0);
+ SkASSERT(repeatCount > 0);
+
+ int32_t x = (int32_t)span.startX();
+ int32_t y = (int32_t)span.startY();
+ const uint32_t* beginSpan = this->pixelAddress(x, y);
+
+ SkOpts::srcover_srgb_srgb(fDest, beginSpan, span.count() * repeatCount, span.count());
+
+ fDest += span.count() * repeatCount;
+
+ SkASSERT(fDest <= fEnd);
+ }
+
+ void setDestination(void* dst, int count) override {
+ SkASSERT(count > 0);
+ fDest = static_cast<uint32_t*>(dst);
+ fEnd = fDest + count;
+ }
+
+private:
+ const uint32_t* pixelAddress(int32_t x, int32_t y) {
+ return &fSrc[fWidth * y + x];
+ }
+
+ void blendPixelAt(int32_t x, int32_t y) {
+ const uint32_t* src = this->pixelAddress(x, y);
+ SkOpts::srcover_srgb_srgb(fDest, src, 1, 1);
+ fDest += 1;
+ }
+
+ const uint32_t* const fSrc;
+ const int32_t fWidth;
+ uint32_t* fDest;
+ uint32_t* fEnd;
+};
+
+using Blender = SkLinearBitmapPipeline::BlendProcessorInterface;
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// Pixel Blender Stage
+template <SkAlphaType alphaType>
+class SrcFPPixel final : public Blender {
+public:
+ SrcFPPixel(float postAlpha) : fPostAlpha{postAlpha} { }
+ SrcFPPixel(const SrcFPPixel& Blender) : fPostAlpha(Blender.fPostAlpha) {}
+ void SK_VECTORCALL blendPixel(Sk4f pixel) override {
+ SkASSERT(fDst + 1 <= fEnd );
+ this->srcPixel(fDst, pixel, 0);
+ fDst += 1;
+ }
+
+ void SK_VECTORCALL blend4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) override {
+ SkASSERT(fDst + 4 <= fEnd);
+ SkPM4f* dst = fDst;
+ this->srcPixel(dst, p0, 0);
+ this->srcPixel(dst, p1, 1);
+ this->srcPixel(dst, p2, 2);
+ this->srcPixel(dst, p3, 3);
+ fDst += 4;
+ }
+
+ void setDestination(void* dst, int count) override {
+ fDst = static_cast<SkPM4f*>(dst);
+ fEnd = fDst + count;
+ }
+
+private:
+ void SK_VECTORCALL srcPixel(SkPM4f* dst, Sk4f pixel, int index) {
+ check_pixel(pixel);
+
+ Sk4f newPixel = pixel;
+ if (alphaType == kUnpremul_SkAlphaType) {
+ newPixel = Premultiply(pixel);
+ }
+ newPixel = newPixel * fPostAlpha;
+ newPixel.store(dst + index);
+ }
+ static Sk4f SK_VECTORCALL Premultiply(Sk4f pixel) {
+ float alpha = pixel[3];
+ return pixel * Sk4f{alpha, alpha, alpha, 1.0f};
+ }
+
+ SkPM4f* fDst;
+ SkPM4f* fEnd;
+ float fPostAlpha;
+};
+
+} // namespace
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// SkLinearBitmapPipeline
+SkLinearBitmapPipeline::~SkLinearBitmapPipeline() {}
+
+SkLinearBitmapPipeline::SkLinearBitmapPipeline(
+ const SkMatrix& inverse,
+ SkFilterQuality filterQuality,
+ SkShader::TileMode xTile, SkShader::TileMode yTile,
+ SkColor paintColor,
+ const SkPixmap& srcPixmap,
+ SkArenaAlloc* allocator)
+{
+ SkISize dimensions = srcPixmap.info().dimensions();
+ const SkImageInfo& srcImageInfo = srcPixmap.info();
+
+ SkMatrix adjustedInverse = inverse;
+ if (filterQuality == kNone_SkFilterQuality) {
+ if (inverse.getScaleX() >= 0.0f) {
+ adjustedInverse.setTranslateX(
+ nextafterf(inverse.getTranslateX(), std::floor(inverse.getTranslateX())));
+ }
+ if (inverse.getScaleY() >= 0.0f) {
+ adjustedInverse.setTranslateY(
+ nextafterf(inverse.getTranslateY(), std::floor(inverse.getTranslateY())));
+ }
+ }
+
+ SkScalar dx = adjustedInverse.getScaleX();
+
+ // If it is an index 8 color type, the sampler converts to unpremul for better fidelity.
+ SkAlphaType alphaType = srcImageInfo.alphaType();
+ if (srcPixmap.colorType() == kIndex_8_SkColorType) {
+ alphaType = kUnpremul_SkAlphaType;
+ }
+
+ float postAlpha = SkColorGetA(paintColor) * (1.0f / 255.0f);
+ // As the stages are built, the chooser function may skip a stage. For example, with the
+ // identity matrix, the matrix stage is skipped, and the tilerStage is the first stage.
+ auto blenderStage = this->chooseBlenderForShading(alphaType, postAlpha, allocator);
+ auto samplerStage = this->chooseSampler(
+ blenderStage, filterQuality, xTile, yTile, srcPixmap, paintColor, allocator);
+ auto tilerStage = this->chooseTiler(
+ samplerStage, dimensions, xTile, yTile, filterQuality, dx, allocator);
+ fFirstStage = this->chooseMatrix(tilerStage, adjustedInverse, allocator);
+ fLastStage = blenderStage;
+}
+
+SkLinearBitmapPipeline::SkLinearBitmapPipeline(
+ const SkLinearBitmapPipeline& pipeline,
+ const SkPixmap& srcPixmap,
+ SkBlendMode mode,
+ const SkImageInfo& dstInfo,
+ SkArenaAlloc* allocator)
+{
+ SkASSERT(mode == SkBlendMode::kSrc || mode == SkBlendMode::kSrcOver);
+ SkASSERT(srcPixmap.info().colorType() == dstInfo.colorType()
+ && srcPixmap.info().colorType() == kRGBA_8888_SkColorType);
+
+ SampleProcessorInterface* sampleStage;
+ if (mode == SkBlendMode::kSrc) {
+ auto sampler = allocator->make<RGBA8888UnitRepeatSrc>(
+ srcPixmap.writable_addr32(0, 0), srcPixmap.rowBytes() / 4);
+ sampleStage = sampler;
+ fLastStage = sampler;
+ } else {
+ auto sampler = allocator->make<RGBA8888UnitRepeatSrcOver>(
+ srcPixmap.writable_addr32(0, 0), srcPixmap.rowBytes() / 4);
+ sampleStage = sampler;
+ fLastStage = sampler;
+ }
+
+ auto tilerStage = pipeline.fTileStageCloner(sampleStage, allocator);
+ auto matrixStage = pipeline.fMatrixStageCloner(tilerStage, allocator);
+ fFirstStage = matrixStage;
+}
+
+void SkLinearBitmapPipeline::shadeSpan4f(int x, int y, SkPM4f* dst, int count) {
+ SkASSERT(count > 0);
+ this->blitSpan(x, y, dst, count);
+}
+
+void SkLinearBitmapPipeline::blitSpan(int x, int y, void* dst, int count) {
+ SkASSERT(count > 0);
+ fLastStage->setDestination(dst, count);
+
+ // The count and length arguments start out in a precise relation in order to keep the
+ // math correct through the different stages. Count is the number of pixel to produce.
+ // Since the code samples at pixel centers, length is the distance from the center of the
+ // first pixel to the center of the last pixel. This implies that length is count-1.
+ fFirstStage->pointSpan(Span{{x + 0.5f, y + 0.5f}, count - 1.0f, count});
+}
+
+SkLinearBitmapPipeline::PointProcessorInterface*
+SkLinearBitmapPipeline::chooseMatrix(
+ PointProcessorInterface* next,
+ const SkMatrix& inverse,
+ SkArenaAlloc* allocator)
+{
+ if (inverse.hasPerspective()) {
+ auto matrixStage = allocator->make<PerspectiveMatrix<>>(
+ next,
+ SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
+ SkVector{inverse.getScaleX(), inverse.getScaleY()},
+ SkVector{inverse.getSkewX(), inverse.getSkewY()},
+ SkVector{inverse.getPerspX(), inverse.getPerspY()},
+ inverse.get(SkMatrix::kMPersp2));
+ fMatrixStageCloner =
+ [matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
+ return memory->make<PerspectiveMatrix<>>(cloneNext, matrixStage);
+ };
+ return matrixStage;
+ } else if (inverse.getSkewX() != 0.0f || inverse.getSkewY() != 0.0f) {
+ auto matrixStage = allocator->make<AffineMatrix<>>(
+ next,
+ SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
+ SkVector{inverse.getScaleX(), inverse.getScaleY()},
+ SkVector{inverse.getSkewX(), inverse.getSkewY()});
+ fMatrixStageCloner =
+ [matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
+ return memory->make<AffineMatrix<>>(cloneNext, matrixStage);
+ };
+ return matrixStage;
+ } else if (inverse.getScaleX() != 1.0f || inverse.getScaleY() != 1.0f) {
+ auto matrixStage = allocator->make<ScaleMatrix<>>(
+ next,
+ SkVector{inverse.getTranslateX(), inverse.getTranslateY()},
+ SkVector{inverse.getScaleX(), inverse.getScaleY()});
+ fMatrixStageCloner =
+ [matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
+ return memory->make<ScaleMatrix<>>(cloneNext, matrixStage);
+ };
+ return matrixStage;
+ } else if (inverse.getTranslateX() != 0.0f || inverse.getTranslateY() != 0.0f) {
+ auto matrixStage = allocator->make<TranslateMatrix<>>(
+ next,
+ SkVector{inverse.getTranslateX(), inverse.getTranslateY()});
+ fMatrixStageCloner =
+ [matrixStage](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
+ return memory->make<TranslateMatrix<>>(cloneNext, matrixStage);
+ };
+ return matrixStage;
+ } else {
+ fMatrixStageCloner = [](PointProcessorInterface* cloneNext, SkArenaAlloc* memory) {
+ return cloneNext;
+ };
+ return next;
+ }
+}
+
+template <typename Tiler>
+SkLinearBitmapPipeline::PointProcessorInterface* SkLinearBitmapPipeline::createTiler(
+ SampleProcessorInterface* next,
+ SkISize dimensions,
+ SkArenaAlloc* allocator)
+{
+ auto tilerStage = allocator->make<Tiler>(next, dimensions);
+ fTileStageCloner =
+ [tilerStage](SampleProcessorInterface* cloneNext,
+ SkArenaAlloc* memory) -> PointProcessorInterface* {
+ return memory->make<Tiler>(cloneNext, tilerStage);
+ };
+ return tilerStage;
+}
+
+template <typename XStrategy>
+SkLinearBitmapPipeline::PointProcessorInterface* SkLinearBitmapPipeline::chooseTilerYMode(
+ SampleProcessorInterface* next,
+ SkShader::TileMode yMode,
+ SkISize dimensions,
+ SkArenaAlloc* allocator)
+{
+ switch (yMode) {
+ case SkShader::kClamp_TileMode: {
+ using Tiler = CombinedTileStage<XStrategy, YClampStrategy, SampleProcessorInterface>;
+ return this->createTiler<Tiler>(next, dimensions, allocator);
+ }
+ case SkShader::kRepeat_TileMode: {
+ using Tiler = CombinedTileStage<XStrategy, YRepeatStrategy, SampleProcessorInterface>;
+ return this->createTiler<Tiler>(next, dimensions, allocator);
+ }
+ case SkShader::kMirror_TileMode: {
+ using Tiler = CombinedTileStage<XStrategy, YMirrorStrategy, SampleProcessorInterface>;
+ return this->createTiler<Tiler>(next, dimensions, allocator);
+ }
+ }
+
+ // Should never get here.
