aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/google/protobuf/repeated_field.h
blob: 79682b69c6f7b7360528535286b4425c735ac69a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields.  These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers.  RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// Typically, clients should not need to access RepeatedField objects directly,
// but should instead use the accessor functions generated automatically by the
// protocol compiler.

#ifndef GOOGLE_PROTOBUF_REPEATED_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_FIELD_H__

#ifdef _MSC_VER
// This is required for min/max on VS2013 only.
#include <algorithm>
#endif

#include <iterator>
#include <limits>
#include <string>
#include <google/protobuf/stubs/casts.h>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/implicit_weak_message.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/stubs/port.h>
#include <type_traits>


// Forward-declare these so that we can make them friends.
namespace google {
namespace upb {
namespace google_opensource {
class GMR_Handlers;
}  // namespace google_opensource
}  // namespace upb

namespace protobuf {

class Message;

namespace internal {

class MergePartialFromCodedStreamHelper;

static const int kMinRepeatedFieldAllocationSize = 4;

// A utility function for logging that doesn't need any template types.
void LogIndexOutOfBounds(int index, int size);

template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end, std::forward_iterator_tag) {
  return static_cast<int>(std::distance(begin, end));
}

template <typename Iter>
inline int CalculateReserve(Iter /*begin*/, Iter /*end*/,
                            std::input_iterator_tag /*unused*/) {
  return -1;
}

template <typename Iter>
inline int CalculateReserve(Iter begin, Iter end) {
  typedef typename std::iterator_traits<Iter>::iterator_category Category;
  return CalculateReserve(begin, end, Category());
}
}  // namespace internal


// RepeatedField is used to represent repeated fields of a primitive type (in
// other words, everything except strings and nested Messages).  Most users will
// not ever use a RepeatedField directly; they will use the get-by-index,
// set-by-index, and add accessors that are generated for all repeated fields.
template <typename Element>
class RepeatedField final {
 public:
  RepeatedField();
  explicit RepeatedField(Arena* arena);
  RepeatedField(const RepeatedField& other);
  template <typename Iter>
  RepeatedField(Iter begin, const Iter& end);
  ~RepeatedField();

  RepeatedField& operator=(const RepeatedField& other);

  RepeatedField(RepeatedField&& other) noexcept;
  RepeatedField& operator=(RepeatedField&& other) noexcept;

  bool empty() const;
  int size() const;

  const Element& Get(int index) const;
  Element* Mutable(int index);

  const Element& operator[](int index) const { return Get(index); }
  Element& operator[](int index) { return *Mutable(index); }

  void Set(int index, const Element& value);
  void Add(const Element& value);
  // Appends a new element and return a pointer to it.
  // The new element is uninitialized if |Element| is a POD type.
  Element* Add();
  // Remove the last element in the array.
  void RemoveLast();

  // Extract elements with indices in "[start .. start+num-1]".
  // Copy them into "elements[0 .. num-1]" if "elements" is not NULL.
  // Caution: implementation also moves elements with indices [start+num ..].
  // Calling this routine inside a loop can cause quadratic behavior.
  void ExtractSubrange(int start, int num, Element* elements);

  void Clear();
  void MergeFrom(const RepeatedField& other);
  void CopyFrom(const RepeatedField& other);

  // Reserve space to expand the field to at least the given size.  If the
  // array is grown, it will always be at least doubled in size.
  void Reserve(int new_size);

  // Resize the RepeatedField to a new, smaller size.  This is O(1).
  void Truncate(int new_size);

  void AddAlreadyReserved(const Element& value);
  // Appends a new element and return a pointer to it.
  // The new element is uninitialized if |Element| is a POD type.
  // Should be called only if Capacity() > Size().
  Element* AddAlreadyReserved();
  Element* AddNAlreadyReserved(int elements);
  int Capacity() const;

  // Like STL resize.  Uses value to fill appended elements.
  // Like Truncate() if new_size <= size(), otherwise this is
  // O(new_size - size()).
  void Resize(int new_size, const Element& value);

  // Gets the underlying array.  This pointer is possibly invalidated by
  // any add or remove operation.
  Element* mutable_data();
  const Element* data() const;

  // Swap entire contents with "other". If they are separate arenas then, copies
  // data between each other.
  void Swap(RepeatedField* other);

  // Swap entire contents with "other". Should be called only if the caller can
  // guarantee that both repeated fields are on the same arena or are on the
  // heap. Swapping between different arenas is disallowed and caught by a
  // GOOGLE_DCHECK (see API docs for details).
  void UnsafeArenaSwap(RepeatedField* other);

  // Swap two elements.
  void SwapElements(int index1, int index2);

  // STL-like iterator support
  typedef Element* iterator;
  typedef const Element* const_iterator;
  typedef Element value_type;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef int size_type;
  typedef ptrdiff_t difference_type;

  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;

  // Reverse iterator support
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  reverse_iterator rbegin() {
    return reverse_iterator(end());
  }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  reverse_iterator rend() {
    return reverse_iterator(begin());
  }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  // Returns the number of bytes used by the repeated field, excluding
  // sizeof(*this)
  size_t SpaceUsedExcludingSelfLong() const;

  int SpaceUsedExcludingSelf() const {
    return internal::ToIntSize(SpaceUsedExcludingSelfLong());
  }

  // Removes the element referenced by position.
  //
  // Returns an iterator to the element immediately following the removed
  // element.
  //
  // Invalidates all iterators at or after the removed element, including end().
  iterator erase(const_iterator position);

  // Removes the elements in the range [first, last).
  //
  // Returns an iterator to the element immediately following the removed range.
  //
  // Invalidates all iterators at or after the removed range, including end().
  iterator erase(const_iterator first, const_iterator last);

  // Get the Arena on which this RepeatedField stores its elements.
  ::google::protobuf::Arena* GetArena() const {
    return GetArenaNoVirtual();
  }

  // For internal use only.
  //
  // This is public due to it being called by generated code.
  inline void InternalSwap(RepeatedField* other);

 private:
  static const int kInitialSize = 0;
  // A note on the representation here (see also comment below for
  // RepeatedPtrFieldBase's struct Rep):
  //
  // We maintain the same sizeof(RepeatedField) as before we added arena support
  // so that we do not degrade performance by bloating memory usage. Directly
  // adding an arena_ element to RepeatedField is quite costly. By using
  // indirection in this way, we keep the same size when the RepeatedField is
  // empty (common case), and add only an 8-byte header to the elements array
  // when non-empty. We make sure to place the size fields directly in the
  // RepeatedField class to avoid costly cache misses due to the indirection.
  int current_size_;
  int total_size_;
  struct Rep {
    Arena* arena;
    Element elements[1];
  };
  // We can not use sizeof(Rep) - sizeof(Element) due to the trailing padding on
  // the struct. We can not use sizeof(Arena*) as well because there might be
  // a "gap" after the field arena and before the field elements (e.g., when
  // Element is double and pointer is 32bit).
  static const size_t kRepHeaderSize;

  // We reuse the Rep* for an Arena* when total_size == 0, to avoid having to do
  // an allocation in the constructor when we have an Arena.
  union Pointer {
    Pointer(Arena* a) : arena(a) {}
    Arena* arena;   // When total_size_ == 0.
    Rep* rep;       // When total_size_ != 0.
  } ptr_;

  Rep* rep() const {
    GOOGLE_DCHECK_GT(total_size_, 0);
    return ptr_.rep;
  }

  friend class Arena;
  typedef void InternalArenaConstructable_;


  // Move the contents of |from| into |to|, possibly clobbering |from| in the
  // process.  For primitive types this is just a memcpy(), but it could be
  // specialized for non-primitive types to, say, swap each element instead.
  void MoveArray(Element* to, Element* from, int size);

  // Copy the elements of |from| into |to|.
  void CopyArray(Element* to, const Element* from, int size);

  // Internal helper expected by Arena methods.
  inline Arena* GetArenaNoVirtual() const {
    return (total_size_ == 0) ? ptr_.arena : ptr_.rep->arena;
  }

  // Internal helper to delete all elements and deallocate the storage.
  // If Element has a trivial destructor (for example, if it's a fundamental
  // type, like int32), the loop will be removed by the optimizer.
  void InternalDeallocate(Rep* rep, int size) {
    if (rep != NULL) {
      Element* e = &rep->elements[0];
      Element* limit = &rep->elements[size];
      for (; e < limit; e++) {
        e->~Element();
      }
      if (rep->arena == NULL) {
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
        const size_t bytes = size * sizeof(*e) + kRepHeaderSize;
        ::operator delete(static_cast<void*>(rep), bytes);
#else
        ::operator delete(static_cast<void*>(rep));
#endif
      }
    }
  }

  friend class internal::WireFormatLite;
  const Element* unsafe_data() const;
};

template<typename Element>
const size_t RepeatedField<Element>::kRepHeaderSize =
    reinterpret_cast<size_t>(&reinterpret_cast<Rep*>(16)->elements[0]) - 16;

namespace internal {
template <typename It> class RepeatedPtrIterator;
template <typename It, typename VoidPtr> class RepeatedPtrOverPtrsIterator;
}  // namespace internal

namespace internal {

// This is a helper template to copy an array of elements efficiently when they
// have a trivial copy constructor, and correctly otherwise. This really
// shouldn't be necessary, but our compiler doesn't optimize std::copy very
// effectively.
template <typename Element,
          bool HasTrivialCopy =
              std::is_pod<Element>::value>
struct ElementCopier {
  void operator()(Element* to, const Element* from, int array_size);
};

