diff options
author | raftias <raftias@google.com> | 2016-10-18 10:02:51 -0700 |
---|---|---|
committer | Commit bot <commit-bot@chromium.org> | 2016-10-18 10:02:52 -0700 |
commit | 9488833428e83c93a7e6002f4d056084fb57112f (patch) | |
tree | 725cd5f30d3b685b3e7d18eb68a551d9b76ad5df /gm | |
parent | b9eb887f8baa3dcf89b0106a799aff03b5c1cbba (diff) |
Refactored SkColorSpace and added in a Lab PCS GM
The refactoring breaks off A2B0 tag support into a separate
subclass of SkColorSpace_Base, while keeping the current
(besides CLUT) functionality in a XYZTRC subclass.
ICC profile loading is now aware of this and creates the A2B0
subclass when SkColorSpace::NewICC() is called on a profile
in need of the A2B0 functionality.
The LabPCSDemo GM loads a .icc profile containing a LAB PCS and
then runs a Lab->XYZ conversion on an image using it so we can
display it and test out the A2B0 SkColorSpace functionality,
sans a/b/m-curves, as well as the Lab->XYZ conversion code.
BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search?issue=2389983002
Review-Url: https://codereview.chromium.org/2389983002
Diffstat (limited to 'gm')
-rw-r--r-- | gm/gamut.cpp | 15 | ||||
-rw-r--r-- | gm/labpcsdemo.cpp | 272 |
2 files changed, 282 insertions, 5 deletions
diff --git a/gm/gamut.cpp b/gm/gamut.cpp index 707da29f64..3c64915561 100644 --- a/gm/gamut.cpp +++ b/gm/gamut.cpp @@ -127,20 +127,25 @@ static void draw_gamut_grid(SkCanvas* canvas, SkTArray<SkAutoTDelete<CellRendere // Use the original canvas' color type, but account for gamma requirements SkImageInfo origInfo = canvas->imageInfo(); - auto srgbCS = SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named); - auto wideCS = SkColorSpace::NewRGB(SkColorSpace::kSRGB_RenderTargetGamma, - wideGamutRGB_toXYZD50); + sk_sp<SkColorSpace> srgbCS; + sk_sp<SkColorSpace> wideCS; switch (origInfo.colorType()) { case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: + srgbCS = SkColorSpace::NewNamed(SkColorSpace::kSRGB_Named); + wideCS = SkColorSpace::NewRGB(SkColorSpace::kSRGB_RenderTargetGamma, + wideGamutRGB_toXYZD50); break; case kRGBA_F16_SkColorType: - srgbCS = as_CSB(srgbCS.get())->makeLinearGamma(); - wideCS = as_CSB(wideCS.get())->makeLinearGamma(); + srgbCS = SkColorSpace::NewNamed(SkColorSpace::kSRGBLinear_Named); + wideCS = SkColorSpace::NewRGB(SkColorSpace::kLinear_RenderTargetGamma, + wideGamutRGB_toXYZD50); break; default: return; } + SkASSERT(srgbCS); + SkASSERT(wideCS); // Make our two working surfaces (one sRGB, one Adobe) SkImageInfo srgbGamutInfo = SkImageInfo::Make(gRectSize, gRectSize, origInfo.colorType(), diff --git a/gm/labpcsdemo.cpp b/gm/labpcsdemo.cpp new file mode 100644 index 0000000000..4bd9ed8140 --- /dev/null +++ b/gm/labpcsdemo.cpp @@ -0,0 +1,272 @@ +/* + * Copyright 2016 Google Inc. + * + * Use of this source code is governed by a BSD-style license that can be + * found in the LICENSE file. + */ + +#include <cmath> +#include "gm.h" +#include "Resources.h" +#include "SkCodec.h" +#include "SkColorSpace_Base.h" +#include "SkColorSpace_A2B.h" +#include "SkColorSpacePriv.h" +#include "SkData.h" +#include "SkFloatingPoint.h" +#include "SkImageInfo.h" +#include "SkScalar.h" +#include "SkSRGB.h" +#include "SkStream.h" +#include "SkSurface.h" +#include "SkTypes.h" + +static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) { + // Call the src components x, y, and z. + uint8_t maxX = colorLUT->fGridPoints[0] - 1; + uint8_t maxY = colorLUT->fGridPoints[1] - 1; + uint8_t maxZ = colorLUT->fGridPoints[2] - 1; + + // An approximate index into each of the three dimensions of the table. + float x = src[0] * maxX; + float y = src[1] * maxY; + float z = src[2] * maxZ; + + // This gives us the low index for our interpolation. + int ix = sk_float_floor2int(x); + int iy = sk_float_floor2int(y); + int iz = sk_float_floor2int(z); + + // Make sure the