+ SkFAIL("Not all Y tile cases covered.");
+ return nullptr;
+}
+
+SkLinearBitmapPipeline::PointProcessorInterface* SkLinearBitmapPipeline::chooseTiler(
+ SampleProcessorInterface* next,
+ SkISize dimensions,
+ SkShader::TileMode xMode,
+ SkShader::TileMode yMode,
+ SkFilterQuality filterQuality,
+ SkScalar dx,
+ SkArenaAlloc* allocator)
+{
+ switch (xMode) {
+ case SkShader::kClamp_TileMode:
+ return this->chooseTilerYMode<XClampStrategy>(next, yMode, dimensions, allocator);
+ case SkShader::kRepeat_TileMode:
+ if (dx == 1.0f && filterQuality == kNone_SkFilterQuality) {
+ return this->chooseTilerYMode<XRepeatUnitScaleStrategy>(
+ next, yMode, dimensions, allocator);
+ } else {
+ return this->chooseTilerYMode<XRepeatStrategy>(
+ next, yMode, dimensions, allocator);
+ }
+ case SkShader::kMirror_TileMode:
+ return this->chooseTilerYMode<XMirrorStrategy>(next, yMode, dimensions, allocator);
+ }
+
+ // Should never get here.
+ SkFAIL("Not all X tile cases covered.");
+ return nullptr;
+}
+
+template <SkColorType colorType>
+SkLinearBitmapPipeline::PixelAccessorInterface*
+ SkLinearBitmapPipeline::chooseSpecificAccessor(
+ const SkPixmap& srcPixmap,
+ SkArenaAlloc* allocator)
+{
+ if (srcPixmap.info().gammaCloseToSRGB()) {
+ using Accessor = PixelAccessor<colorType, kSRGB_SkGammaType>;
+ return allocator->make<Accessor>(srcPixmap);
+ } else {
+ using Accessor = PixelAccessor<colorType, kLinear_SkGammaType>;
+ return allocator->make<Accessor>(srcPixmap);
+ }
+}
+
+SkLinearBitmapPipeline::PixelAccessorInterface* SkLinearBitmapPipeline::choosePixelAccessor(
+ const SkPixmap& srcPixmap,
+ const SkColor A8TintColor,
+ SkArenaAlloc* allocator)
+{
+ const SkImageInfo& imageInfo = srcPixmap.info();
+
+ switch (imageInfo.colorType()) {
+ case kAlpha_8_SkColorType: {
+ using Accessor = PixelAccessor<kAlpha_8_SkColorType, kLinear_SkGammaType>;
+ return allocator->make<Accessor>(srcPixmap, A8TintColor);
+ }
+ case kARGB_4444_SkColorType:
+ return this->chooseSpecificAccessor<kARGB_4444_SkColorType>(srcPixmap, allocator);
+ case kRGB_565_SkColorType:
+ return this->chooseSpecificAccessor<kRGB_565_SkColorType>(srcPixmap, allocator);
+ case kRGBA_8888_SkColorType:
+ return this->chooseSpecificAccessor<kRGBA_8888_SkColorType>(srcPixmap, allocator);
+ case kBGRA_8888_SkColorType:
+ return this->chooseSpecificAccessor<kBGRA_8888_SkColorType>(srcPixmap, allocator);
+ case kIndex_8_SkColorType:
+ return this->chooseSpecificAccessor<kIndex_8_SkColorType>(srcPixmap, allocator);
+ case kGray_8_SkColorType:
+ return this->chooseSpecificAccessor<kGray_8_SkColorType>(srcPixmap, allocator);
+ case kRGBA_F16_SkColorType: {
+ using Accessor = PixelAccessor<kRGBA_F16_SkColorType, kLinear_SkGammaType>;
+ return allocator->make<Accessor>(srcPixmap);
+ }
+ default:
+ // Should never get here.
+ SkFAIL("Pixel source not supported.");
+ return nullptr;
+ }
+}
+
+SkLinearBitmapPipeline::SampleProcessorInterface* SkLinearBitmapPipeline::chooseSampler(
+ Blender* next,
+ SkFilterQuality filterQuality,
+ SkShader::TileMode xTile, SkShader::TileMode yTile,
+ const SkPixmap& srcPixmap,
+ const SkColor A8TintColor,
+ SkArenaAlloc* allocator)
+{
+ const SkImageInfo& imageInfo = srcPixmap.info();
+ SkISize dimensions = imageInfo.dimensions();
+
+ // Special case samplers with fully expanded templates
+ if (imageInfo.gammaCloseToSRGB()) {
+ if (filterQuality == kNone_SkFilterQuality) {
+ switch (imageInfo.colorType()) {
+ case kN32_SkColorType: {
+ using Sampler =
+ NearestNeighborSampler<
+ PixelAccessor<kN32_SkColorType, kSRGB_SkGammaType>, Blender>;
+ return allocator->make<Sampler>(next, srcPixmap);
+ }
+ case kIndex_8_SkColorType: {
+ using Sampler =
+ NearestNeighborSampler<
+ PixelAccessor<kIndex_8_SkColorType, kSRGB_SkGammaType>, Blender>;
+ return allocator->make<Sampler>(next, srcPixmap);
+ }
+ default:
+ break;
+ }
+ } else {
+ switch (imageInfo.colorType()) {
+ case kN32_SkColorType: {
+ using Sampler =
+ BilerpSampler<
+ PixelAccessor<kN32_SkColorType, kSRGB_SkGammaType>, Blender>;
+ return allocator->make<Sampler>(next, dimensions, xTile, yTile, srcPixmap);
+ }
+ case kIndex_8_SkColorType: {
+ using Sampler =
+ BilerpSampler<
+ PixelAccessor<kIndex_8_SkColorType, kSRGB_SkGammaType>, Blender>;
+ return allocator->make<Sampler>(next, dimensions, xTile, yTile, srcPixmap);
+ }
+ default:
+ break;
+ }
+ }
+ }
+
+ auto pixelAccessor = this->choosePixelAccessor(srcPixmap, A8TintColor, allocator);
+ // General cases.
+ if (filterQuality == kNone_SkFilterQuality) {
+ using Sampler = NearestNeighborSampler<PixelAccessorShim, Blender>;
+ return allocator->make<Sampler>(next, pixelAccessor);
+ } else {
+ using Sampler = BilerpSampler<PixelAccessorShim, Blender>;
+ return allocator->make<Sampler>(next, dimensions, xTile, yTile, pixelAccessor);
+ }
+}
+
+Blender* SkLinearBitmapPipeline::chooseBlenderForShading(
+ SkAlphaType alphaType,
+ float postAlpha,
+ SkArenaAlloc* allocator)
+{
+ if (alphaType == kUnpremul_SkAlphaType) {
+ return allocator->make<SrcFPPixel<kUnpremul_SkAlphaType>>(postAlpha);
+ } else {
+ // kOpaque_SkAlphaType is treated the same as kPremul_SkAlphaType
+ return allocator->make<SrcFPPixel<kPremul_SkAlphaType>>(postAlpha);
+ }
+}
diff --git a/src/core/SkLinearBitmapPipeline.h b/src/core/SkLinearBitmapPipeline.h
new file mode 100644
index 0000000000..6f6e2ae602
--- /dev/null
+++ b/src/core/SkLinearBitmapPipeline.h
@@ -0,0 +1,112 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkLinearBitmapPipeline_DEFINED
+#define SkLinearBitmapPipeline_DEFINED
+
+#include "SkArenaAlloc.h"
+#include "SkColor.h"
+#include "SkImageInfo.h"
+#include "SkMatrix.h"
+#include "SkShader.h"
+
+class SkEmbeddableLinearPipeline;
+
+enum SkGammaType {
+ kLinear_SkGammaType,
+ kSRGB_SkGammaType,
+};
+
+///////////////////////////////////////////////////////////////////////////////////////////////////
+// SkLinearBitmapPipeline - encapsulates all the machinery for doing floating point pixel
+// processing in a linear color space.
+// Note: this class has unusual alignment requirements due to its use of SIMD instructions. The
+// class SkEmbeddableLinearPipeline below manages these requirements.
+class SkLinearBitmapPipeline {
+public:
+ SkLinearBitmapPipeline(
+ const SkMatrix& inverse,
+ SkFilterQuality filterQuality,
+ SkShader::TileMode xTile, SkShader::TileMode yTile,
+ SkColor paintColor,
+ const SkPixmap& srcPixmap,
+ SkArenaAlloc* allocator);
+
+ SkLinearBitmapPipeline(
+ const SkLinearBitmapPipeline& pipeline,
+ const SkPixmap& srcPixmap,
+ SkBlendMode,
+ const SkImageInfo& dstInfo,
+ SkArenaAlloc* allocator);
+
+ ~SkLinearBitmapPipeline();
+
+ void shadeSpan4f(int x, int y, SkPM4f* dst, int count);
+ void blitSpan(int32_t x, int32_t y, void* dst, int count);
+
+ class PointProcessorInterface;
+ class SampleProcessorInterface;
+ class BlendProcessorInterface;
+ class DestinationInterface;
+ class PixelAccessorInterface;
+
+ using MatrixCloner =
+ std::function<PointProcessorInterface* (PointProcessorInterface*, SkArenaAlloc*)>;
+ using TilerCloner =
+ std::function<PointProcessorInterface* (SampleProcessorInterface*, SkArenaAlloc*)>;
+
+ PointProcessorInterface* chooseMatrix(
+ PointProcessorInterface* next,
+ const SkMatrix& inverse,
+ SkArenaAlloc* allocator);
+
+ template <typename Tiler>
+ PointProcessorInterface* createTiler(SampleProcessorInterface* next, SkISize dimensions,
+ SkArenaAlloc* allocator);
+
+ template <typename XStrategy>
+ PointProcessorInterface* chooseTilerYMode(
+ SampleProcessorInterface* next, SkShader::TileMode yMode, SkISize dimensions,
+ SkArenaAlloc* allocator);
+
+ PointProcessorInterface* chooseTiler(
+ SampleProcessorInterface* next,
+ SkISize dimensions,
+ SkShader::TileMode xMode, SkShader::TileMode yMode,
+ SkFilterQuality filterQuality,
+ SkScalar dx,
+ SkArenaAlloc* allocator);
+
+ template <SkColorType colorType>
+ PixelAccessorInterface* chooseSpecificAccessor(const SkPixmap& srcPixmap,
+ SkArenaAlloc* allocator);
+
+ PixelAccessorInterface* choosePixelAccessor(
+ const SkPixmap& srcPixmap,
+ const SkColor A8TintColor,
+ SkArenaAlloc* allocator);
+
+ SampleProcessorInterface* chooseSampler(
+ BlendProcessorInterface* next,
+ SkFilterQuality filterQuality,
+ SkShader::TileMode xTile, SkShader::TileMode yTile,
+ const SkPixmap& srcPixmap,
+ const SkColor A8TintColor,
+ SkArenaAlloc* allocator);
+
+ BlendProcessorInterface* chooseBlenderForShading(
+ SkAlphaType alphaType,
+ float postAlpha,
+ SkArenaAlloc* allocator);
+
+ PointProcessorInterface* fFirstStage;
+ MatrixCloner fMatrixStageCloner;
+ TilerCloner fTileStageCloner;
+ DestinationInterface* fLastStage;
+};
+
+#endif // SkLinearBitmapPipeline_DEFINED
diff --git a/src/core/SkLinearBitmapPipeline_core.h b/src/core/SkLinearBitmapPipeline_core.h
new file mode 100644
index 0000000000..ce6c05b752
--- /dev/null
+++ b/src/core/SkLinearBitmapPipeline_core.h
@@ -0,0 +1,255 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkLinearBitmapPipeline_core_DEFINED
+#define SkLinearBitmapPipeline_core_DEFINED
+
+#include <algorithm>
+#include <cmath>
+#include "SkNx.h"
+
+// New bilerp strategy:
+// Pass through on bilerpList4 and bilerpListFew (analogs to pointList), introduce bilerpEdge
+// which takes 4 points. If the sample spans an edge, then break it into a bilerpEdge. Bilerp
+// span then becomes a normal span except in special cases where an extra Y is given. The bilerp
+// need to stay single point calculations until the tile layer.