}  // namespace internal

namespace internal {

// type-traits helper for RepeatedPtrFieldBase: we only want to invoke
// arena-related "copy if on different arena" behavior if the necessary methods
// exist on the contained type. In particular, we rely on MergeFrom() existing
// as a general proxy for the fact that a copy will work, and we also provide a
// specific override for string*.
template <typename T>
struct TypeImplementsMergeBehaviorProbeForMergeFrom {
  typedef char HasMerge;
  typedef long HasNoMerge;

  // We accept either of:
  // - void MergeFrom(const T& other)
  // - bool MergeFrom(const T& other)
  //
  // We mangle these names a bit to avoid compatibility issues in 'unclean'
  // include environments that may have, e.g., "#define test ..." (yes, this
  // exists).
  template<typename U, typename RetType, RetType (U::*)(const U& arg)>
      struct CheckType;
  template<typename U> static HasMerge Check(
      CheckType<U, void, &U::MergeFrom>*);
  template<typename U> static HasMerge Check(
      CheckType<U, bool, &U::MergeFrom>*);
  template<typename U> static HasNoMerge Check(...);

  // Resolves to either std::true_type or std::false_type.
  typedef std::integral_constant<bool,
               (sizeof(Check<T>(0)) == sizeof(HasMerge))> type;
};

template <typename T, typename = void>
struct TypeImplementsMergeBehavior :
    TypeImplementsMergeBehaviorProbeForMergeFrom<T> {};


template <>
struct TypeImplementsMergeBehavior< ::std::string> {
  typedef std::true_type type;
};

// This is the common base class for RepeatedPtrFields.  It deals only in void*
// pointers.  Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler.  Its signature is:
//   class TypeHandler {
//    public:
//     typedef MyType Type;
//     // WeakType is almost always the same as MyType, but we use it in
//     // ImplicitWeakTypeHandler.
//     typedef MyType WeakType;
//     static Type* New();
//     static WeakType* NewFromPrototype(const WeakType* prototype,
//                                       ::google::protobuf::Arena* arena);
//     static void Delete(Type*);
//     static void Clear(Type*);
//     static void Merge(const Type& from, Type* to);
//
//     // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
//     static int SpaceUsedLong(const Type&);
//   };
class LIBPROTOBUF_EXPORT RepeatedPtrFieldBase {
 protected:
  RepeatedPtrFieldBase();
  explicit RepeatedPtrFieldBase(::google::protobuf::Arena* arena);
  ~RepeatedPtrFieldBase() {}

  // Must be called from destructor.
  template <typename TypeHandler>
  void Destroy();

  bool empty() const;
  int size() const;

  template <typename TypeHandler>
  typename TypeHandler::Type* Mutable(int index);
  template <typename TypeHandler>
  void Delete(int index);
  template <typename TypeHandler>
  typename TypeHandler::Type* Add(typename TypeHandler::Type* prototype = NULL);

 public:
  // The next few methods are public so that they can be called from generated
  // code when implicit weak fields are used, but they should never be called by
  // application code.

  template <typename TypeHandler>
  const typename TypeHandler::WeakType& Get(int index) const;

  // Creates and adds an element using the given prototype, without introducing
  // a link-time dependency on the concrete message type. This method is used to
  // implement implicit weak fields. The prototype may be NULL, in which case an
  // ImplicitWeakMessage will be used as a placeholder.
  google::protobuf::MessageLite* AddWeak(const google::protobuf::MessageLite* prototype);

  template <typename TypeHandler>
  void Clear();

  template <typename TypeHandler>
  void MergeFrom(const RepeatedPtrFieldBase& other);

  inline void InternalSwap(RepeatedPtrFieldBase* other);

 protected:
  template <typename TypeHandler>
  void Add(typename TypeHandler::Type&& value,
           typename std::enable_if<TypeHandler::Moveable>::type* dummy = NULL);

  template <typename TypeHandler>
  void RemoveLast();
  template <typename TypeHandler>
  void CopyFrom(const RepeatedPtrFieldBase& other);

  void CloseGap(int start, int num);

  void Reserve(int new_size);

  int Capacity() const;

  // Used for constructing iterators.
  void* const* raw_data() const;
  void** raw_mutable_data() const;

  template <typename TypeHandler>
  typename TypeHandler::Type** mutable_data();
  template <typename TypeHandler>
  const typename TypeHandler::Type* const* data() const;

  template <typename TypeHandler> GOOGLE_PROTOBUF_ATTRIBUTE_ALWAYS_INLINE
  void Swap(RepeatedPtrFieldBase* other);

  void SwapElements(int index1, int index2);

  template <typename TypeHandler>
  size_t SpaceUsedExcludingSelfLong() const;

  // Advanced memory management --------------------------------------

  // Like Add(), but if there are no cleared objects to use, returns NULL.
  template <typename TypeHandler>
  typename TypeHandler::Type* AddFromCleared();

  template<typename TypeHandler>
  void AddAllocated(typename TypeHandler::Type* value) {
    typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
    AddAllocatedInternal<TypeHandler>(value, t);
  }

  template <typename TypeHandler>
  void UnsafeArenaAddAllocated(typename TypeHandler::Type* value);

  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLast() {
    typename TypeImplementsMergeBehavior<typename TypeHandler::Type>::type t;
    return ReleaseLastInternal<TypeHandler>(t);
  }

  // Releases last element and returns it, but does not do out-of-arena copy.
  // And just returns the raw pointer to the contained element in the arena.
  template <typename TypeHandler>
  typename TypeHandler::Type* UnsafeArenaReleaseLast();

  int ClearedCount() const;
  template <typename TypeHandler>
  void AddCleared(typename TypeHandler::Type* value);
  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseCleared();

  template <typename TypeHandler>
  void AddAllocatedInternal(typename TypeHandler::Type* value, std::true_type);
  template <typename TypeHandler>
  void AddAllocatedInternal(typename TypeHandler::Type* value, std::false_type);

  template <typename TypeHandler> GOOGLE_PROTOBUF_ATTRIBUTE_NOINLINE
  void AddAllocatedSlowWithCopy(typename TypeHandler::Type* value,
                                Arena* value_arena,
                                Arena* my_arena);
  template <typename TypeHandler> GOOGLE_PROTOBUF_ATTRIBUTE_NOINLINE
  void AddAllocatedSlowWithoutCopy(typename TypeHandler::Type* value);

  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLastInternal(std::true_type);
  template <typename TypeHandler>
  typename TypeHandler::Type* ReleaseLastInternal(std::false_type);

  template<typename TypeHandler> GOOGLE_PROTOBUF_ATTRIBUTE_NOINLINE
  void SwapFallback(RepeatedPtrFieldBase* other);

  inline Arena* GetArenaNoVirtual() const {
    return arena_;
  }

 private:
  static const int kInitialSize = 0;
  // A few notes on internal representation:
  //
  // We use an indirected approach, with struct Rep, to keep
  // sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
  // was added, namely, 3 8-byte machine words on x86-64. An instance of Rep is
  // allocated only when the repeated field is non-empty, and it is a
  // dynamically-sized struct (the header is directly followed by elements[]).
  // We place arena_ and current_size_ directly in the object to avoid cache
  // misses due to the indirection, because these fields are checked frequently.
  // Placing all fields directly in the RepeatedPtrFieldBase instance costs
  // significant performance for memory-sensitive workloads.
  Arena* arena_;
  int    current_size_;
  int    total_size_;
  struct Rep {
    int    allocated_size;
    void*  elements[1];
  };
  static const size_t kRepHeaderSize = sizeof(Rep) - sizeof(void*);
  // Contains arena ptr and the elements array. We also keep the invariant that
  // if rep_ is NULL, then arena is NULL.
  Rep* rep_;

  template <typename TypeHandler>
  static inline typename TypeHandler::Type* cast(void* element) {
    return reinterpret_cast<typename TypeHandler::Type*>(element);
  }
  template <typename TypeHandler>
  static inline const typename TypeHandler::Type* cast(const void* element) {
    return reinterpret_cast<const typename TypeHandler::Type*>(element);
  }

  // Non-templated inner function to avoid code duplication. Takes a function
  // pointer to the type-specific (templated) inner allocate/merge loop.
  void MergeFromInternal(
      const RepeatedPtrFieldBase& other,
      void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int));

  template<typename TypeHandler>
  void MergeFromInnerLoop(
      void** our_elems, void** other_elems, int length, int already_allocated);

  // Internal helper: extend array space if necessary to contain |extend_amount|
  // more elements, and return a pointer to the element immediately following
  // the old list of elements.  This interface factors out common behavior from
  // Reserve() and MergeFrom() to reduce code size. |extend_amount| must be > 0.
  void** InternalExtend(int extend_amount);

  // The reflection implementation needs to call protected methods directly,
  // reinterpreting pointers as being to Message instead of a specific Message
  // subclass.
  friend class GeneratedMessageReflection;

  // ExtensionSet stores repeated message extensions as
  // RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
  // SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
  // reinterpreting MessageLite as Message.  ExtensionSet also needs to make use
  // of AddFromCleared(), which is not part of the public interface.
  friend class ExtensionSet;

  // The MapFieldBase implementation needs to call protected methods directly,
  // reinterpreting pointers as being to Message instead of a specific Message
  // subclass.
  friend class MapFieldBase;

  // The table-driven MergePartialFromCodedStream implementation needs to
  // operate on RepeatedPtrField<MessageLite>.
  friend class MergePartialFromCodedStreamHelper;

  // To parse directly into a proto2 generated class, the upb class GMR_Handlers
  // needs to be able to modify a RepeatedPtrFieldBase directly.
  friend class upb::google_opensource::GMR_Handlers;

  friend class AccessorHelper;