low index is not also the max index. + ix = (maxX == ix) ? ix - 1 : ix; + iy = (maxY == iy) ? iy - 1 : iy; + iz = (maxZ == iz) ? iz - 1 : iz; + + // Weighting factors for the interpolation. + float diffX = x - ix; + float diffY = y - iy; + float diffZ = z - iz; + + // Constants to help us navigate the 3D table. + // Ex: Assume x = a, y = b, z = c. + // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]. + const int n000 = 0; + const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; + const int n010 = 3 * colorLUT->fGridPoints[2]; + const int n011 = n001 + n010; + const int n100 = 3; + const int n101 = n100 + n001; + const int n110 = n100 + n010; + const int n111 = n110 + n001; + + // Base ptr into the table. + const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); + + // The code below performs a tetrahedral interpolation for each of the three + // dst components. Once the tetrahedron containing the interpolation point is + // identified, the interpolation is a weighted sum of grid values at the + // vertices of the tetrahedron. The claim is that tetrahedral interpolation + // provides a more accurate color conversion. + // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/ + // + // I have one test image, and visually I can't tell the difference between + // tetrahedral and trilinear interpolation. In terms of computation, the + // tetrahedral code requires more branches but less computation. The + // SampleICC library provides an option for the client to choose either + // tetrahedral or trilinear. + for (int i = 0; i < 3; i++) { + if (diffZ < diffY) { + if (diffZ < diffX) { + dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + + diffY * (ptr[n010] - ptr[n000]) + + diffX * (ptr[n111] - ptr[n110])); + } else if (diffY < diffX) { + dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + + diffY * (ptr[n011] - ptr[n001]) + + diffX * (ptr[n001] - ptr[n000])); + } else { + dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + + diffY * (ptr[n010] - ptr[n000]) + + diffX * (ptr[n011] - ptr[n010])); + } + } else { + if (diffZ < diffX) { + dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + + diffY * (ptr[n111] - ptr[n101]) + + diffX * (ptr[n001] - ptr[n000])); + } else if (diffY < diffX) { + dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + + diffY * (ptr[n111] - ptr[n101]) + + diffX * (ptr[n101] - ptr[n100])); + } else { + dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + + diffY * (ptr[n110] - ptr[n100]) + + diffX * (ptr[n111] - ptr[n110])); + } + } + + // Increment the table ptr in order to handle the next component. + // Note that this is the how table is designed: all of nXXX + // variables are multiples of 3 because there are 3 output + // components. + ptr++; + } +} + + +/** + * This tests decoding from a Lab source image and displays on the left + * the image as raw RGB values, and on the right a Lab PCS. + * It currently does NOT apply a/b/m-curves, as in the .icc profile + * We are testing it on these are all identity transforms. + */ +class LabPCSDemoGM : public skiagm::GM { +public: + LabPCSDemoGM() + : fWidth(1080) + , fHeight(480) + {} + +protected: + + + SkString onShortName() override { + return SkString("labpcsdemo"); + } + + SkISize onISize() override { + return SkISize::Make(fWidth, fHeight); + } + + void onDraw(SkCanvas* canvas) override { + canvas->drawColor(SK_ColorGREEN); + const char* filename = "brickwork-texture.jpg"; + renderImage(canvas, filename, 0, false); + renderImage(canvas, filename, 1, true); + } + + void renderImage(SkCanvas* canvas, const char* filename, int col, bool convertLabToXYZ) { + SkBitmap bitmap; + SkStream* stream(GetResourceAsStream(filename)); + if (stream == nullptr) { + return; + } + std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream)); + + + // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses + // Lab as the PCS, so we can take any arbitrary image that should + // be sRGB and this should show a reasonable image + const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.icc")); + sk_sp<SkData> iccData = SkData::MakeFromFileName(iccFilename.c_str()); + if (iccData == nullptr) { + return; + } + sk_sp<SkColorSpace> colorSpace = SkColorSpace::NewICC(iccData->bytes(), iccData->size()); + + const int imageWidth = codec->getInfo().width(); + const int imageHeight = codec->getInfo().height(); + // Using nullptr as the color space instructs the codec to decode in legacy mode, + // meaning that we will get the raw encoded bytes without any color correction. + SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_SkColorType, + kOpaque_SkAlphaType, nullptr); + bitmap.allocPixels(imageInfo); + codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes()); + if (convertLabToXYZ) { + SkASSERT(SkColorSpace_Base::Type::kA2B == as_CSB(colorSpace)->type()); + SkColorSpace_A2B& cs = *static_cast<SkColorSpace_A2B*>(colorSpace.get()); + bool printConversions = false; + SkASSERT(cs.colorLUT()); + // We're skipping evaluating the TRCs and the matrix here since they aren't + // in the ICC profile initially used here. + SkASSERT(kLinear_SkGammaNamed == cs.aCurveNamed()); + SkASSERT(kLinear_SkGammaNamed == cs.mCurveNamed()); + SkASSERT(kLinear_SkGammaNamed == cs.bCurveNamed()); + SkASSERT(cs.matrix().isIdentity()); + for (int y = 0; y < imageHeight; ++y) { + for (int x = 0; x < imageWidth; ++x) { + uint32_t& p = *bitmap.getAddr32(x, y); + const int r = SkColorGetR(p); + const int g = SkColorGetG(p); + const int b = SkColorGetB(p); + if (printConversions) { + SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b); + } + + float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f }; + + interp_3d_clut(lab, lab, cs.colorLUT()); + + // Lab has ranges [0,100] for L and [-128,127] for a and b + // but the ICC profile loader stores as [0,1]. The ICC + // specifies an offset of -128 to convert. + // note: formula could be adjusted to remove this conversion, + // but for now let's keep it like this for clarity until + // an optimized version is added. + lab[0] *= 100.f; + lab[1] = 255.f * lab[1] - 128.f; + lab[2] = 255.f * lab[2] - 128.f; + if (printConversions) { + SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab[1], lab[2]); + } + + // convert from Lab to XYZ + float Y = (lab[0] + 16.f) * (1.f/116.f); + float X = lab[1] * (1.f/500.f) + Y; + float Z = Y - (lab[2] * (1.f/200.f)); + float cubed; + cubed = X*X*X; + if (cubed > 0.008856f) + X = cubed; + else + X = (X - (16.f/116.f)) * (1.f/7.787f); + cubed = Y*Y*Y; + if (cubed > 0.008856f) + Y = cubed; + else + Y = (Y - (16.f/116.f)) * (1.f/7.787f); + cubed = Z*Z*Z; + if (cubed > 0.008856f) + Z = cubed; + else + Z = (Z - (16.f/116.f)) * (1.f/7.787f); + + // adjust to D50 illuminant + X *= 0.96422f; + Y *= 1.00000f; + Z *= 0.82521f; + + if (printConversions) { + SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z); + } + + // convert XYZ -> linear sRGB + Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z, + -0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z, + 0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z, + 1.f); + // and apply sRGB gamma + Sk4i sRGB = sk_linear_to_srgb(lRGB); + if (printConversions) { + SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRGB[1], sRGB[2]); + } + p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]); + } + } + } + const int freeWidth = fWidth - 2*imageWidth; + const int freeHeight = fHeight - imageHeight; + canvas->drawBitmap(bitmap, + static_cast<SkScalar>((col+1) * (freeWidth / 3) + col*imageWidth), + static_cast<SkScalar>(freeHeight / 2)); + ++col; + } + +private: + const int fWidth; + const int fHeight; + + typedef skiagm::GM INHERITED; +}; + +DEF_GM( return new LabPCSDemoGM; ) |