+// TODO:
+// - edge span predicate.
+// - introduce new point API
+// - Add tile for new api.
+
+namespace {
+struct X {
+ explicit X(SkScalar val) : fVal{val} { }
+ explicit X(SkPoint pt) : fVal{pt.fX} { }
+ explicit X(SkSize s) : fVal{s.fWidth} { }
+ explicit X(SkISize s) : fVal((SkScalar)s.fWidth) { }
+ operator SkScalar () const {return fVal;}
+private:
+ SkScalar fVal;
+};
+
+struct Y {
+ explicit Y(SkScalar val) : fVal{val} { }
+ explicit Y(SkPoint pt) : fVal{pt.fY} { }
+ explicit Y(SkSize s) : fVal{s.fHeight} { }
+ explicit Y(SkISize s) : fVal((SkScalar)s.fHeight) { }
+ operator SkScalar () const {return fVal;}
+private:
+ SkScalar fVal;
+};
+
+// The Span class enables efficient processing horizontal spans of pixels.
+// * start - the point where to start the span.
+// * length - the number of pixels to traverse in source space.
+// * count - the number of pixels to produce in destination space.
+// Both start and length are mapped through the inversion matrix to produce values in source
+// space. After the matrix operation, the tilers may break the spans up into smaller spans.
+// The tilers can produce spans that seem nonsensical.
+// * The clamp tiler can create spans with length of 0. This indicates to copy an edge pixel out
+// to the edge of the destination scan.
+// * The mirror tiler can produce spans with negative length. This indicates that the source
+// should be traversed in the opposite direction to the destination pixels.
+class Span {
+public:
+ Span(SkPoint start, SkScalar length, int count)
+ : fStart(start)
+ , fLength(length)
+ , fCount{count} {
+ SkASSERT(std::isfinite(length));
+ }
+
+ operator std::tuple<SkPoint&, SkScalar&, int&>() {
+ return std::tie(fStart, fLength, fCount);
+ }
+
+ bool isEmpty() const { return 0 == fCount; }
+ void clear() { fCount = 0; }
+ int count() const { return fCount; }
+ SkScalar length() const { return fLength; }
+ SkScalar startX() const { return X(fStart); }
+ SkScalar endX() const { return this->startX() + this->length(); }
+ SkScalar startY() const { return Y(fStart); }
+ Span emptySpan() { return Span{{0.0, 0.0}, 0.0f, 0}; }
+
+ bool completelyWithin(SkScalar xMin, SkScalar xMax) const {
+ SkScalar sMin, sMax;
+ std::tie(sMin, sMax) = std::minmax(startX(), endX());
+ return xMin <= sMin && sMax < xMax;
+ }
+
+ void offset(SkScalar offsetX) {
+ fStart.offset(offsetX, 0.0f);
+ }
+
+ Span breakAt(SkScalar breakX, SkScalar dx) {
+ SkASSERT(std::isfinite(breakX));
+ SkASSERT(std::isfinite(dx));
+ SkASSERT(dx != 0.0f);
+
+ if (this->isEmpty()) {
+ return this->emptySpan();
+ }
+
+ int dxSteps = SkScalarFloorToInt((breakX - this->startX()) / dx);
+
+ if (dxSteps < 0) {
+ // The span is wholly after breakX.
+ return this->emptySpan();
+ } else if (dxSteps >= fCount) {
+ // The span is wholly before breakX.
+ Span answer = *this;
+ this->clear();
+ return answer;
+ }
+
+ // Calculate the values for the span to cleave off.
+ SkScalar newLength = dxSteps * dx;
+
+ // If the last (or first if count = 1) sample lands directly on the boundary. Include it
+ // when dx < 0 and exclude it when dx > 0.
+ // Reasoning:
+ // dx > 0: The sample point on the boundary is part of the next span because the entire
+ // pixel is after the boundary.
+ // dx < 0: The sample point on the boundary is part of the current span because the
+ // entire pixel is before the boundary.
+ if (this->startX() + newLength == breakX && dx > 0) {
+ if (dxSteps > 0) {
+ dxSteps -= 1;
+ newLength -= dx;
+ } else {
+ return this->emptySpan();
+ }
+ }
+
+ // Calculate new span parameters
+ SkPoint newStart = fStart;
+ int newCount = dxSteps + 1;
+ SkASSERT(newCount > 0);
+
+ // Update this span to reflect the break.
+ SkScalar lengthToStart = newLength + dx;
+ fLength -= lengthToStart;
+ fCount -= newCount;
+ fStart = {this->startX() + lengthToStart, Y(fStart)};
+
+ return Span{newStart, newLength, newCount};
+ }
+
+ void clampToSinglePixel(SkPoint pixel) {
+ fStart = pixel;
+ fLength = 0.0f;
+ }
+
+private:
+ SkPoint fStart;
+ SkScalar fLength;
+ int fCount;
+};
+
+template<typename Stage>
+void span_fallback(Span span, Stage* stage) {
+ SkPoint start;
+ SkScalar length;
+ int count;
+ std::tie(start, length, count) = span;
+ Sk4f startXs{X(start)};
+ Sk4f ys{Y(start)};
+ Sk4f mults = {0.0f, 1.0f, 2.0f, 3.0f};
+
+ // Initializing this is not needed, but some compilers can't figure this out.
+ Sk4s dXs{0.0f};
+ if (count > 1) {
+ SkScalar dx = length / (count - 1);
+ dXs = Sk4f{dx};
+ }
+
+ // Instead of using xs = xs + dx every round, this uses xs = i * dx + X(start). This
+ // eliminates the rounding error for the sum.
+ Sk4f xs = startXs + mults * dXs;
+ while (count >= 4) {
+ stage->pointList4(xs, ys);
+
+ mults += Sk4f{4.0f};
+ xs = mults * dXs + startXs;
+ count -= 4;
+ }
+
+ if (count > 0) {
+ stage->pointListFew(count, xs, ys);
+ }
+}
+
+inline Sk4f SK_VECTORCALL check_pixel(const Sk4f& pixel) {
+ SkASSERTF(0.0f <= pixel[0] && pixel[0] <= 1.0f, "pixel[0]: %f", pixel[0]);
+ SkASSERTF(0.0f <= pixel[1] && pixel[1] <= 1.0f, "pixel[1]: %f", pixel[1]);
+ SkASSERTF(0.0f <= pixel[2] && pixel[2] <= 1.0f, "pixel[2]: %f", pixel[2]);
+ SkASSERTF(0.0f <= pixel[3] && pixel[3] <= 1.0f, "pixel[3]: %f", pixel[3]);
+ return pixel;
+}
+
+} // namespace
+
+class SkLinearBitmapPipeline::PointProcessorInterface {
+public:
+ virtual ~PointProcessorInterface() { }
+ // Take the first n (where 0 < n && n < 4) items from xs and ys and sample those points. For
+ // nearest neighbor, that means just taking the floor xs and ys. For bilerp, this means
+ // to expand the bilerp filter around the point and sample using that filter.
+ virtual void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) = 0;
+ // Same as pointListFew, but n = 4.
+ virtual void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) = 0;
+ // A span is a compact form of sample points that are obtained by mapping points from
+ // destination space to source space. This is used for horizontal lines only, and is mainly
+ // used to take advantage of memory coherence for horizontal spans.
+ virtual void pointSpan(Span span) = 0;
+};
+
+class SkLinearBitmapPipeline::SampleProcessorInterface
+ : public SkLinearBitmapPipeline::PointProcessorInterface {
+public:
+ // Used for nearest neighbor when scale factor is 1.0. The span can just be repeated with no
+ // edge pixel alignment problems. This is for handling a very common case.
+ virtual void repeatSpan(Span span, int32_t repeatCount) = 0;
+};
+
+class SkLinearBitmapPipeline::DestinationInterface {
+public:
+ virtual ~DestinationInterface() { }
+ // Count is normally not needed, but in these early stages of development it is useful to
+ // check bounds.
+ // TODO(herb): 4/6/2016 - remove count when code is stable.