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(RepeatedPtrFieldBase);
};

template <typename GenericType>
class GenericTypeHandler {
 public:
  typedef GenericType Type;
  typedef GenericType WeakType;
  static const bool Moveable = false;

  static inline GenericType* New(Arena* arena) {
    return ::google::protobuf::Arena::CreateMaybeMessage<Type>(arena);
  }
  static inline GenericType* NewFromPrototype(
      const GenericType* prototype, ::google::protobuf::Arena* arena = NULL);
  static inline void Delete(GenericType* value, Arena* arena) {
    if (arena == NULL) {
      delete value;
    }
  }
  static inline ::google::protobuf::Arena* GetArena(GenericType* value) {
    return ::google::protobuf::Arena::GetArena<Type>(value);
  }
  static inline void* GetMaybeArenaPointer(GenericType* value) {
    return ::google::protobuf::Arena::GetArena<Type>(value);
  }

  static inline void Clear(GenericType* value) { value->Clear(); }
  GOOGLE_PROTOBUF_ATTRIBUTE_NOINLINE
  static void Merge(const GenericType& from, GenericType* to);
  static inline size_t SpaceUsedLong(const GenericType& value) {
    return value.SpaceUsedLong();
  }
};

template <typename GenericType>
GenericType* GenericTypeHandler<GenericType>::NewFromPrototype(
    const GenericType* /* prototype */, ::google::protobuf::Arena* arena) {
  return New(arena);
}
template <typename GenericType>
void GenericTypeHandler<GenericType>::Merge(const GenericType& from,
                                            GenericType* to) {
  to->MergeFrom(from);
}

// NewFromPrototype() and Merge() are not defined inline here, as we will need
// to do a virtual function dispatch anyways to go from Message* to call
// New/Merge.
template<>
MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
    const MessageLite* prototype, google::protobuf::Arena* arena);
template<>
inline google::protobuf::Arena* GenericTypeHandler<MessageLite>::GetArena(
    MessageLite* value) {
  return value->GetArena();
}
template<>
inline void* GenericTypeHandler<MessageLite>::GetMaybeArenaPointer(
    MessageLite* value) {
  return value->GetMaybeArenaPointer();
}
template <>
void GenericTypeHandler<MessageLite>::Merge(const MessageLite& from,
                                            MessageLite* to);
template<>
inline void GenericTypeHandler<string>::Clear(string* value) {
  value->clear();
}
template<>
void GenericTypeHandler<string>::Merge(const string& from,
                                       string* to);

// Declarations of the specialization as we cannot define them here, as the
// header that defines ProtocolMessage depends on types defined in this header.
#define DECLARE_SPECIALIZATIONS_FOR_BASE_PROTO_TYPES(TypeName)                 \
    template<> LIBPROTOBUF_EXPORT                                              \
    TypeName* GenericTypeHandler<TypeName>::NewFromPrototype(                  \
        const TypeName* prototype, google::protobuf::Arena* arena);                      \
    template<> LIBPROTOBUF_EXPORT                                              \
    google::protobuf::Arena* GenericTypeHandler<TypeName>::GetArena(                     \
        TypeName* value);                                                      \
    template<> LIBPROTOBUF_EXPORT                                              \
    void* GenericTypeHandler<TypeName>::GetMaybeArenaPointer(                  \
        TypeName* value);

// Message specialization bodies defined in message.cc. This split is necessary
// to allow proto2-lite (which includes this header) to be independent of
// Message.
DECLARE_SPECIALIZATIONS_FOR_BASE_PROTO_TYPES(Message)


#undef DECLARE_SPECIALIZATIONS_FOR_BASE_PROTO_TYPES

class StringTypeHandler {
 public:
  typedef string Type;
  typedef string WeakType;
  static const bool Moveable = std::is_move_constructible<Type>::value &&
                               std::is_move_assignable<Type>::value;

  static inline string* New(Arena* arena) {
    return Arena::Create<string>(arena);
  }
  static inline string* New(Arena* arena, string&& value) {
    return Arena::Create<string>(arena, std::move(value));
  }
  static inline string* NewFromPrototype(const string*,
                                         ::google::protobuf::Arena* arena) {
    return New(arena);
  }
  static inline ::google::protobuf::Arena* GetArena(string*) {
    return NULL;
  }
  static inline void* GetMaybeArenaPointer(string* /* value */) {
    return NULL;
  }
  static inline void Delete(string* value, Arena* arena) {
    if (arena == NULL) {
      delete value;
    }
  }
  static inline void Clear(string* value) { value->clear(); }
  static inline void Merge(const string& from, string* to) { *to = from; }
  static size_t SpaceUsedLong(const string& value)  {
    return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
  }
};

}  // namespace internal

// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
 public:
  RepeatedPtrField();
  explicit RepeatedPtrField(::google::protobuf::Arena* arena);

  RepeatedPtrField(const RepeatedPtrField& other);
  template <typename Iter>
  RepeatedPtrField(Iter begin, const Iter& end);
  ~RepeatedPtrField();

  RepeatedPtrField& operator=(const RepeatedPtrField& other);

  RepeatedPtrField(RepeatedPtrField&& other) noexcept;
  RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept;

  bool empty() const;
  int size() const;

  const Element& Get(int index) const;
  Element* Mutable(int index);
  Element* Add();
  void Add(Element&& value);

  const Element& operator[](int index) const { return Get(index); }
  Element& operator[](int index) { return *Mutable(index); }

  // Remove the last element in the array.
  // Ownership of the element is retained by the array.
  void RemoveLast();

  // Delete elements with indices in the range [start .. start+num-1].
  // Caution: implementation moves all elements with indices [start+num .. ].
  // Calling this routine inside a loop can cause quadratic behavior.
  void DeleteSubrange(int start, int num);

  void Clear();
  void MergeFrom(const RepeatedPtrField& other);
  void CopyFrom(const RepeatedPtrField& other);

  // Reserve space to expand the field to at least the given size.  This only
  // resizes the pointer array; it doesn't allocate any objects.  If the
  // array is grown, it will always be at least doubled in size.
  void Reserve(int new_size);

  int Capacity() const;

  // Gets the underlying array.  This pointer is possibly invalidated by
  // any add or remove operation.
  Element** mutable_data();
  const Element* const* data() const;

  // Swap entire contents with "other". If they are on separate arenas, then
  // copies data.
  void Swap(RepeatedPtrField* other);

  // Swap entire contents with "other". Caller should guarantee that either both
  // fields are on the same arena or both are on the heap. Swapping between
  // different arenas with this function is disallowed and is caught via
  // GOOGLE_DCHECK.
  void UnsafeArenaSwap(RepeatedPtrField* other);

  // Swap two elements.
  void SwapElements(int index1, int index2);

  // STL-like iterator support
  typedef internal::RepeatedPtrIterator<Element> iterator;
  typedef internal::RepeatedPtrIterator<const Element> const_iterator;
  typedef Element value_type;
  typedef value_type& reference;
  typedef const value_type& const_reference;
  typedef value_type* pointer;
  typedef const value_type* const_pointer;
  typedef int size_type;
  typedef ptrdiff_t difference_type;

  iterator begin();
  const_iterator begin() const;
  const_iterator cbegin() const;
  iterator end();
  const_iterator end() const;
  const_iterator cend() const;

  // Reverse iterator support
  typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef std::reverse_iterator<iterator> reverse_iterator;
  reverse_iterator rbegin() {
    return reverse_iterator(end());
  }
  const_reverse_iterator rbegin() const {
    return const_reverse_iterator(end());
  }
  reverse_iterator rend() {
    return reverse_iterator(begin());
  }
  const_reverse_iterator rend() const {
    return const_reverse_iterator(begin());
  }

  // Custom STL-like iterator that iterates over and returns the underlying
  // pointers to Element rather than Element itself.
  typedef internal::RepeatedPtrOverPtrsIterator<Element*, void*>
      pointer_iterator;
  typedef internal::RepeatedPtrOverPtrsIterator<const Element* const,
                                                const void* const>
      const_pointer_iterator;
  pointer_iterator pointer_begin();
  const_pointer_iterator pointer_begin() const;
  pointer_iterator pointer_end();
  const_pointer_iterator pointer_end() const;

  // Returns (an estimate of) the number of bytes used by the repeated field,
  // excluding sizeof(*this).
  size_t SpaceUsedExcludingSelfLong() const;

  int SpaceUsedExcludingSelf() const {
    return internal::ToIntSize(SpaceUsedExcludingSelfLong());
  }

  // Advanced memory management --------------------------------------
  // When hardcore memory management becomes necessary -- as it sometimes
  // does here at Google -- the following methods may be useful.