+ virtual void setDestination(void* dst, int count) = 0;
+};
+
+class SkLinearBitmapPipeline::BlendProcessorInterface
+ : public SkLinearBitmapPipeline::DestinationInterface {
+public:
+ virtual void SK_VECTORCALL blendPixel(Sk4f pixel0) = 0;
+ virtual void SK_VECTORCALL blend4Pixels(Sk4f p0, Sk4f p1, Sk4f p2, Sk4f p3) = 0;
+};
+
+class SkLinearBitmapPipeline::PixelAccessorInterface {
+public:
+ virtual ~PixelAccessorInterface() { }
+ virtual void SK_VECTORCALL getFewPixels(
+ int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const = 0;
+
+ virtual void SK_VECTORCALL get4Pixels(
+ Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
+
+ virtual void get4Pixels(
+ const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const = 0;
+
+ virtual Sk4f getPixelFromRow(const void* row, int index) const = 0;
+
+ virtual Sk4f getPixelAt(int index) const = 0;
+
+ virtual const void* row(int y) const = 0;
+};
+
+#endif // SkLinearBitmapPipeline_core_DEFINED
diff --git a/src/core/SkLinearBitmapPipeline_matrix.h b/src/core/SkLinearBitmapPipeline_matrix.h
new file mode 100644
index 0000000000..78f723148e
--- /dev/null
+++ b/src/core/SkLinearBitmapPipeline_matrix.h
@@ -0,0 +1,118 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkLinearBitmapPipeline_matrix_DEFINED
+#define SkLinearBitmapPipeline_matrix_DEFINED
+
+#include "SkLinearBitmapPipeline_core.h"
+
+namespace {
+class TranslateMatrixStrategy {
+public:
+ TranslateMatrixStrategy(SkVector offset)
+ : fXOffset{X(offset)}
+ , fYOffset{Y(offset)} { }
+
+ void processPoints(Sk4s* xs, Sk4s* ys) const {
+ *xs = *xs + fXOffset;
+ *ys = *ys + fYOffset;
+ }
+
+ template <typename Next>
+ bool maybeProcessSpan(Span span, Next* next) const {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ next->pointSpan(Span{start + SkPoint{fXOffset, fYOffset}, length, count});
+ return true;
+ }
+
+private:
+ const SkScalar fXOffset, fYOffset;
+};
+
+class ScaleMatrixStrategy {
+public:
+ ScaleMatrixStrategy(SkVector offset, SkVector scale)
+ : fXOffset{X(offset)}, fYOffset{Y(offset)}
+ , fXScale{X(scale)}, fYScale{Y(scale)} { }
+ void processPoints(Sk4s* xs, Sk4s* ys) const {
+ *xs = *xs * fXScale + fXOffset;
+ *ys = *ys * fYScale + fYOffset;
+ }
+
+ template <typename Next>
+ bool maybeProcessSpan(Span span, Next* next) const {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkPoint newStart =
+ SkPoint{X(start) * fXScale + fXOffset, Y(start) * fYScale + fYOffset};
+ SkScalar newLength = length * fXScale;
+ next->pointSpan(Span{newStart, newLength, count});
+ return true;
+ }
+
+private:
+ const SkScalar fXOffset, fYOffset;
+ const SkScalar fXScale, fYScale;
+};
+
+class AffineMatrixStrategy {
+public:
+ AffineMatrixStrategy(SkVector offset, SkVector scale, SkVector skew)
+ : fXOffset{X(offset)}, fYOffset{Y(offset)}
+ , fXScale{X(scale)}, fYScale{Y(scale)}
+ , fXSkew{X(skew)}, fYSkew{Y(skew)} { }
+ void processPoints(Sk4s* xs, Sk4s* ys) const {
+ Sk4s newXs = fXScale * *xs + fXSkew * *ys + fXOffset;
+ Sk4s newYs = fYSkew * *xs + fYScale * *ys + fYOffset;
+
+ *xs = newXs;
+ *ys = newYs;
+ }
+
+ template <typename Next>
+ bool maybeProcessSpan(Span span, Next* next) const {
+ return false;
+ }
+
+private:
+ const SkScalar fXOffset, fYOffset;
+ const SkScalar fXScale, fYScale;
+ const SkScalar fXSkew, fYSkew;
+};
+
+class PerspectiveMatrixStrategy {
+public:
+ PerspectiveMatrixStrategy(SkVector offset, SkVector scale, SkVector skew,
+ SkVector zSkew, SkScalar zOffset)
+ : fXOffset{X(offset)}, fYOffset{Y(offset)}, fZOffset{zOffset}
+ , fXScale{X(scale)}, fYScale{Y(scale)}
+ , fXSkew{X(skew)}, fYSkew{Y(skew)}, fZXSkew{X(zSkew)}, fZYSkew{Y(zSkew)} { }
+ void processPoints(Sk4s* xs, Sk4s* ys) const {
+ Sk4s newXs = fXScale * *xs + fXSkew * *ys + fXOffset;
+ Sk4s newYs = fYSkew * *xs + fYScale * *ys + fYOffset;
+ Sk4s newZs = fZXSkew * *xs + fZYSkew * *ys + fZOffset;
+
+ *xs = newXs / newZs;
+ *ys = newYs / newZs;
+ }
+
+ template <typename Next>
+ bool maybeProcessSpan(Span span, Next* next) const {
+ return false;
+ }
+
+private:
+ const SkScalar fXOffset, fYOffset, fZOffset;
+ const SkScalar fXScale, fYScale;
+ const SkScalar fXSkew, fYSkew, fZXSkew, fZYSkew;
+};
+
+
+} // namespace
+
+#endif // SkLinearBitmapPipeline_matrix_DEFINED
diff --git a/src/core/SkLinearBitmapPipeline_sample.h b/src/core/SkLinearBitmapPipeline_sample.h
new file mode 100644
index 0000000000..a7f5d7383e
--- /dev/null
+++ b/src/core/SkLinearBitmapPipeline_sample.h
@@ -0,0 +1,1041 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkLinearBitmapPipeline_sampler_DEFINED
+#define SkLinearBitmapPipeline_sampler_DEFINED
+
+#include <tuple>
+
+#include "SkAutoMalloc.h"
+#include "SkColor.h"
+#include "SkColorPriv.h"
+#include "SkFixed.h" // for SkFixed1 only. Don't use SkFixed in this file.
+#include "SkHalf.h"
+#include "SkLinearBitmapPipeline_core.h"
+#include "SkNx.h"
+#include "SkPM4fPriv.h"
+
+namespace {
+// Explaination of the math:
+// 1 - x x
+// +--------+--------+
+// | | |
+// 1 - y | px00 | px10 |
+// | | |
+// +--------+--------+
+// | | |
+// y | px01 | px11 |
+// | | |
+// +--------+--------+
+//
+//
+// Given a pixelxy each is multiplied by a different factor derived from the fractional part of x
+// and y:
+// * px00 -> (1 - x)(1 - y) = 1 - x - y + xy
+// * px10 -> x(1 - y) = x - xy
+// * px01 -> (1 - x)y = y - xy
+// * px11 -> xy
+// So x * y is calculated first and then used to calculate all the other factors.
+static Sk4s SK_VECTORCALL bilerp4(Sk4s xs, Sk4s ys, Sk4f px00, Sk4f px10,
+ Sk4f px01, Sk4f px11) {
+ // Calculate fractional xs and ys.
+ Sk4s fxs = xs - xs.floor();
+ Sk4s fys = ys - ys.floor();
+ Sk4s fxys{fxs * fys};
+ Sk4f sum = px11 * fxys;
+ sum = sum + px01 * (fys - fxys);
+ sum = sum + px10 * (fxs - fxys);
+ sum = sum + px00 * (Sk4f{1.0f} - fxs - fys + fxys);
+ return sum;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// PixelGetter is the lowest level interface to the source data. There is a PixelConverter for each
+// of the different SkColorTypes.
+template <SkColorType, SkGammaType> class PixelConverter;
+
+// Alpha handling:
+// The alpha from the paint (tintColor) is used in the blend part of the pipeline to modulate
+// the entire bitmap. So, the tint color is given an alpha of 1.0 so that the later alpha can
+// modulate this color later.
+template <>
+class PixelConverter<kAlpha_8_SkColorType, kLinear_SkGammaType> {
+public:
+ using Element = uint8_t;
+ PixelConverter(const SkPixmap& srcPixmap, SkColor tintColor) {
+ fTintColor = SkColor4f::FromColor(tintColor);
+ fTintColor.fA = 1.0f;
+ }
+
+ Sk4f toSk4f(const Element pixel) const {
+ return Sk4f::Load(&fTintColor) * (pixel * (1.0f/255.0f));
+ }
+
+private:
+ SkColor4f fTintColor;
+};
+
+template <SkGammaType gammaType>
+static inline Sk4f pmcolor_to_rgba(SkPMColor pixel) {
+ return swizzle_rb_if_bgra(
+ (gammaType == kSRGB_SkGammaType) ? Sk4f_fromS32(pixel)
+ : Sk4f_fromL32(pixel));
+}
+
+template <SkGammaType gammaType>
+class PixelConverter<kRGB_565_SkColorType, gammaType> {
+public:
+ using Element = uint16_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return pmcolor_to_rgba<gammaType>(SkPixel16ToPixel32(pixel));
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kARGB_4444_SkColorType, gammaType> {
+public:
+ using Element = uint16_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return pmcolor_to_rgba<gammaType>(SkPixel4444ToPixel32(pixel));
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kRGBA_8888_SkColorType, gammaType> {
+public:
+ using Element = uint32_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return gammaType == kSRGB_SkGammaType
+ ? Sk4f_fromS32(pixel)
+ : Sk4f_fromL32(pixel);
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kBGRA_8888_SkColorType, gammaType> {
+public:
+ using Element = uint32_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ return swizzle_rb(
+ gammaType == kSRGB_SkGammaType ? Sk4f_fromS32(pixel) : Sk4f_fromL32(pixel));
+ }
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kIndex_8_SkColorType, gammaType> {
+public:
+ using Element = uint8_t;
+ PixelConverter(const SkPixmap& srcPixmap)
+ : fColorTableSize(srcPixmap.ctable()->count()){
+ SkColorTable* skColorTable = srcPixmap.ctable();
+ SkASSERT(skColorTable != nullptr);
+
+ fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
+ for (int i = 0; i < fColorTableSize; i++) {
+ fColorTable[i] = pmcolor_to_rgba<gammaType>((*skColorTable)[i]);
+ }
+ }
+
+ PixelConverter(const PixelConverter& strategy)
+ : fColorTableSize{strategy.fColorTableSize}{
+ fColorTable = (Sk4f*)SkAlign16((intptr_t)fColorTableStorage.get());
+ for (int i = 0; i < fColorTableSize; i++) {
+ fColorTable[i] = strategy.fColorTable[i];
+ }
+ }
+
+ Sk4f toSk4f(Element index) const {
+ return fColorTable[index];
+ }
+
+private:
+ static const size_t kColorTableSize = sizeof(Sk4f[256]) + 12;
+ const int fColorTableSize;
+ SkAutoMalloc fColorTableStorage{kColorTableSize};
+ Sk4f* fColorTable;
+};
+
+template <SkGammaType gammaType>
+class PixelConverter<kGray_8_SkColorType, gammaType> {
+public:
+ using Element = uint8_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(Element pixel) const {
+ float gray = (gammaType == kSRGB_SkGammaType)
+ ? sk_linear_from_srgb[pixel]
+ : pixel * (1/255.0f);
+ return {gray, gray, gray, 1.0f};
+ }
+};
+
+template <>
+class PixelConverter<kRGBA_F16_SkColorType, kLinear_SkGammaType> {
+public:
+ using Element = uint64_t;
+ PixelConverter(const SkPixmap& srcPixmap) { }
+
+ Sk4f toSk4f(const Element pixel) const {
+ return SkHalfToFloat_finite_ftz(pixel);
+ }
+};
+
+class PixelAccessorShim {
+public:
+ explicit PixelAccessorShim(SkLinearBitmapPipeline::PixelAccessorInterface* accessor)
+ : fPixelAccessor(accessor) { }
+
+ void SK_VECTORCALL getFewPixels(
+ int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const {
+ fPixelAccessor->getFewPixels(n, xs, ys, px0, px1, px2);
+ }
+
+ void SK_VECTORCALL get4Pixels(
+ Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
+ fPixelAccessor->get4Pixels(xs, ys, px0, px1, px2, px3);
+ }
+
+ void get4Pixels(
+ const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const {
+ fPixelAccessor->get4Pixels(src, index, px0, px1, px2, px3);
+ }
+
+ Sk4f getPixelFromRow(const void* row, int index) const {
+ return fPixelAccessor->getPixelFromRow(row, index);
+ }
+
+ Sk4f getPixelAt(int index) const {
+ return fPixelAccessor->getPixelAt(index);
+ }
+
+ const void* row(int y) const {
+ return fPixelAccessor->row(y);
+ }
+
+private:
+ SkLinearBitmapPipeline::PixelAccessorInterface* const fPixelAccessor;
+};
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+// PixelAccessor handles all the same plumbing for all the PixelGetters.
+template <SkColorType colorType, SkGammaType gammaType>
+class PixelAccessor final : public SkLinearBitmapPipeline::PixelAccessorInterface {
+ using Element = typename PixelConverter<colorType, gammaType>::Element;
+public:
+ template <typename... Args>
+ PixelAccessor(const SkPixmap& srcPixmap, Args&&... args)
+ : fSrc{static_cast<const Element*>(srcPixmap.addr())}
+ , fWidth{srcPixmap.rowBytesAsPixels()}
+ , fConverter{srcPixmap, std::move<Args>(args)...} { }
+
+ void SK_VECTORCALL getFewPixels (
+ int n, Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2) const override {
+ Sk4i bufferLoc = ys * fWidth + xs;
+ switch (n) {
+ case 3:
+ *px2 = this->getPixelAt(bufferLoc[2]);
+ case 2:
+ *px1 = this->getPixelAt(bufferLoc[1]);
+ case 1:
+ *px0 = this->getPixelAt(bufferLoc[0]);
+ default:
+ break;
+ }
+ }
+
+ void SK_VECTORCALL get4Pixels(
+ Sk4i xs, Sk4i ys, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
+ Sk4i bufferLoc = ys * fWidth + xs;
+ *px0 = this->getPixelAt(bufferLoc[0]);
+ *px1 = this->getPixelAt(bufferLoc[1]);
+ *px2 = this->getPixelAt(bufferLoc[2]);
+ *px3 = this->getPixelAt(bufferLoc[3]);
+ }
+
+ void get4Pixels(
+ const void* src, int index, Sk4f* px0, Sk4f* px1, Sk4f* px2, Sk4f* px3) const override {
+ *px0 = this->getPixelFromRow(src, index + 0);
+ *px1 = this->getPixelFromRow(src, index + 1);
+ *px2 = this->getPixelFromRow(src, index + 2);
+ *px3 = this->getPixelFromRow(src, index + 3);
+ }
+
+ Sk4f getPixelFromRow(const void* row, int index) const override {
+ const Element* src = static_cast<const Element*>(row);
+ return fConverter.toSk4f(src[index]);
+ }
+
+ Sk4f getPixelAt(int index) const override {
+ return this->getPixelFromRow(fSrc, index);
+ }
+
+ const void* row(int y) const override { return fSrc + y * fWidth; }
+
+private:
+ const Element* const fSrc;
+ const int fWidth;
+ PixelConverter<colorType, gammaType> fConverter;
+};
+
+// We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
+// We'll never re-use pixels, but we can at least load contiguous pixels.
+template <typename Next, typename Strategy>
+static void src_strategy_blend(Span span, Next* next, Strategy* strategy) {
+ SkPoint start;
+ SkScalar length;
+ int count;
+ std::tie(start, length, count) = span;
+ int ix = SkScalarFloorToInt(X(start));
+ const void* row = strategy->row((int)std::floor(Y(start)));
+ if (length > 0) {
+ while (count >= 4) {
+ Sk4f px0, px1, px2, px3;
+ strategy->get4Pixels(row, ix, &px0, &px1, &px2, &px3);
+ next->blend4Pixels(px0, px1, px2, px3);
+ ix += 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ next->blendPixel(strategy->getPixelFromRow(row, ix));
+ ix += 1;
+ count -= 1;
+ }
+ } else {
+ while (count >= 4) {
+ Sk4f px0, px1, px2, px3;
+ strategy->get4Pixels(row, ix - 3, &px3, &px2, &px1, &px0);
+ next->blend4Pixels(px0, px1, px2, px3);
+ ix -= 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ next->blendPixel(strategy->getPixelFromRow(row, ix));
+ ix -= 1;
+ count -= 1;
+ }
+ }
+}
+
+// -- NearestNeighborSampler -----------------------------------------------------------------------
+// NearestNeighborSampler - use nearest neighbor filtering to create runs of destination pixels.
+template<typename Accessor, typename Next>
+class NearestNeighborSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
+public:
+ template<typename... Args>
+ NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next, Args&& ... args)
+ : fNext{next}, fAccessor{std::forward<Args>(args)...} { }
+
+ NearestNeighborSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next,
+ const NearestNeighborSampler& sampler)
+ : fNext{next}, fAccessor{sampler.fAccessor} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ SkASSERT(0 < n && n < 4);
+ Sk4f px0, px1, px2;
+ fAccessor.getFewPixels(n, SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2);
+ if (n >= 1) fNext->blendPixel(px0);
+ if (n >= 2) fNext->blendPixel(px1);
+ if (n >= 3) fNext->blendPixel(px2);
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ Sk4f px0, px1, px2, px3;
+ fAccessor.get4Pixels(SkNx_cast<int>(xs), SkNx_cast<int>(ys), &px0, &px1, &px2, &px3);
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ }
+
+ void pointSpan(Span span) override {
+ SkASSERT(!span.isEmpty());
+ SkPoint start;
+ SkScalar length;
+ int count;
+ std::tie(start, length, count) = span;
+ SkScalar absLength = SkScalarAbs(length);
+ if (absLength < (count - 1)) {
+ this->spanSlowRate(span);
+ } else if (absLength == (count - 1)) {
+ src_strategy_blend(span, fNext, &fAccessor);
+ } else {
+ this->spanFastRate(span);
+ }
+ }
+
+ void repeatSpan(Span span, int32_t repeatCount) override {
+ while (repeatCount > 0) {
+ this->pointSpan(span);
+ repeatCount--;
+ }
+ }
+
+private:
+ // When moving through source space more slowly than dst space (zoomed in),
+ // we'll be sampling from the same source pixel more than once.
+ void spanSlowRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkScalar x = X(start);
+ // fx is a fixed 48.16 number.
+ int64_t fx = static_cast<int64_t>(x * SK_Fixed1);
+ SkScalar dx = length / (count - 1);
+ // fdx is a fixed 48.16 number.
+ int64_t fdx = static_cast<int64_t>(dx * SK_Fixed1);
+
+ const void* row = fAccessor.row((int)std::floor(Y(start)));
+ Next* next = fNext;
+
+ int64_t ix = fx >> 16;
+ int64_t prevIX = ix;
+ Sk4f fpixel = fAccessor.getPixelFromRow(row, ix);
+
+ // When dx is less than one, each pixel is used more than once. Using the fixed point fx
+ // allows the code to quickly check that the same pixel is being used. The code uses this
+ // same pixel check to do the sRGB and normalization only once.
+ auto getNextPixel = [&]() {
+ if (ix != prevIX) {
+ fpixel = fAccessor.getPixelFromRow(row, ix);
+ prevIX = ix;
+ }
+ fx += fdx;
+ ix = fx >> 16;
+ return fpixel;
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = getNextPixel();
+ Sk4f px1 = getNextPixel();
+ Sk4f px2 = getNextPixel();
+ Sk4f px3 = getNextPixel();
+ next->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+ while (count > 0) {
+ next->blendPixel(getNextPixel());
+ count -= 1;
+ }
+ }
+
+ // We're moving through source space at a rate of 1 source pixel per 1 dst pixel.
+ // We'll never re-use pixels, but we can at least load contiguous pixels.
+ void spanUnitRate(Span span) {
+ src_strategy_blend(span, fNext, &fAccessor);
+ }
+
+ // We're moving through source space faster than dst (zoomed out),
+ // so we'll never reuse a source pixel or be able to do contiguous loads.
+ void spanFastRate(Span span) {
+ span_fallback(span, this);
+ }
+
+ Next* const fNext;
+ Accessor fAccessor;
+};
+
+// From an edgeType, the integer value of a pixel vs, and the integer value of the extreme edge
+// vMax, take the point which might be off the tile by one pixel and either wrap it or pin it to
+// generate the right pixel. The value vs is on the interval [-1, vMax + 1]. It produces a value
+// on the interval [0, vMax].
+// Note: vMax is not width or height, but width-1 or height-1 because it is the largest valid pixel.
+static inline int adjust_edge(SkShader::TileMode edgeType, int vs, int vMax) {
+ SkASSERT(-1 <= vs && vs <= vMax + 1);
+ switch (edgeType) {
+ case SkShader::kClamp_TileMode:
+ case SkShader::kMirror_TileMode:
+ vs = std::max(vs, 0);
+ vs = std::min(vs, vMax);
+ break;
+ case SkShader::kRepeat_TileMode:
+ vs = (vs <= vMax) ? vs : 0;
+ vs = (vs >= 0) ? vs : vMax;
+ break;
+ }
+ SkASSERT(0 <= vs && vs <= vMax);
+ return vs;
+}
+
+// From a sample point on the tile, return the top or left filter value.
+// The result r should be in the range (0, 1]. Since this represents the weight given to the top
+// left element, then if x == 0.5 the filter value should be 1.0.
+// The input sample point must be on the tile, therefore it must be >= 0.
+static SkScalar sample_to_filter(SkScalar x) {
+ SkASSERT(x >= 0.0f);
+ // The usual form of the top or left edge is x - .5, but since we are working on the unit
+ // square, then x + .5 works just as well. This also guarantees that v > 0.0 allowing the use
+ // of trunc.
+ SkScalar v = x + 0.5f;
+ // Produce the top or left offset a value on the range [0, 1).
+ SkScalar f = v - SkScalarTruncToScalar(v);
+ // Produce the filter value which is on the range (0, 1].
+ SkScalar r = 1.0f - f;
+ SkASSERT(0.0f < r && r <= 1.0f);
+ return r;
+}
+
+// -- BilerpSampler --------------------------------------------------------------------------------
+// BilerpSampler - use a bilerp filter to create runs of destination pixels.
+// Note: in the code below, there are two types of points
+// * sample points - these are the points passed in by pointList* and Spans.
+// * filter points - are created from a sample point to form the coordinates of the points
+// to use in the filter and to generate the filter values.
+template<typename Accessor, typename Next>
+class BilerpSampler : public SkLinearBitmapPipeline::SampleProcessorInterface {
+public:
+ template<typename... Args>
+ BilerpSampler(
+ SkLinearBitmapPipeline::BlendProcessorInterface* next,
+ SkISize dimensions,
+ SkShader::TileMode xTile, SkShader::TileMode yTile,
+ Args&& ... args
+ )
+ : fNext{next}
+ , fXEdgeType{xTile}
+ , fXMax{dimensions.width() - 1}
+ , fYEdgeType{yTile}
+ , fYMax{dimensions.height() - 1}
+ , fAccessor{std::forward<Args>(args)...} { }
+
+ BilerpSampler(SkLinearBitmapPipeline::BlendProcessorInterface* next,
+ const BilerpSampler& sampler)
+ : fNext{next}
+ , fXEdgeType{sampler.fXEdgeType}
+ , fXMax{sampler.fXMax}
+ , fYEdgeType{sampler.fYEdgeType}
+ , fYMax{sampler.fYMax}
+ , fAccessor{sampler.fAccessor} { }
+
+ void SK_VECTORCALL pointListFew(int n, Sk4s xs, Sk4s ys) override {
+ SkASSERT(0 < n && n < 4);
+ auto bilerpPixel = [&](int index) {
+ return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
+ };
+
+ if (n >= 1) fNext->blendPixel(bilerpPixel(0));
+ if (n >= 2) fNext->blendPixel(bilerpPixel(1));
+ if (n >= 3) fNext->blendPixel(bilerpPixel(2));
+ }
+
+ void SK_VECTORCALL pointList4(Sk4s xs, Sk4s ys) override {
+ auto bilerpPixel = [&](int index) {
+ return this->bilerpSamplePoint(SkPoint{xs[index], ys[index]});
+ };
+ fNext->blend4Pixels(bilerpPixel(0), bilerpPixel(1), bilerpPixel(2), bilerpPixel(3));
+ }
+
+ void pointSpan(Span span) override {
+ SkASSERT(!span.isEmpty());
+ SkPoint start;
+ SkScalar length;
+ int count;
+ std::tie(start, length, count) = span;
+
+ // Nothing to do.