  // Add an already-allocated object, passing ownership to the
  // RepeatedPtrField.
  //
  // Note that some special behavior occurs with respect to arenas:
  //
  //   (i) if this field holds submessages, the new submessage will be copied if
  //   the original is in an arena and this RepeatedPtrField is either in a
  //   different arena, or on the heap.
  //   (ii) if this field holds strings, the passed-in string *must* be
  //   heap-allocated, not arena-allocated. There is no way to dynamically check
  //   this at runtime, so User Beware.
  void AddAllocated(Element* value);

  // Remove the last element and return it, passing ownership to the caller.
  // Requires:  size() > 0
  //
  // If this RepeatedPtrField is on an arena, an object copy is required to pass
  // ownership back to the user (for compatible semantics). Use
  // UnsafeArenaReleaseLast() if this behavior is undesired.
  Element* ReleaseLast();

  // Add an already-allocated object, skipping arena-ownership checks. The user
  // must guarantee that the given object is in the same arena as this
  // RepeatedPtrField.
  // It is also useful in legacy code that uses temporary ownership to avoid
  // copies. Example:
  //   RepeatedPtrField<T> temp_field;
  //   temp_field.AddAllocated(new T);
  //   ... // Do something with temp_field
  //   temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
  // If you put temp_field on the arena this fails, because the ownership
  // transfers to the arena at the "AddAllocated" call and is not released
  // anymore causing a double delete. UnsafeArenaAddAllocated prevents this.
  void UnsafeArenaAddAllocated(Element* value);

  // Remove the last element and return it.  Works only when operating on an
  // arena. The returned pointer is to the original object in the arena, hence
  // has the arena's lifetime.
  // Requires:  current_size_ > 0
  Element* UnsafeArenaReleaseLast();

  // Extract elements with indices in the range "[start .. start+num-1]".
  // The caller assumes ownership of the extracted elements and is responsible
  // for deleting them when they are no longer needed.
  // If "elements" is non-NULL, then pointers to the extracted elements
  // are stored in "elements[0 .. num-1]" for the convenience of the caller.
  // If "elements" is NULL, then the caller must use some other mechanism
  // to perform any further operations (like deletion) on these elements.
  // Caution: implementation also moves elements with indices [start+num ..].
  // Calling this routine inside a loop can cause quadratic behavior.
  //
  // Memory copying behavior is identical to ReleaseLast(), described above: if
  // this RepeatedPtrField is on an arena, an object copy is performed for each
  // returned element, so that all returned element pointers are to
  // heap-allocated copies. If this copy is not desired, the user should call
  // UnsafeArenaExtractSubrange().
  void ExtractSubrange(int start, int num, Element** elements);

  // Identical to ExtractSubrange() described above, except that when this
  // repeated field is on an arena, no object copies are performed. Instead, the
  // raw object pointers are returned. Thus, if on an arena, the returned
  // objects must not be freed, because they will not be heap-allocated objects.
  void UnsafeArenaExtractSubrange(int start, int num, Element** elements);

  // When elements are removed by calls to RemoveLast() or Clear(), they
  // are not actually freed.  Instead, they are cleared and kept so that
  // they can be reused later.  This can save lots of CPU time when
  // repeatedly reusing a protocol message for similar purposes.
  //
  // Hardcore programs may choose to manipulate these cleared objects
  // to better optimize memory management using the following routines.

  // Get the number of cleared objects that are currently being kept
  // around for reuse.
  int ClearedCount() const;
  // Add an element to the pool of cleared objects, passing ownership to
  // the RepeatedPtrField.  The element must be cleared prior to calling
  // this method.
  //
  // This method cannot be called when the repeated field is on an arena or when
  // |value| is; both cases will trigger a GOOGLE_DCHECK-failure.
  void AddCleared(Element* value);
  // Remove a single element from the cleared pool and return it, passing
  // ownership to the caller.  The element is guaranteed to be cleared.
  // Requires:  ClearedCount() > 0
  //
  //
  // This method cannot be called when the repeated field is on an arena; doing
  // so will trigger a GOOGLE_DCHECK-failure.
  Element* ReleaseCleared();

  // Removes the element referenced by position.
  //
  // Returns an iterator to the element immediately following the removed
  // element.
  //
  // Invalidates all iterators at or after the removed element, including end().
  iterator erase(const_iterator position);

  // Removes the elements in the range [first, last).
  //
  // Returns an iterator to the element immediately following the removed range.
  //
  // Invalidates all iterators at or after the removed range, including end().
  iterator erase(const_iterator first, const_iterator last);

  // Gets the arena on which this RepeatedPtrField stores its elements.
  ::google::protobuf::Arena* GetArena() const {
    return GetArenaNoVirtual();
  }

  // For internal use only.
  //
  // This is public due to it being called by generated code.
  using RepeatedPtrFieldBase::InternalSwap;

 private:
  // Note:  RepeatedPtrField SHOULD NOT be subclassed by users.
  class TypeHandler;

  // Internal arena accessor expected by helpers in Arena.
  inline Arena* GetArenaNoVirtual() const;

  // Implementations for ExtractSubrange(). The copying behavior must be
  // included only if the type supports the necessary operations (e.g.,
  // MergeFrom()), so we must resolve this at compile time. ExtractSubrange()
  // uses SFINAE to choose one of the below implementations.
  void ExtractSubrangeInternal(int start, int num, Element** elements,
                               std::true_type);
  void ExtractSubrangeInternal(int start, int num, Element** elements,
                               std::false_type);

  friend class Arena;
  friend class MessageLite;

  typedef void InternalArenaConstructable_;

};

// implementation ====================================================

template <typename Element>
inline RepeatedField<Element>::RepeatedField()
  : current_size_(0),
    total_size_(0),
    ptr_(NULL) {
}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(Arena* arena)
  : current_size_(0),
    total_size_(0),
    ptr_(arena) {
}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(const RepeatedField& other)
  : current_size_(0),
    total_size_(0),
    ptr_(NULL) {
  if (other.current_size_ != 0) {
    Reserve(other.size());
    AddNAlreadyReserved(other.size());
    CopyArray(Mutable(0), &other.Get(0), other.size());
  }
}

template <typename Element>
template <typename Iter>
RepeatedField<Element>::RepeatedField(Iter begin, const Iter& end)
  : current_size_(0),
    total_size_(0),
    ptr_(NULL) {
  int reserve = internal::CalculateReserve(begin, end);
  if (reserve != -1) {
    Reserve(reserve);
    for (; begin != end; ++begin) {
      AddAlreadyReserved(*begin);
    }
  } else {
    for (; begin != end; ++begin) {
      Add(*begin);
    }
  }
}

template <typename Element>
RepeatedField<Element>::~RepeatedField() {
  if (total_size_ > 0) {
    InternalDeallocate(rep(), total_size_);
  }
}

template <typename Element>
inline RepeatedField<Element>&
RepeatedField<Element>::operator=(const RepeatedField& other) {
  if (this != &other)
    CopyFrom(other);
  return *this;
}

template <typename Element>
inline RepeatedField<Element>::RepeatedField(RepeatedField&& other) noexcept
    : RepeatedField() {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (other.GetArenaNoVirtual()) {
    CopyFrom(other);
  } else {
    InternalSwap(&other);
  }
}

template <typename Element>
inline RepeatedField<Element>& RepeatedField<Element>::operator=(
    RepeatedField&& other) noexcept {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (this != &other) {
    if (this->GetArenaNoVirtual() != other.GetArenaNoVirtual()) {
      CopyFrom(other);
    } else {
      InternalSwap(&other);
    }
  }
  return *this;
}

template <typename Element>
inline bool RepeatedField<Element>::empty() const {
  return current_size_ == 0;
}

template <typename Element>
inline int RepeatedField<Element>::size() const {
  return current_size_;
}

template <typename Element>
inline int RepeatedField<Element>::Capacity() const {
  return total_size_;
}

template<typename Element>
inline void RepeatedField<Element>::AddAlreadyReserved(const Element& value) {
  GOOGLE_DCHECK_LT(current_size_, total_size_);
  rep()->elements[current_size_++] = value;
}

template<typename Element>
inline Element* RepeatedField<Element>::AddAlreadyReserved() {
  GOOGLE_DCHECK_LT(current_size_, total_size_);
  return &rep()->elements[current_size_++];
}

template<typename Element>
inline Element* RepeatedField<Element>::AddNAlreadyReserved(int elements) {
  GOOGLE_DCHECK_LE(current_size_ + elements, total_size_);
  // Warning: total_size_ can be NULL if elements == 0 && current_size_ == 0.
  // Existing callers depend on this behavior. :(
  Element* ret = &ptr_.rep->elements[current_size_];
  current_size_ += elements;
  return ret;
}

template<typename Element>
inline void RepeatedField<Element>::Resize(int new_size, const Element& value) {
  GOOGLE_DCHECK_GE(new_size, 0);
  if (new_size > current_size_) {
    Reserve(new_size);
    std::fill(&rep()->elements[current_size_],
              &rep()->elements[new_size], value);
  }
  current_size_ = new_size;
}

template <typename Element>
inline const Element& RepeatedField<Element>::Get(int index) const {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return rep()->elements[index];
}

template <typename Element>
inline Element* RepeatedField<Element>::Mutable(int index) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return &rep()->elements[index];
}

template <typename Element>
inline void RepeatedField<Element>::Set(int index, const Element& value) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  rep()->elements[index] = value;
}

template <typename Element>
inline void RepeatedField<Element>::Add(const Element& value) {
  if (current_size_ == total_size_) Reserve(total_size_ + 1);
  rep()->elements[current_size_++] = value;
}

template <typename Element>
inline Element* RepeatedField<Element>::Add() {
  if (current_size_ == total_size_) Reserve(total_size_ + 1);
  return &rep()->elements[current_size_++];
}

template <typename Element>
inline void RepeatedField<Element>::RemoveLast() {
  GOOGLE_DCHECK_GT(current_size_, 0);
  current_size_--;
}

template <typename Element>
void RepeatedField<Element>::ExtractSubrange(
    int start, int num, Element* elements) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, this->current_size_);

  // Save the values of the removed elements if requested.
  if (elements != NULL) {
    for (int i = 0; i < num; ++i)
      elements[i] = this->Get(i + start);
  }