+ if (count == 0) {
+ return;
+ }
+
+ // Trivial case. No sample points are generated other than start.
+ if (count == 1) {
+ fNext->blendPixel(this->bilerpSamplePoint(start));
+ return;
+ }
+
+ // Note: the following code could be done in terms of dx = length / (count -1), but that
+ // would introduce a divide that is not needed for the most common dx == 1 cases.
+ SkScalar absLength = SkScalarAbs(length);
+ if (absLength == 0.0f) {
+ // |dx| == 0
+ // length is zero, so clamp an edge pixel.
+ this->spanZeroRate(span);
+ } else if (absLength < (count - 1)) {
+ // 0 < |dx| < 1.
+ this->spanSlowRate(span);
+ } else if (absLength == (count - 1)) {
+ // |dx| == 1.
+ if (sample_to_filter(span.startX()) == 1.0f
+ && sample_to_filter(span.startY()) == 1.0f) {
+ // All the pixels are aligned with the dest; go fast.
+ src_strategy_blend(span, fNext, &fAccessor);
+ } else {
+ // There is some sub-pixel offsets, so bilerp.
+ this->spanUnitRate(span);
+ }
+ } else if (absLength < 2.0f * (count - 1)) {
+ // 1 < |dx| < 2.
+ this->spanMediumRate(span);
+ } else {
+ // |dx| >= 2.
+ this->spanFastRate(span);
+ }
+ }
+
+ void repeatSpan(Span span, int32_t repeatCount) override {
+ while (repeatCount > 0) {
+ this->pointSpan(span);
+ repeatCount--;
+ }
+ }
+
+private:
+
+ // Convert a sample point to the points used by the filter.
+ void filterPoints(SkPoint sample, Sk4i* filterXs, Sk4i* filterYs) {
+ // May be less than zero. Be careful to use Floor.
+ int x0 = adjust_edge(fXEdgeType, SkScalarFloorToInt(X(sample) - 0.5), fXMax);
+ // Always greater than zero. Use the faster Trunc.
+ int x1 = adjust_edge(fXEdgeType, SkScalarTruncToInt(X(sample) + 0.5), fXMax);
+ int y0 = adjust_edge(fYEdgeType, SkScalarFloorToInt(Y(sample) - 0.5), fYMax);
+ int y1 = adjust_edge(fYEdgeType, SkScalarTruncToInt(Y(sample) + 0.5), fYMax);
+
+ *filterXs = Sk4i{x0, x1, x0, x1};
+ *filterYs = Sk4i{y0, y0, y1, y1};
+ }
+
+ // Given a sample point, generate a color by bilerping the four filter points.
+ Sk4f bilerpSamplePoint(SkPoint sample) {
+ Sk4i iXs, iYs;
+ filterPoints(sample, &iXs, &iYs);
+ Sk4f px00, px10, px01, px11;
+ fAccessor.get4Pixels(iXs, iYs, &px00, &px10, &px01, &px11);
+ return bilerp4(Sk4f{X(sample) - 0.5f}, Sk4f{Y(sample) - 0.5f}, px00, px10, px01, px11);
+ }
+
+ // Get two pixels at x from row0 and row1.
+ void get2PixelColumn(const void* row0, const void* row1, int x, Sk4f* px0, Sk4f* px1) {
+ *px0 = fAccessor.getPixelFromRow(row0, x);
+ *px1 = fAccessor.getPixelFromRow(row1, x);
+ }
+
+ // |dx| == 0. This code assumes that length is zero.
+ void spanZeroRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkASSERT(length == 0.0f);
+
+ // Filter for the blending of the top and bottom pixels.
+ SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate the four filter points from the sample point start. Generate the row* values.
+ Sk4i iXs, iYs;
+ this->filterPoints(start, &iXs, &iYs);
+ const void* const row0 = fAccessor.row(iYs[0]);
+ const void* const row1 = fAccessor.row(iYs[2]);
+
+ // Get the two pixels that make up the clamping pixel.
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, SkScalarFloorToInt(X(start)), &pxTop, &pxBottom);
+ Sk4f pixel = pxTop * filterY + (1.0f - filterY) * pxBottom;
+
+ while (count >= 4) {
+ fNext->blend4Pixels(pixel, pixel, pixel, pixel);
+ count -= 4;
+ }
+ while (count > 0) {
+ fNext->blendPixel(pixel);
+ count -= 1;
+ }
+ }
+
+ // 0 < |dx| < 1. This code reuses the calculations from previous pixels to reduce
+ // computation. In particular, several destination pixels maybe generated from the same four
+ // source pixels.
+ // In the following code a "part" is a combination of two pixels from the same column of the
+ // filter.
+ void spanSlowRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+
+ // Calculate the distance between each sample point.
+ const SkScalar dx = length / (count - 1);
+ SkASSERT(-1.0f < dx && dx < 1.0f && dx != 0.0f);
+
+ // Generate the filter values for the top-left corner.
+ // Note: these values are in filter space; this has implications about how to adjust
+ // these values at each step. For example, as the sample point increases, the filter
+ // value decreases, this is because the filter and position are related by
+ // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
+ // direction of the sample point which is increasing by dx.
+ SkScalar filterX = sample_to_filter(X(start));
+ SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate the four filter points from the sample point start. Generate the row* values.
+ Sk4i iXs, iYs;
+ this->filterPoints(start, &iXs, &iYs);
+ const void* const row0 = fAccessor.row(iYs[0]);
+ const void* const row1 = fAccessor.row(iYs[2]);
+
+ // Generate part of the filter value at xColumn.
+ auto partAtColumn = [&](int xColumn) {
+ int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
+ return pxTop * filterY + (1.0f - filterY) * pxBottom;
+ };
+
+ // The leftPart is made up of two pixels from the left column of the filter, right part
+ // is similar. The top and bottom pixels in the *Part are created as a linear blend of
+ // the top and bottom pixels using filterY. See the partAtColumn function above.
+ Sk4f leftPart = partAtColumn(iXs[0]);
+ Sk4f rightPart = partAtColumn(iXs[1]);
+
+ // Create a destination color by blending together a left and right part using filterX.
+ auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
+ Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
+ return check_pixel(pixel);
+ };
+
+ // Send the first pixel to the destination. This simplifies the loop structure so that no
+ // extra pixels are fetched for the last iteration of the loop.
+ fNext->blendPixel(bilerp(leftPart, rightPart));
+ count -= 1;
+
+ if (dx > 0.0f) {
+ // * positive direction - generate destination pixels by sliding the filter from left
+ // to right.
+ int rightPartCursor = iXs[1];
+
+ // Advance the filter from left to right. Remember that moving the top-left corner of
+ // the filter to the right actually makes the filter value smaller.
+ auto advanceFilter = [&]() {
+ filterX -= dx;
+ if (filterX <= 0.0f) {
+ filterX += 1.0f;
+ leftPart = rightPart;
+ rightPartCursor += 1;
+ rightPart = partAtColumn(rightPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ } else {
+ // * negative direction - generate destination pixels by sliding the filter from
+ // right to left.
+ int leftPartCursor = iXs[0];
+
+ // Advance the filter from right to left. Remember that moving the top-left corner of
+ // the filter to the left actually makes the filter value larger.
+ auto advanceFilter = [&]() {
+ // Remember, dx < 0 therefore this adds |dx| to filterX.
+ filterX -= dx;
+ // At this point filterX may be > 1, and needs to be wrapped back on to the filter
+ // interval, and the next column in the filter is calculated.
+ if (filterX > 1.0f) {
+ filterX -= 1.0f;
+ rightPart = leftPart;
+ leftPartCursor -= 1;
+ leftPart = partAtColumn(leftPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ }
+ }
+
+ // |dx| == 1. Moving through source space at a rate of 1 source pixel per 1 dst pixel.
+ // Every filter part is used for two destination pixels, and the code can bulk load four
+ // pixels at a time.
+ void spanUnitRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkASSERT(SkScalarAbs(length) == (count - 1));
+
+ // Calculate the four filter points of start, and use the two different Y values to
+ // generate the row pointers.
+ Sk4i iXs, iYs;
+ filterPoints(start, &iXs, &iYs);
+ const void* row0 = fAccessor.row(iYs[0]);
+ const void* row1 = fAccessor.row(iYs[2]);
+
+ // Calculate the filter values for the top-left filter element.
+ const SkScalar filterX = sample_to_filter(X(start));
+ const SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate part of the filter value at xColumn.
+ auto partAtColumn = [&](int xColumn) {
+ int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
+ return pxTop * filterY + (1.0f - filterY) * pxBottom;
+ };
+
+ auto get4Parts = [&](int ix, Sk4f* part0, Sk4f* part1, Sk4f* part2, Sk4f* part3) {
+ // Check if the pixels needed are near the edges. If not go fast using bulk pixels,
+ // otherwise be careful.
+ if (0 <= ix && ix <= fXMax - 3) {
+ Sk4f px00, px10, px20, px30,
+ px01, px11, px21, px31;
+ fAccessor.get4Pixels(row0, ix, &px00, &px10, &px20, &px30);
+ fAccessor.get4Pixels(row1, ix, &px01, &px11, &px21, &px31);
+ *part0 = filterY * px00 + (1.0f - filterY) * px01;
+ *part1 = filterY * px10 + (1.0f - filterY) * px11;
+ *part2 = filterY * px20 + (1.0f - filterY) * px21;
+ *part3 = filterY * px30 + (1.0f - filterY) * px31;
+ } else {
+ *part0 = partAtColumn(ix + 0);
+ *part1 = partAtColumn(ix + 1);
+ *part2 = partAtColumn(ix + 2);
+ *part3 = partAtColumn(ix + 3);
+ }
+ };
+
+ auto bilerp = [&](const Sk4f& part0, const Sk4f& part1) {
+ return part0 * filterX + part1 * (1.0f - filterX);
+ };
+
+ if (length > 0) {
+ // * positive direction - generate destination pixels by sliding the filter from left
+ // to right.
+
+ // overlapPart is the filter part from the end of the previous four pixels used at
+ // the start of the next four pixels.
+ Sk4f overlapPart = partAtColumn(iXs[0]);
+ int rightColumnCursor = iXs[1];
+ while (count >= 4) {
+ Sk4f part0, part1, part2, part3;
+ get4Parts(rightColumnCursor, &part0, &part1, &part2, &part3);
+ Sk4f px0 = bilerp(overlapPart, part0);
+ Sk4f px1 = bilerp(part0, part1);
+ Sk4f px2 = bilerp(part1, part2);
+ Sk4f px3 = bilerp(part2, part3);
+ overlapPart = part3;
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ rightColumnCursor += 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ Sk4f rightPart = partAtColumn(rightColumnCursor);
+
+ fNext->blendPixel(bilerp(overlapPart, rightPart));
+ overlapPart = rightPart;
+ rightColumnCursor += 1;
+ count -= 1;
+ }
+ } else {
+ // * negative direction - generate destination pixels by sliding the filter from
+ // right to left.
+ Sk4f overlapPart = partAtColumn(iXs[1]);
+ int leftColumnCursor = iXs[0];
+
+ while (count >= 4) {
+ Sk4f part0, part1, part2, part3;
+ get4Parts(leftColumnCursor - 3, &part3, &part2, &part1, &part0);
+ Sk4f px0 = bilerp(part0, overlapPart);
+ Sk4f px1 = bilerp(part1, part0);
+ Sk4f px2 = bilerp(part2, part1);
+ Sk4f px3 = bilerp(part3, part2);
+ overlapPart = part3;
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ leftColumnCursor -= 4;
+ count -= 4;
+ }
+
+ while (count > 0) {
+ Sk4f leftPart = partAtColumn(leftColumnCursor);
+
+ fNext->blendPixel(bilerp(leftPart, overlapPart));
+ overlapPart = leftPart;
+ leftColumnCursor -= 1;
+ count -= 1;
+ }
+ }
+ }
+
+ // 1 < |dx| < 2. Going through the source pixels at a faster rate than the dest pixels, but
+ // still slow enough to take advantage of previous calculations.
+ void spanMediumRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+
+ // Calculate the distance between each sample point.
+ const SkScalar dx = length / (count - 1);
+ SkASSERT((-2.0f < dx && dx < -1.0f) || (1.0f < dx && dx < 2.0f));
+
+ // Generate the filter values for the top-left corner.
+ // Note: these values are in filter space; this has implications about how to adjust
+ // these values at each step. For example, as the sample point increases, the filter
+ // value decreases, this is because the filter and position are related by
+ // (1 - (X(sample) - .5)) % 1. The (1 - stuff) causes the filter to move in the opposite
+ // direction of the sample point which is increasing by dx.
+ SkScalar filterX = sample_to_filter(X(start));
+ SkScalar filterY = sample_to_filter(Y(start));
+
+ // Generate the four filter points from the sample point start. Generate the row* values.
+ Sk4i iXs, iYs;
+ this->filterPoints(start, &iXs, &iYs);
+ const void* const row0 = fAccessor.row(iYs[0]);
+ const void* const row1 = fAccessor.row(iYs[2]);
+
+ // Generate part of the filter value at xColumn.
+ auto partAtColumn = [&](int xColumn) {
+ int adjustedColumn = adjust_edge(fXEdgeType, xColumn, fXMax);
+ Sk4f pxTop, pxBottom;
+ this->get2PixelColumn(row0, row1, adjustedColumn, &pxTop, &pxBottom);
+ return pxTop * filterY + (1.0f - filterY) * pxBottom;
+ };
+
+ // The leftPart is made up of two pixels from the left column of the filter, right part
+ // is similar. The top and bottom pixels in the *Part are created as a linear blend of
+ // the top and bottom pixels using filterY. See the nextPart function below.
+ Sk4f leftPart = partAtColumn(iXs[0]);
+ Sk4f rightPart = partAtColumn(iXs[1]);
+
+ // Create a destination color by blending together a left and right part using filterX.
+ auto bilerp = [&](const Sk4f& leftPart, const Sk4f& rightPart) {
+ Sk4f pixel = leftPart * filterX + rightPart * (1.0f - filterX);
+ return check_pixel(pixel);
+ };
+
+ // Send the first pixel to the destination. This simplifies the loop structure so that no
+ // extra pixels are fetched for the last iteration of the loop.
+ fNext->blendPixel(bilerp(leftPart, rightPart));
+ count -= 1;
+
+ if (dx > 0.0f) {
+ // * positive direction - generate destination pixels by sliding the filter from left
+ // to right.
+ int rightPartCursor = iXs[1];
+
+ // Advance the filter from left to right. Remember that moving the top-left corner of
+ // the filter to the right actually makes the filter value smaller.
+ auto advanceFilter = [&]() {
+ filterX -= dx;
+ // At this point filterX is less than zero, but might actually be less than -1.
+ if (filterX > -1.0f) {
+ filterX += 1.0f;
+ leftPart = rightPart;
+ rightPartCursor += 1;
+ rightPart = partAtColumn(rightPartCursor);
+ } else {
+ filterX += 2.0f;
+ rightPartCursor += 2;
+ leftPart = partAtColumn(rightPartCursor - 1);
+ rightPart = partAtColumn(rightPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ } else {
+ // * negative direction - generate destination pixels by sliding the filter from
+ // right to left.
+ int leftPartCursor = iXs[0];
+
+ auto advanceFilter = [&]() {
+ // Remember, dx < 0 therefore this adds |dx| to filterX.
+ filterX -= dx;
+ // At this point, filterX is greater than one, but may actually be greater than two.
+ if (filterX < 2.0f) {
+ filterX -= 1.0f;
+ rightPart = leftPart;
+ leftPartCursor -= 1;
+ leftPart = partAtColumn(leftPartCursor);
+ } else {
+ filterX -= 2.0f;
+ leftPartCursor -= 2;
+ rightPart = partAtColumn(leftPartCursor - 1);
+ leftPart = partAtColumn(leftPartCursor);
+ }
+ SkASSERT(0.0f < filterX && filterX <= 1.0f);
+ return bilerp(leftPart, rightPart);
+ };
+
+ while (count >= 4) {
+ Sk4f px0 = advanceFilter(),
+ px1 = advanceFilter(),
+ px2 = advanceFilter(),
+ px3 = advanceFilter();
+ fNext->blend4Pixels(px0, px1, px2, px3);
+ count -= 4;
+ }
+
+ while (count > 0) {
+ fNext->blendPixel(advanceFilter());
+ count -= 1;
+ }
+ }
+ }
+
+ // We're moving through source space faster than dst (zoomed out),
+ // so we'll never reuse a source pixel or be able to do contiguous loads.
+ void spanFastRate(Span span) {
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = span;
+ SkScalar x = X(start);
+ SkScalar y = Y(start);
+
+ SkScalar dx = length / (count - 1);
+ while (count > 0) {
+ fNext->blendPixel(this->bilerpSamplePoint(SkPoint{x, y}));
+ x += dx;
+ count -= 1;
+ }
+ }
+
+ Next* const fNext;
+ const SkShader::TileMode fXEdgeType;
+ const int fXMax;
+ const SkShader::TileMode fYEdgeType;
+ const int fYMax;
+ Accessor fAccessor;
+};
+
+} // namespace
+
+#endif // SkLinearBitmapPipeline_sampler_DEFINED
diff --git a/src/core/SkLinearBitmapPipeline_tile.h b/src/core/SkLinearBitmapPipeline_tile.h
new file mode 100644
index 0000000000..e18f7a1a5d
--- /dev/null
+++ b/src/core/SkLinearBitmapPipeline_tile.h
@@ -0,0 +1,412 @@
+/*
+ * Copyright 2016 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef SkLinearBitmapPipeline_tile_DEFINED
+#define SkLinearBitmapPipeline_tile_DEFINED
+
+#include "SkLinearBitmapPipeline_core.h"
+#include "SkPM4f.h"
+#include <algorithm>
+#include <cmath>
+#include <limits>
+
+namespace {
+
+void assertTiled(const Sk4s& vs, SkScalar vMax) {
+ SkASSERT(0 <= vs[0] && vs[0] < vMax);
+ SkASSERT(0 <= vs[1] && vs[1] < vMax);
+ SkASSERT(0 <= vs[2] && vs[2] < vMax);
+ SkASSERT(0 <= vs[3] && vs[3] < vMax);
+}
+
+/*
+ * Clamp in the X direction.
+ * Observations:
+ * * sample pointer border - if the sample point is <= 0.5 or >= Max - 0.5 then the pixel
+ * value should be a border color. For this case, create the span using clampToSinglePixel.
+ */
+class XClampStrategy {
+public:
+ XClampStrategy(int32_t max)
+ : fXMaxPixel{SkScalar(max - SK_ScalarHalf)}
+ , fXMax{SkScalar(max)} { }
+
+ void tileXPoints(Sk4s* xs) {
+ *xs = Sk4s::Min(Sk4s::Max(*xs, SK_ScalarHalf), fXMaxPixel);
+ assertTiled(*xs, fXMax);
+ }
+
+ template<typename Next>
+ bool maybeProcessSpan(Span originalSpan, Next* next) {
+ SkASSERT(!originalSpan.isEmpty());
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = originalSpan;
+ SkScalar x = X(start);
+ SkScalar y = Y(start);
+ Span span{{x, y}, length, count};
+
+ if (span.completelyWithin(0.0f, fXMax)) {
+ next->pointSpan(span);
+ return true;
+ }
+ if (1 == count || 0.0f == length) {
+ return false;
+ }
+
+ SkScalar dx = length / (count - 1);
+
+ // A B C
+ // +-------+-------+-------++-------+-------+-------+ +-------+-------++------
+ // | *---*|---*---|*---*--||-*---*-|---*---|*---...| |--*---*|---*---||*---*....
+ // | | | || | | | ... | | ||
+ // | | | || | | | | | ||
+ // +-------+-------+-------++-------+-------+-------+ +-------+-------++------
+ // ^ ^
+ // | xMin xMax-1 | xMax
+ //
+ // *---*---*---... - track of samples. * = sample
+ //
+ // +-+ ||
+ // | | - pixels in source space. || - tile border.
+ // +-+ ||
+ //
+ // The length from A to B is the length in source space or 4 * dx or (count - 1) * dx
+ // where dx is the distance between samples. There are 5 destination pixels
+ // corresponding to 5 samples specified in the A, B span. The distance from A to the next
+ // span starting at C is 5 * dx, so count * dx.
+ // Remember, count is the number of pixels needed for the destination and the number of
+ // samples.
+ // Overall Strategy:
+ // * Under - for portions of the span < xMin, take the color at pixel {xMin, y} and use it
+ // to fill in the 5 pixel sampled from A to B.
+ // * Middle - for the portion of the span between xMin and xMax sample normally.
+ // * Over - for the portion of the span > xMax, take the color at pixel {xMax-1, y} and
+ // use it to fill in the rest of the destination pixels.
+ if (dx >= 0) {
+ Span leftClamped = span.breakAt(SK_ScalarHalf, dx);
+ if (!leftClamped.isEmpty()) {
+ leftClamped.clampToSinglePixel({SK_ScalarHalf, y});
+ next->pointSpan(leftClamped);
+ }
+ Span center = span.breakAt(fXMax, dx);
+ if (!center.isEmpty()) {
+ next->pointSpan(center);
+ }
+ if (!span.isEmpty()) {
+ span.clampToSinglePixel({fXMaxPixel, y});
+ next->pointSpan(span);
+ }
+ } else {
+ Span rightClamped = span.breakAt(fXMax, dx);
+ if (!rightClamped.isEmpty()) {
+ rightClamped.clampToSinglePixel({fXMaxPixel, y});
+ next->pointSpan(rightClamped);
+ }
+ Span center = span.breakAt(SK_ScalarHalf, dx);
+ if (!center.isEmpty()) {
+ next->pointSpan(center);
+ }
+ if (!span.isEmpty()) {
+ span.clampToSinglePixel({SK_ScalarHalf, y});
+ next->pointSpan(span);
+ }
+ }
+ return true;
+ }
+
+private:
+ const SkScalar fXMaxPixel;
+ const SkScalar fXMax;
+};
+
+class YClampStrategy {
+public:
+ YClampStrategy(int32_t max)
+ : fYMaxPixel{SkScalar(max) - SK_ScalarHalf} { }
+
+ void tileYPoints(Sk4s* ys) {
+ *ys = Sk4s::Min(Sk4s::Max(*ys, SK_ScalarHalf), fYMaxPixel);
+ assertTiled(*ys, fYMaxPixel + SK_ScalarHalf);
+ }
+
+ SkScalar tileY(SkScalar y) {
+ Sk4f ys{y};
+ tileYPoints(&ys);
+ return ys[0];
+ }
+
+private:
+ const SkScalar fYMaxPixel;
+};
+
+SkScalar tile_mod(SkScalar x, SkScalar base, SkScalar cap) {
+ // When x is a negative number *very* close to zero, the difference becomes 0 - (-base) = base
+ // which is an out of bound value. The min() corrects these problematic values.