  // Slide remaining elements down to fill the gap.
  if (num > 0) {
    for (int i = start + num; i < this->current_size_; ++i)
      this->Set(i - num, this->Get(i));
    this->Truncate(this->current_size_ - num);
  }
}

template <typename Element>
inline void RepeatedField<Element>::Clear() {
  current_size_ = 0;
}

template <typename Element>
inline void RepeatedField<Element>::MergeFrom(const RepeatedField& other) {
  GOOGLE_DCHECK_NE(&other, this);
  if (other.current_size_ != 0) {
    int existing_size = size();
    Reserve(existing_size + other.size());
    AddNAlreadyReserved(other.size());
    CopyArray(Mutable(existing_size), &other.Get(0), other.size());
  }
}

template <typename Element>
inline void RepeatedField<Element>::CopyFrom(const RepeatedField& other) {
  if (&other == this) return;
  Clear();
  MergeFrom(other);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
    const_iterator position) {
  return erase(position, position + 1);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator RepeatedField<Element>::erase(
    const_iterator first, const_iterator last) {
  size_type first_offset = first - cbegin();
  if (first != last) {
    Truncate(std::copy(last, cend(), begin() + first_offset) - cbegin());
  }
  return begin() + first_offset;
}

template <typename Element>
inline Element* RepeatedField<Element>::mutable_data() {
  return total_size_ > 0 ? rep()->elements : NULL;
}

template <typename Element>
inline const Element* RepeatedField<Element>::data() const {
  return total_size_ > 0 ? rep()->elements : NULL;
}

template <typename Element>
inline const Element* RepeatedField<Element>::unsafe_data() const {
  return rep()->elements;
}

template <typename Element>
inline void RepeatedField<Element>::InternalSwap(RepeatedField* other) {
  GOOGLE_DCHECK(this != other);
  GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());

  std::swap(ptr_, other->ptr_);
  std::swap(current_size_, other->current_size_);
  std::swap(total_size_, other->total_size_);
}

template <typename Element>
void RepeatedField<Element>::Swap(RepeatedField* other) {
  if (this == other) return;
  if (GetArenaNoVirtual() == other->GetArenaNoVirtual()) {
    InternalSwap(other);
  } else {
    RepeatedField<Element> temp(other->GetArenaNoVirtual());
    temp.MergeFrom(*this);
    CopyFrom(*other);
    other->UnsafeArenaSwap(&temp);
  }
}

template <typename Element>
void RepeatedField<Element>::UnsafeArenaSwap(RepeatedField* other) {
  if (this == other) return;
  InternalSwap(other);
}

template <typename Element>
void RepeatedField<Element>::SwapElements(int index1, int index2) {
  using std::swap;  // enable ADL with fallback
  swap(rep()->elements[index1], rep()->elements[index2]);
}

template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::begin() {
  return total_size_ > 0 ? rep()->elements : NULL;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::begin() const {
  return total_size_ > 0 ? rep()->elements : NULL;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cbegin() const {
  return total_size_ > 0 ? rep()->elements : NULL;
}
template <typename Element>
inline typename RepeatedField<Element>::iterator
RepeatedField<Element>::end() {
  return total_size_ > 0 ? rep()->elements + current_size_ : NULL;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::end() const {
  return total_size_ > 0 ? rep()->elements + current_size_ : NULL;
}
template <typename Element>
inline typename RepeatedField<Element>::const_iterator
RepeatedField<Element>::cend() const {
  return total_size_ > 0 ? rep()->elements + current_size_ : NULL;
}

template <typename Element>
inline size_t RepeatedField<Element>::SpaceUsedExcludingSelfLong() const {
  return total_size_ > 0 ? (total_size_ * sizeof(Element) + kRepHeaderSize) : 0;
}

// Avoid inlining of Reserve(): new, copy, and delete[] lead to a significant
// amount of code bloat.
template <typename Element>
void RepeatedField<Element>::Reserve(int new_size) {
  if (total_size_ >= new_size) return;
  Rep* old_rep = total_size_ > 0 ? rep() : NULL;
  Arena* arena = GetArenaNoVirtual();
  new_size = std::max(google::protobuf::internal::kMinRepeatedFieldAllocationSize,
                      std::max(total_size_ * 2, new_size));
  GOOGLE_DCHECK_LE(
      static_cast<size_t>(new_size),
      (std::numeric_limits<size_t>::max() - kRepHeaderSize) / sizeof(Element))
      << "Requested size is too large to fit into size_t.";
  size_t bytes = kRepHeaderSize + sizeof(Element) * static_cast<size_t>(new_size);
  if (arena == NULL) {
    ptr_.rep = static_cast<Rep*>(::operator new(bytes));
  } else {
    ptr_.rep = reinterpret_cast<Rep*>(
            ::google::protobuf::Arena::CreateArray<char>(arena, bytes));
  }
  ptr_.rep->arena = arena;
  int old_total_size = total_size_;
  total_size_ = new_size;
  // Invoke placement-new on newly allocated elements. We shouldn't have to do
  // this, since Element is supposed to be POD, but a previous version of this
  // code allocated storage with "new Element[size]" and some code uses
  // RepeatedField with non-POD types, relying on constructor invocation. If
  // Element has a trivial constructor (e.g., int32), gcc (tested with -O2)
  // completely removes this loop because the loop body is empty, so this has no
  // effect unless its side-effects are required for correctness.
  // Note that we do this before MoveArray() below because Element's copy
  // assignment implementation will want an initialized instance first.
  Element* e = &rep()->elements[0];
  Element* limit = e + total_size_;
  for (; e < limit; e++) {
    new (e) Element;
  }
  if (current_size_ > 0) {
    MoveArray(&rep()->elements[0], old_rep->elements, current_size_);
  }

  // Likewise, we need to invoke destructors on the old array.
  InternalDeallocate(old_rep, old_total_size);

}

template <typename Element>
inline void RepeatedField<Element>::Truncate(int new_size) {
  GOOGLE_DCHECK_LE(new_size, current_size_);
  if (current_size_ > 0) {
    current_size_ = new_size;
  }
}

template <typename Element>
inline void RepeatedField<Element>::MoveArray(
  Element* to, Element* from, int array_size) {
  CopyArray(to, from, array_size);
}

template <typename Element>
inline void RepeatedField<Element>::CopyArray(
  Element* to, const Element* from, int array_size) {
  internal::ElementCopier<Element>()(to, from, array_size);
}

namespace internal {

template <typename Element, bool HasTrivialCopy>
void ElementCopier<Element, HasTrivialCopy>::operator()(
  Element* to, const Element* from, int array_size) {
  std::copy(from, from + array_size, to);
}

template <typename Element>
struct ElementCopier<Element, true> {
  void operator()(Element* to, const Element* from, int array_size) {
    memcpy(to, from, static_cast<size_t>(array_size) * sizeof(Element));
  }
};

}  // namespace internal


// -------------------------------------------------------------------

namespace internal {

inline RepeatedPtrFieldBase::RepeatedPtrFieldBase()
  : arena_(NULL),
    current_size_(0),
    total_size_(0),
    rep_(NULL) {
}

inline RepeatedPtrFieldBase::RepeatedPtrFieldBase(::google::protobuf::Arena* arena)
  : arena_(arena),
    current_size_(0),
    total_size_(0),
    rep_(NULL) {
}

template <typename TypeHandler>
void RepeatedPtrFieldBase::Destroy() {
  if (rep_ != NULL && arena_ == NULL) {
    int n = rep_->allocated_size;
    void* const* elements = rep_->elements;
    for (int i = 0; i < n; i++) {
      TypeHandler::Delete(cast<TypeHandler>(elements[i]), NULL);
    }
#if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
    const size_t size = total_size_ * sizeof(elements[0]) + kRepHeaderSize;
    ::operator delete(static_cast<void*>(rep_), size);
#else
    ::operator delete(static_cast<void*>(rep_));
#endif
  }
  rep_ = NULL;
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::Swap(RepeatedPtrFieldBase* other) {
  if (other->GetArenaNoVirtual() == GetArenaNoVirtual()) {
    InternalSwap(other);
  } else {
    SwapFallback<TypeHandler>(other);
  }
}

template <typename TypeHandler>
void RepeatedPtrFieldBase::SwapFallback(RepeatedPtrFieldBase* other) {
  GOOGLE_DCHECK(other->GetArenaNoVirtual() != GetArenaNoVirtual());

  // Copy semantics in this case. We try to improve efficiency by placing the
  // temporary on |other|'s arena so that messages are copied cross-arena only
  // once, not twice.
  RepeatedPtrFieldBase temp(other->GetArenaNoVirtual());
  temp.MergeFrom<TypeHandler>(*this);
  this->Clear<TypeHandler>();
  this->MergeFrom<TypeHandler>(*other);
  other->Clear<TypeHandler>();
  other->InternalSwap(&temp);
  temp.Destroy<TypeHandler>();  // Frees rep_ if `other` had no arena.
}

inline bool RepeatedPtrFieldBase::empty() const {
  return current_size_ == 0;
}

inline int RepeatedPtrFieldBase::size() const {
  return current_size_;
}

template <typename TypeHandler>
inline const typename TypeHandler::WeakType&
RepeatedPtrFieldBase::Get(int index) const {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return *cast<TypeHandler>(rep_->elements[index]);
}

template <typename TypeHandler>
inline typename TypeHandler::Type*
RepeatedPtrFieldBase::Mutable(int index) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  return cast<TypeHandler>(rep_->elements[index]);
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::Delete(int index) {
  GOOGLE_DCHECK_GE(index, 0);
  GOOGLE_DCHECK_LT(index, current_size_);
  TypeHandler::Delete(cast<TypeHandler>(rep_->elements[index]), arena_);
}

template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::Add(
    typename TypeHandler::Type* prototype) {
  if (rep_ != NULL && current_size_ < rep_->allocated_size) {
    return cast<TypeHandler>(rep_->elements[current_size_++]);
  }
  if (!rep_ || rep_->allocated_size == total_size_) {
    Reserve(total_size_ + 1);
  }
  ++rep_->allocated_size;
  typename TypeHandler::Type* result =
      TypeHandler::NewFromPrototype(prototype, arena_);
  rep_->elements[current_size_++] = result;
  return result;
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::Add(
    typename TypeHandler::Type&& value,
    typename std::enable_if<TypeHandler::Moveable>::type*) {
  if (rep_ != NULL && current_size_ < rep_->allocated_size) {
    *cast<TypeHandler>(rep_->elements[current_size_++]) = std::move(value);
    return;
  }
  if (!rep_ || rep_->allocated_size == total_size_) {
    Reserve(total_size_ + 1);
  }
  ++rep_->allocated_size;
  typename TypeHandler::Type* result =
      TypeHandler::New(arena_, std::move(value));
  rep_->elements[current_size_++] = result;
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::RemoveLast() {
  GOOGLE_DCHECK_GT(current_size_, 0);
  TypeHandler::Clear(cast<TypeHandler>(rep_->elements[--current_size_]));
}

template <typename TypeHandler>
void RepeatedPtrFieldBase::Clear() {
  const int n = current_size_;
  GOOGLE_DCHECK_GE(n, 0);
  if (n > 0) {
    void* const* elements = rep_->elements;
    int i = 0;
    do {
      TypeHandler::Clear(cast<TypeHandler>(elements[i++]));
    } while (i < n);
    current_size_ = 0;
  }
}

// To avoid unnecessary code duplication and reduce binary size, we use a
// layered approach to implementing MergeFrom(). The toplevel method is
// templated, so we get a small thunk per concrete message type in the binary.
// This calls a shared implementation with most of the logic, passing a function
// pointer to another type-specific piece of code that calls the object-allocate
// and merge handlers.
template <typename TypeHandler>
inline void RepeatedPtrFieldBase::MergeFrom(const RepeatedPtrFieldBase& other) {
  GOOGLE_DCHECK_NE(&other, this);
  if (other.current_size_ == 0) return;
  MergeFromInternal(
      other, &RepeatedPtrFieldBase::MergeFromInnerLoop<TypeHandler>);
}

inline void RepeatedPtrFieldBase::MergeFromInternal(
    const RepeatedPtrFieldBase& other,
    void (RepeatedPtrFieldBase::*inner_loop)(void**, void**, int, int)) {
  // Note: wrapper has already guaranteed that other.rep_ != NULL here.
  int other_size = other.current_size_;
  void** other_elements = other.rep_->elements;
  void** new_elements = InternalExtend(other_size);
  int allocated_elems = rep_->allocated_size - current_size_;
  (this->*inner_loop)(new_elements, other_elements,
                      other_size, allocated_elems);
  current_size_ += other_size;
  if (rep_->allocated_size < current_size_) {
    rep_->allocated_size = current_size_;
  }
}

// Merges other_elems to our_elems.
template<typename TypeHandler>
void RepeatedPtrFieldBase::MergeFromInnerLoop(
    void** our_elems, void** other_elems, int length, int already_allocated) {
  // Split into two loops, over ranges [0, allocated) and [allocated, length),
  // to avoid a branch within the loop.
  for (int i = 0; i < already_allocated && i < length; i++) {
    // Already allocated: use existing element.
    typename TypeHandler::WeakType* other_elem =
        reinterpret_cast<typename TypeHandler::WeakType*>(other_elems[i]);
    typename TypeHandler::WeakType* new_elem =
        reinterpret_cast<typename TypeHandler::WeakType*>(our_elems[i]);
    TypeHandler::Merge(*other_elem, new_elem);
  }
  Arena* arena = GetArenaNoVirtual();
  for (int i = already_allocated; i < length; i++) {
    // Not allocated: alloc a new element first, then merge it.
    typename TypeHandler::WeakType* other_elem =
        reinterpret_cast<typename TypeHandler::WeakType*>(other_elems[i]);
    typename TypeHandler::WeakType* new_elem =
        TypeHandler::NewFromPrototype(other_elem, arena);
    TypeHandler::Merge(*other_elem, new_elem);
    our_elems[i] = new_elem;
  }
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::CopyFrom(const RepeatedPtrFieldBase& other) {
  if (&other == this) return;
  RepeatedPtrFieldBase::Clear<TypeHandler>();
  RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}

inline int RepeatedPtrFieldBase::Capacity() const {
  return total_size_;
}

inline void* const* RepeatedPtrFieldBase::raw_data() const {
  return rep_ ? rep_->elements : NULL;
}

inline void** RepeatedPtrFieldBase::raw_mutable_data() const {
  return rep_ ? const_cast<void**>(rep_->elements) : NULL;
}

template <typename TypeHandler>
inline typename TypeHandler::Type** RepeatedPtrFieldBase::mutable_data() {
  // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
  //   method entirely.
  return reinterpret_cast<typename TypeHandler::Type**>(raw_mutable_data());
}

template <typename TypeHandler>
inline const typename TypeHandler::Type* const*
RepeatedPtrFieldBase::data() const {
  // TODO(kenton):  Breaks C++ aliasing rules.  We should probably remove this
  //   method entirely.
  return reinterpret_cast<const typename TypeHandler::Type* const*>(raw_data());
}

inline void RepeatedPtrFieldBase::SwapElements(int index1, int index2) {
  using std::swap;  // enable ADL with fallback
  swap(rep_->elements[index1], rep_->elements[index2]);
}

template <typename TypeHandler>
inline size_t RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong() const {
  size_t allocated_bytes = static_cast<size_t>(total_size_) * sizeof(void*);
  if (rep_ != NULL) {
    for (int i = 0; i < rep_->allocated_size; ++i) {
      allocated_bytes += TypeHandler::SpaceUsedLong(
          *cast<TypeHandler>(rep_->elements[i]));
    }
    allocated_bytes += kRepHeaderSize;
  }
  return allocated_bytes;
}

template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::AddFromCleared() {
  if (rep_ != NULL && current_size_ < rep_->allocated_size) {
    return cast<TypeHandler>(rep_->elements[current_size_++]);
  } else {
    return NULL;
  }
}

// AddAllocated version that implements arena-safe copying behavior.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedInternal(
    typename TypeHandler::Type* value,
    std::true_type) {
  Arena* element_arena = reinterpret_cast<Arena*>(
      TypeHandler::GetMaybeArenaPointer(value));
  Arena* arena = GetArenaNoVirtual();
  if (arena == element_arena && rep_ &&
      rep_->allocated_size < total_size_) {
    // Fast path: underlying arena representation (tagged pointer) is equal to
    // our arena pointer, and we can add to array without resizing it (at least
    // one slot that is not allocated).
    void** elems = rep_->elements;
    if (current_size_ < rep_->allocated_size) {
      // Make space at [current] by moving first allocated element to end of
      // allocated list.
      elems[rep_->allocated_size] = elems[current_size_];
    }
    elems[current_size_] = value;
    current_size_ = current_size_ + 1;
    rep_->allocated_size = rep_->allocated_size + 1;
  } else {
    AddAllocatedSlowWithCopy<TypeHandler>(
        value, TypeHandler::GetArena(value), arena);
  }
}

// Slowpath handles all cases, copying if necessary.
template<typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedSlowWithCopy(
    // Pass value_arena and my_arena to avoid duplicate virtual call (value) or
    // load (mine).
    typename TypeHandler::Type* value, Arena* value_arena, Arena* my_arena) {
  // Ensure that either the value is in the same arena, or if not, we do the
  // appropriate thing: Own() it (if it's on heap and we're in an arena) or copy
  // it to our arena/heap (otherwise).
  if (my_arena != NULL && value_arena == NULL) {
    my_arena->Own(value);
  } else if (my_arena != value_arena) {
    typename TypeHandler::Type* new_value =
        TypeHandler::NewFromPrototype(value, my_arena);
    TypeHandler::Merge(*value, new_value);
    TypeHandler::Delete(value, value_arena);
    value = new_value;
  }

  UnsafeArenaAddAllocated<TypeHandler>(value);
}

// AddAllocated version that does not implement arena-safe copying behavior.
template <typename TypeHandler>
void RepeatedPtrFieldBase::AddAllocatedInternal(
    typename TypeHandler::Type* value,
    std::false_type) {
  if (rep_ &&  rep_->allocated_size < total_size_) {
    // Fast path: underlying arena representation (tagged pointer) is equal to
    // our arena pointer, and we can add to array without resizing it (at least
    // one slot that is not allocated).
    void** elems = rep_->elements;
    if (current_size_ < rep_->allocated_size) {
      // Make space at [current] by moving first allocated element to end of
      // allocated list.
      elems[rep_->allocated_size] = elems[current_size_];
    }
    elems[current_size_] = value;
    current_size_ = current_size_ + 1;
    ++rep_->allocated_size;
  } else {
    UnsafeArenaAddAllocated<TypeHandler>(value);
  }
}

template <typename TypeHandler>
void RepeatedPtrFieldBase::UnsafeArenaAddAllocated(
    typename TypeHandler::Type* value) {
  // Make room for the new pointer.
  if (!rep_ || current_size_ == total_size_) {
    // The array is completely full with no cleared objects, so grow it.
    Reserve(total_size_ + 1);
    ++rep_->allocated_size;
  } else if (rep_->allocated_size == total_size_) {
    // There is no more space in the pointer array because it contains some
    // cleared objects awaiting reuse.  We don't want to grow the array in this
    // case because otherwise a loop calling AddAllocated() followed by Clear()
    // would leak memory.
    TypeHandler::Delete(
        cast<TypeHandler>(rep_->elements[current_size_]), arena_);
  } else if (current_size_ < rep_->allocated_size) {
    // We have some cleared objects.  We don't care about their order, so we
    // can just move the first one to the end to make space.
    rep_->elements[rep_->allocated_size] = rep_->elements[current_size_];
    ++rep_->allocated_size;
  } else {
    // There are no cleared objects.
    ++rep_->allocated_size;
  }

  rep_->elements[current_size_++] = value;
}

// ReleaseLast() for types that implement merge/copy behavior.
template <typename TypeHandler>
inline typename TypeHandler::Type*
RepeatedPtrFieldBase::ReleaseLastInternal(std::true_type) {
  // First, release an element.
  typename TypeHandler::Type* result = UnsafeArenaReleaseLast<TypeHandler>();
  // Now perform a copy if we're on an arena.
  Arena* arena = GetArenaNoVirtual();
  if (arena == NULL) {
    return result;
  } else {
    typename TypeHandler::Type* new_result =
        TypeHandler::NewFromPrototype(result, NULL);
    TypeHandler::Merge(*result, new_result);
    return new_result;
  }
}