+ return std::min(x - SkScalarFloorToScalar(x / base) * base, cap);
+}
+
+class XRepeatStrategy {
+public:
+ XRepeatStrategy(int32_t max)
+ : fXMax{SkScalar(max)}
+ , fXCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
+ , fXInvMax{1.0f / SkScalar(max)} { }
+
+ void tileXPoints(Sk4s* xs) {
+ Sk4s divX = *xs * fXInvMax;
+ Sk4s modX = *xs - divX.floor() * fXMax;
+ *xs = Sk4s::Min(fXCap, modX);
+ assertTiled(*xs, fXMax);
+ }
+
+ template<typename Next>
+ bool maybeProcessSpan(Span originalSpan, Next* next) {
+ SkASSERT(!originalSpan.isEmpty());
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = originalSpan;
+ // Make x and y in range on the tile.
+ SkScalar x = tile_mod(X(start), fXMax, fXCap);
+ SkScalar y = Y(start);
+ SkScalar dx = length / (count - 1);
+
+ // No need trying to go fast because the steps are larger than a tile or there is one point.
+ if (SkScalarAbs(dx) >= fXMax || count <= 1) {
+ return false;
+ }
+
+ // A B C D Z
+ // +-------+-------+-------++-------+-------+-------++ +-------+-------++------
+ // | | *---|*---*--||-*---*-|---*---|*---*--|| |--*---*| ||
+ // | | | || | | || ... | | ||
+ // | | | || | | || | | ||
+ // +-------+-------+-------++-------+-------+-------++ +-------+-------++------
+ // ^^ ^^ ^^
+ // xMax || xMin xMax || xMin xMax || xMin
+ //
+ // *---*---*---... - track of samples. * = sample
+ //
+ // +-+ ||
+ // | | - pixels in source space. || - tile border.
+ // +-+ ||
+ //
+ //
+ // The given span starts at A and continues on through several tiles to sample point Z.
+ // The idea is to break this into several spans one on each tile the entire span
+ // intersects. The A to B span only covers a partial tile and has a count of 3 and the
+ // distance from A to B is (count - 1) * dx or 2 * dx. The distance from A to the start of
+ // the next span is count * dx or 3 * dx. Span C to D covers an entire tile has a count
+ // of 5 and a length of 4 * dx. Remember, count is the number of pixels needed for the
+ // destination and the number of samples.
+ //
+ // Overall Strategy:
+ // While the span hangs over the edge of the tile, draw the span covering the tile then
+ // slide the span over to the next tile.
+
+ // The guard could have been count > 0, but then a bunch of math would be done in the
+ // common case.
+
+ Span span({x, y}, length, count);
+ if (dx > 0) {
+ while (!span.isEmpty() && span.endX() >= fXMax) {
+ Span toDraw = span.breakAt(fXMax, dx);
+ next->pointSpan(toDraw);
+ span.offset(-fXMax);
+ }
+ } else {
+ while (!span.isEmpty() && span.endX() < 0.0f) {
+ Span toDraw = span.breakAt(0.0f, dx);
+ next->pointSpan(toDraw);
+ span.offset(fXMax);
+ }
+ }
+
+ // All on a single tile.
+ if (!span.isEmpty()) {
+ next->pointSpan(span);
+ }
+
+ return true;
+ }
+
+private:
+ const SkScalar fXMax;
+ const SkScalar fXCap;
+ const SkScalar fXInvMax;
+};
+
+// The XRepeatUnitScaleStrategy exploits the situation where dx = 1.0. The main advantage is that
+// the relationship between the sample points and the source pixels does not change from tile to
+// repeated tile. This allows the tiler to calculate the span once and re-use it for each
+// repeated tile. This is later exploited by some samplers to avoid converting pixels to linear
+// space allowing the use of memmove to place pixel in the destination.
+class XRepeatUnitScaleStrategy {
+public:
+ XRepeatUnitScaleStrategy(int32_t max)
+ : fXMax{SkScalar(max)}
+ , fXCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
+ , fXInvMax{1.0f / SkScalar(max)} { }
+
+ void tileXPoints(Sk4s* xs) {
+ Sk4s divX = *xs * fXInvMax;
+ Sk4s modX = *xs - divX.floor() * fXMax;
+ *xs = Sk4s::Min(fXCap, modX);
+ assertTiled(*xs, fXMax);
+ }
+
+ template<typename Next>
+ bool maybeProcessSpan(Span originalSpan, Next* next) {
+ SkASSERT(!originalSpan.isEmpty());
+ SkPoint start; SkScalar length; int count;
+ std::tie(start, length, count) = originalSpan;
+ // Make x and y in range on the tile.
+ SkScalar x = tile_mod(X(start), fXMax, fXCap);
+ SkScalar y = Y(start);
+
+ // No need trying to go fast because the steps are larger than a tile or there is one point.
+ if (fXMax == 1 || count <= 1) {
+ return false;
+ }
+
+ // x should be on the tile.
+ SkASSERT(0.0f <= x && x < fXMax);
+ Span span({x, y}, length, count);
+
+ if (SkScalarFloorToScalar(x) != 0.0f) {
+ Span toDraw = span.breakAt(fXMax, 1.0f);
+ SkASSERT(0.0f <= toDraw.startX() && toDraw.endX() < fXMax);
+ next->pointSpan(toDraw);
+ span.offset(-fXMax);
+ }
+
+ // All of the span could have been on the first tile. If so, then no work to do.
+ if (span.isEmpty()) return true;
+
+ // At this point the span should be aligned to zero.
+ SkASSERT(SkScalarFloorToScalar(span.startX()) == 0.0f);
+
+ // Note: The span length has an unintuitive relation to the tile width. The tile width is
+ // a half open interval [tb, te), but the span is a closed interval [sb, se]. In order to
+ // compare the two, you need to convert the span to a half open interval. This is done by
+ // adding dx to se. So, the span becomes: [sb, se + dx). Hence the + 1.0f below.
+ SkScalar div = (span.length() + 1.0f) / fXMax;
+ int32_t repeatCount = SkScalarFloorToInt(div);
+ Span repeatableSpan{{0.0f, y}, fXMax - 1.0f, SkScalarFloorToInt(fXMax)};
+
+ // Repeat the center section.
+ SkASSERT(0.0f <= repeatableSpan.startX() && repeatableSpan.endX() < fXMax);
+ if (repeatCount > 0) {
+ next->repeatSpan(repeatableSpan, repeatCount);
+ }
+
+ // Calculate the advance past the center portion.
+ SkScalar advance = SkScalar(repeatCount) * fXMax;
+
+ // There may be some of the span left over.
+ span.breakAt(advance, 1.0f);
+
+ // All on a single tile.
+ if (!span.isEmpty()) {
+ span.offset(-advance);
+ SkASSERT(0.0f <= span.startX() && span.endX() < fXMax);
+ next->pointSpan(span);
+ }
+
+ return true;
+ }
+
+private:
+ const SkScalar fXMax;
+ const SkScalar fXCap;
+ const SkScalar fXInvMax;
+};
+
+class YRepeatStrategy {
+public:
+ YRepeatStrategy(int32_t max)
+ : fYMax{SkScalar(max)}
+ , fYCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
+ , fYsInvMax{1.0f / SkScalar(max)} { }
+
+ void tileYPoints(Sk4s* ys) {
+ Sk4s divY = *ys * fYsInvMax;
+ Sk4s modY = *ys - divY.floor() * fYMax;
+ *ys = Sk4s::Min(fYCap, modY);
+ assertTiled(*ys, fYMax);
+ }
+
+ SkScalar tileY(SkScalar y) {
+ SkScalar answer = tile_mod(y, fYMax, fYCap);
+ SkASSERT(0 <= answer && answer < fYMax);
+ return answer;
+ }
+
+private:
+ const SkScalar fYMax;
+ const SkScalar fYCap;
+ const SkScalar fYsInvMax;
+};
+// max = 40
+// mq2[x_] := Abs[(x - 40) - Floor[(x - 40)/80] * 80 - 40]
+class XMirrorStrategy {
+public:
+ XMirrorStrategy(int32_t max)
+ : fXMax{SkScalar(max)}
+ , fXCap{SkScalar(nextafterf(SkScalar(max), 0.0f))}
+ , fXDoubleInvMax{1.0f / (2.0f * SkScalar(max))} { }
+
+ void tileXPoints(Sk4s* xs) {
+ Sk4f bias = *xs - fXMax;
+ Sk4f div = bias * fXDoubleInvMax;
+ Sk4f mod = bias - div.floor() * 2.0f * fXMax;
+ Sk4f unbias = mod - fXMax;
+ *xs = Sk4f::Min(unbias.abs(), fXCap);
+ assertTiled(*xs, fXMax);
+ }
+
+ template <typename Next>
+ bool maybeProcessSpan(Span originalSpan, Next* next) { return false; }
+
+private:
+ SkScalar fXMax;
+ SkScalar fXCap;
+ SkScalar fXDoubleInvMax;
+};
+
+class YMirrorStrategy {
+public:
+ YMirrorStrategy(int32_t max)
+ : fYMax{SkScalar(max)}
+ , fYCap{nextafterf(SkScalar(max), 0.0f)}
+ , fYDoubleInvMax{1.0f / (2.0f * SkScalar(max))} { }
+
+ void tileYPoints(Sk4s* ys) {
+ Sk4f bias = *ys - fYMax;
+ Sk4f div = bias * fYDoubleInvMax;
+ Sk4f mod = bias - div.floor() * 2.0f * fYMax;
+ Sk4f unbias = mod - fYMax;
+ *ys = Sk4f::Min(unbias.abs(), fYCap);
+ assertTiled(*ys, fYMax);
+ }
+
+ SkScalar tileY(SkScalar y) {
+ SkScalar bias = y - fYMax;
+ SkScalar div = bias * fYDoubleInvMax;
+ SkScalar mod = bias - SkScalarFloorToScalar(div) * 2.0f * fYMax;
+ SkScalar unbias = mod - fYMax;
+ SkScalar answer = SkMinScalar(SkScalarAbs(unbias), fYCap);
+ SkASSERT(0 <= answer && answer < fYMax);
+ return answer;
+ }
+
+private:
+ SkScalar fYMax;
+ SkScalar fYCap;
+ SkScalar fYDoubleInvMax;
+};
+
+} // namespace
+#endif // SkLinearBitmapPipeline_tile_DEFINED