// ReleaseLast() for types that *do not* implement merge/copy behavior -- this
// is the same as UnsafeArenaReleaseLast(). Note that we GOOGLE_DCHECK-fail if we're on
// an arena, since the user really should implement the copy operation in this
// case.
template <typename TypeHandler>
inline typename TypeHandler::Type*
RepeatedPtrFieldBase::ReleaseLastInternal(std::false_type) {
  GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
      << "ReleaseLast() called on a RepeatedPtrField that is on an arena, "
      << "with a type that does not implement MergeFrom. This is unsafe; "
      << "please implement MergeFrom for your type.";
  return UnsafeArenaReleaseLast<TypeHandler>();
}

template <typename TypeHandler>
inline typename TypeHandler::Type*
  RepeatedPtrFieldBase::UnsafeArenaReleaseLast() {
  GOOGLE_DCHECK_GT(current_size_, 0);
  typename TypeHandler::Type* result =
      cast<TypeHandler>(rep_->elements[--current_size_]);
  --rep_->allocated_size;
  if (current_size_ < rep_->allocated_size) {
    // There are cleared elements on the end; replace the removed element
    // with the last allocated element.
    rep_->elements[current_size_] = rep_->elements[rep_->allocated_size];
  }
  return result;
}

inline int RepeatedPtrFieldBase::ClearedCount() const {
  return rep_ ? (rep_->allocated_size - current_size_) : 0;
}

template <typename TypeHandler>
inline void RepeatedPtrFieldBase::AddCleared(
    typename TypeHandler::Type* value) {
  GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
      << "AddCleared() can only be used on a RepeatedPtrField not on an arena.";
  GOOGLE_DCHECK(TypeHandler::GetArena(value) == NULL)
      << "AddCleared() can only accept values not on an arena.";
  if (!rep_ || rep_->allocated_size == total_size_) {
    Reserve(total_size_ + 1);
  }
  rep_->elements[rep_->allocated_size++] = value;
}

template <typename TypeHandler>
inline typename TypeHandler::Type* RepeatedPtrFieldBase::ReleaseCleared() {
  GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
      << "ReleaseCleared() can only be used on a RepeatedPtrField not on "
      << "an arena.";
  GOOGLE_DCHECK(GetArenaNoVirtual() == NULL);
  GOOGLE_DCHECK(rep_ != NULL);
  GOOGLE_DCHECK_GT(rep_->allocated_size, current_size_);
  return cast<TypeHandler>(rep_->elements[--rep_->allocated_size]);
}

}  // namespace internal

// -------------------------------------------------------------------

template <typename Element>
class RepeatedPtrField<Element>::TypeHandler
    : public internal::GenericTypeHandler<Element> {
};

template <>
class RepeatedPtrField<string>::TypeHandler
    : public internal::StringTypeHandler {
};

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField()
  : RepeatedPtrFieldBase() {}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(::google::protobuf::Arena* arena) :
  RepeatedPtrFieldBase(arena) {}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
    const RepeatedPtrField& other)
  : RepeatedPtrFieldBase() {
  MergeFrom(other);
}

template <typename Element>
template <typename Iter>
inline RepeatedPtrField<Element>::RepeatedPtrField(
    Iter begin, const Iter& end) {
  int reserve = internal::CalculateReserve(begin, end);
  if (reserve != -1) {
    Reserve(reserve);
  }
  for (; begin != end; ++begin) {
    *Add() = *begin;
  }
}

template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
  Destroy<TypeHandler>();
}

template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
    const RepeatedPtrField& other) {
  if (this != &other)
    CopyFrom(other);
  return *this;
}

template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(
    RepeatedPtrField&& other) noexcept
    : RepeatedPtrField() {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (other.GetArenaNoVirtual()) {
    CopyFrom(other);
  } else {
    InternalSwap(&other);
  }
}

template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
    RepeatedPtrField&& other) noexcept {
  // We don't just call Swap(&other) here because it would perform 3 copies if
  // the two fields are on different arenas.
  if (this != &other) {
    if (this->GetArenaNoVirtual() != other.GetArenaNoVirtual()) {
      CopyFrom(other);
    } else {
      InternalSwap(&other);
    }
  }
  return *this;
}

template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
  return RepeatedPtrFieldBase::empty();
}

template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
  return RepeatedPtrFieldBase::size();
}

template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const {
  return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}


template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index) {
  return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() {
  return RepeatedPtrFieldBase::Add<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Add(Element&& value) {
  RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
}

template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
  RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());
  for (int i = 0; i < num; ++i) {
    RepeatedPtrFieldBase::Delete<TypeHandler>(start + i);
  }
  ExtractSubrange(start, num, NULL);
}

template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(
    int start, int num, Element** elements) {
  typename internal::TypeImplementsMergeBehavior<
      typename TypeHandler::Type>::type t;
  ExtractSubrangeInternal(start, num, elements, t);
}

// ExtractSubrange() implementation for types that implement merge/copy
// behavior.
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
    int start, int num, Element** elements, std::true_type) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());

  if (num > 0) {
    // Save the values of the removed elements if requested.
    if (elements != NULL) {
      if (GetArenaNoVirtual() != NULL) {
        // If we're on an arena, we perform a copy for each element so that the
        // returned elements are heap-allocated.
        for (int i = 0; i < num; ++i) {
          Element* element = RepeatedPtrFieldBase::
              Mutable<TypeHandler>(i + start);
          typename TypeHandler::Type* new_value =
              TypeHandler::NewFromPrototype(element, NULL);
          TypeHandler::Merge(*element, new_value);
          elements[i] = new_value;
        }
      } else {
        for (int i = 0; i < num; ++i) {
          elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
        }
      }
    }
    CloseGap(start, num);
  }
}

// ExtractSubrange() implementation for types that do not implement merge/copy
// behavior.
template<typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrangeInternal(
    int start, int num, Element** elements, std::false_type) {
  // This case is identical to UnsafeArenaExtractSubrange(). However, since
  // ExtractSubrange() must return heap-allocated objects by contract, and we
  // cannot fulfill this contract if we are an on arena, we must GOOGLE_DCHECK() that
  // we are not on an arena.
  GOOGLE_DCHECK(GetArenaNoVirtual() == NULL)
      << "ExtractSubrange() when arena is non-NULL is only supported when "
      << "the Element type supplies a MergeFrom() operation to make copies.";
  UnsafeArenaExtractSubrange(start, num, elements);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
    int start, int num, Element** elements) {
  GOOGLE_DCHECK_GE(start, 0);
  GOOGLE_DCHECK_GE(num, 0);
  GOOGLE_DCHECK_LE(start + num, size());

  if (num > 0) {
    // Save the values of the removed elements if requested.
    if (elements != NULL) {
      for (int i = 0; i < num; ++i) {
        elements[i] = RepeatedPtrFieldBase::Mutable<TypeHandler>(i + start);
      }
    }
    CloseGap(start, num);
  }
}

template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
  RepeatedPtrFieldBase::Clear<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
    const RepeatedPtrField& other) {
  RepeatedPtrFieldBase::MergeFrom<TypeHandler>(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(
    const RepeatedPtrField& other) {
  RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator position) {
  return erase(position, position + 1);
}

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last) {
  size_type pos_offset = std::distance(cbegin(), first);
  size_type last_offset = std::distance(cbegin(), last);
  DeleteSubrange(pos_offset, last_offset - pos_offset);
  return begin() + pos_offset;
}

template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data() {
  return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}

template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const {
  return RepeatedPtrFieldBase::data<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
  if (this == other)
    return;
  RepeatedPtrFieldBase::Swap<TypeHandler>(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
    RepeatedPtrField* other) {
  if (this == other)
      return;
  RepeatedPtrFieldBase::InternalSwap(other);
}

template <typename Element>
inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
  RepeatedPtrFieldBase::SwapElements(index1, index2);
}

template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetArenaNoVirtual() const {
  return RepeatedPtrFieldBase::GetArenaNoVirtual();
}

template <typename Element>
inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
  return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
  RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}

template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
  RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
  return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
  return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
}

template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
  return RepeatedPtrFieldBase::ClearedCount();
}

template <typename Element>
inline void RepeatedPtrField<Element>::AddCleared(Element* value) {
  return RepeatedPtrFieldBase::AddCleared<TypeHandler>(value);
}

template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseCleared() {
  return RepeatedPtrFieldBase::ReleaseCleared<TypeHandler>();
}

template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
  return RepeatedPtrFieldBase::Reserve(new_size);
}

template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
  return RepeatedPtrFieldBase::Capacity();
}

// -------------------------------------------------------------------

namespace internal {

// STL-like iterator implementation for RepeatedPtrField.  You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template<typename Element>
class RepeatedPtrIterator
    : public std::iterator<
          std::random_access_iterator_tag, Element> {
 public:
  typedef RepeatedPtrIterator<Element> iterator;
  typedef std::iterator<
          std::random_access_iterator_tag, Element> superclass;

  // Shadow the value_type in std::iterator<> because const_iterator::value_type
  // needs to be T, not const T.
  typedef typename std::remove_const<Element>::type value_type;

  // Let the compiler know that these are type names, so we don't have to
  // write "typename" in front of them everywhere.
  typedef typename superclass::reference reference;
  typedef typename superclass::pointer pointer;
  typedef typename superclass::difference_type difference_type;

  RepeatedPtrIterator() : it_(NULL) {}
  explicit RepeatedPtrIterator(void* const* it) : it_(it) {}

  // Allow "upcasting" from RepeatedPtrIterator<T**> to
  // RepeatedPtrIterator<const T*const*>.
  template<typename OtherElement>
  RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
      : it_(other.it_) {
    // Force a compiler error if the other type is not convertible to ours.
    if (false) {
      implicit_cast<Element*>(static_cast<OtherElement*>(nullptr));
    }
  }

  // dereferenceable
  reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
  pointer   operator->() const { return &(operator*()); }

  // {inc,dec}rementable
  iterator& operator++() { ++it_; return *this; }
  iterator  operator++(int) { return iterator(it_++); }
  iterator& operator--() { --it_; return *this; }
  iterator  operator--(int) { return iterator(it_--); }

  // equality_comparable
  bool operator==(const iterator& x) const { return it_ == x.it_; }
  bool operator!=(const iterator& x) const { return it_ != x.it_; }

  // less_than_comparable
  bool operator<(const iterator& x) const { return it_ < x.it_; }
  bool operator<=(const iterator& x) const { return it_ <= x.it_; }
  bool operator>(const iterator& x) const { return it_ > x.it_; }
  bool operator>=(const iterator& x) const { return it_ >= x.it_; }

  // addable, subtractable
  iterator& operator+=(difference_type d) {
    it_ += d;
    return *this;
  }
  friend iterator operator+(iterator it, const difference_type d) {
    it += d;
    return it;
  }
  friend iterator operator+(const difference_type d, iterator it) {
    it += d;
    return it;
  }
  iterator& operator-=(difference_type d) {
    it_ -= d;
    return *this;
  }
  friend iterator operator-(iterator it, difference_type d) {
    it -= d;
    return it;
  }

  // indexable
  reference operator[](difference_type d) const { return *(*this + d); }

  // random access iterator
  difference_type operator-(const iterator& x) const { return it_ - x.it_; }

 private:
  template<typename OtherElement>
  friend class RepeatedPtrIterator;

  // The internal iterator.
  void* const* it_;
};

// Provide an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator.  It should either be "void *" for a mutable
// iterator, or "const void* const" for a constant iterator.
template <typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator
    : public std::iterator<std::random_access_iterator_tag, Element> {
 public:
  typedef RepeatedPtrOverPtrsIterator<Element, VoidPtr> iterator;
  typedef std::iterator<std::random_access_iterator_tag, Element> superclass;

  // Shadow the value_type in std::iterator<> because const_iterator::value_type
  // needs to be T, not const T.
  typedef typename std::remove_const<Element>::type value_type;

  // Let the compiler know that these are type names, so we don't have to
  // write "typename" in front of them everywhere.
  typedef typename superclass::reference reference;
  typedef typename superclass::pointer pointer;
  typedef typename superclass::difference_type difference_type;

  RepeatedPtrOverPtrsIterator() : it_(NULL) {}
  explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}

  // dereferenceable
  reference operator*() const { return *reinterpret_cast<Element*>(it_); }
  pointer   operator->() const { return &(operator*()); }

  // {inc,dec}rementable
  iterator& operator++() { ++it_; return *this; }
  iterator  operator++(int) { return iterator(it_++); }
  iterator& operator--() { --it_; return *this; }
  iterator  operator--(int) { return iterator(it_--); }

  // equality_comparable
  bool operator==(const iterator& x) const { return it_ == x.it_; }
  bool operator!=(const iterator& x) const { return it_ != x.it_; }

  // less_than_comparable
  bool operator<(const iterator& x) const { return it_ < x.it_; }
  bool operator<=(const iterator& x) const { return it_ <= x.it_; }
  bool operator>(const iterator& x) const { return it_ > x.it_; }
  bool operator>=(const iterator& x) const { return it_ >= x.it_; }

  // addable, subtractable
  iterator& operator+=(difference_type d) {
    it_ += d;
    return *this;
  }
  friend iterator operator+(iterator it, difference_type d) {
    it += d;
    return it;
  }
  friend iterator operator+(difference_type d, iterator it) {
    it += d;
    return it;
  }
  iterator& operator-=(difference_type d) {
    it_ -= d;
    return *this;
  }
  friend iterator operator-(iterator it, difference_type d) {
    it -= d;
    return it;
  }

  // indexable
  reference operator[](difference_type d) const { return *(*this + d); }

  // random access iterator
  difference_type operator-(const iterator& x) const { return it_ - x.it_; }

 private:
  template<typename OtherElement>
  friend class RepeatedPtrIterator;

  // The internal iterator.
  VoidPtr* it_;
};

void RepeatedPtrFieldBase::InternalSwap(RepeatedPtrFieldBase* other) {
  GOOGLE_DCHECK(this != other);
  GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());

  std::swap(rep_, other->rep_);
  std::swap(current_size_, other->current_size_);
  std::swap(total_size_, other->total_size_);
}

}  // namespace internal

template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() {
  return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const {
  return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cbegin() const {
  return begin();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() {
  return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const {
  return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cend() const {
  return end();
}

template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() {
  return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const {
  return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() {
  return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const {
  return const_pointer_iterator(
      const_cast<const void* const*>(raw_data() + size()));
}


// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
//   std::copy(some_sequence.begin(), some_sequence.end(),
//             google::protobuf::RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h

namespace internal {
// A back inserter for RepeatedField objects.
template<typename T> class RepeatedFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  explicit RepeatedFieldBackInsertIterator(
      RepeatedField<T>* const mutable_field)
      : field_(mutable_field) {
  }
  RepeatedFieldBackInsertIterator<T>& operator=(const T& value) {
    field_->Add(value);
    return *this;
  }
  RepeatedFieldBackInsertIterator<T>& operator*() {
    return *this;
  }
  RepeatedFieldBackInsertIterator<T>& operator++() {
    return *this;
  }
  RepeatedFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedField<T>* field_;
};

// A back inserter for RepeatedPtrField objects.
template<typename T> class RepeatedPtrFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  RepeatedPtrFieldBackInsertIterator(
      RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
    *field_->Add() = value;
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator=(
      const T* const ptr_to_value) {
    *field_->Add() = *ptr_to_value;
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
    *field_->Add() = std::move(value);
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator*() {
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator++() {
    return *this;
  }
  RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

// A back inserter for RepeatedPtrFields that inserts by transferring ownership
// of a pointer.
template<typename T> class AllocatedRepeatedPtrFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  explicit AllocatedRepeatedPtrFieldBackInsertIterator(
      RepeatedPtrField<T>* const mutable_field)
      : field_(mutable_field) {
  }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
      T* const ptr_to_value) {
    field_->AddAllocated(ptr_to_value);
    return *this;
  }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
    return *this;
  }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
    return *this;
  }
  AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
      int /* unused */) {
    return *this;
  }

 private:
  RepeatedPtrField<T>* field_;
};

// Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
// uses the UnsafeArenaAddAllocated instead.
template<typename T>
class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator
    : public std::iterator<std::output_iterator_tag, T> {
 public:
  explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
    ::google::protobuf::RepeatedPtrField<T>* const mutable_field)
  : field_(mutable_field) {
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
    T const* const ptr_to_value) {
    field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
    return *this;
  }
  UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
      int /* unused */) {
    return *this;
  }

 private:
  ::google::protobuf::RepeatedPtrField<T>* field_;
};

}  // namespace internal

// Provides a back insert iterator for RepeatedField instances,
// similar to std::back_inserter().
template<typename T> internal::RepeatedFieldBackInsertIterator<T>
RepeatedFieldBackInserter(RepeatedField<T>* const mutable_field) {
  return internal::RepeatedFieldBackInsertIterator<T>(mutable_field);
}

// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
RepeatedPtrFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
  return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}

// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template<typename T> internal::RepeatedPtrFieldBackInsertIterator<T>
RepeatedFieldBackInserter(RepeatedPtrField<T>* const mutable_field) {
  return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}

// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template<typename T> internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
    RepeatedPtrField<T>* const mutable_field) {
  return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
      mutable_field);
}

// Similar to AllocatedRepeatedPtrFieldBackInserter, using
// UnsafeArenaAddAllocated instead of AddAllocated.
// This is slightly faster if that matters. It is also useful in legacy code
// that uses temporary ownership to avoid copies. Example:
//   RepeatedPtrField<T> temp_field;
//   temp_field.AddAllocated(new T);
//   ... // Do something with temp_field
//   temp_field.ExtractSubrange(0, temp_field.size(), nullptr);
// If you put temp_field on the arena this fails, because the ownership
// transfers to the arena at the "AddAllocated" call and is not released anymore
// causing a double delete. Using UnsafeArenaAddAllocated prevents this.
template<typename T>
internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
    ::google::protobuf::RepeatedPtrField<T>* const mutable_field) {
  return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
      mutable_field);
}

}  // namespace protobuf

}  // namespace google
#endif  // GOOGLE_PROTOBUF_REPEATED_FIELD_H__