// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // atenasio@google.com (Chris Atenasio) (ZigZag transform) // wink@google.com (Wink Saville) (refactored from wire_format.h) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // This header is logically internal, but is made public because it is used // from protocol-compiler-generated code, which may reside in other components. #ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ #define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__ #include #include #include #include #include // for CodedOutputStream::Varint32Size // Avoid conflict with iOS where #defines TYPE_BOOL. // // If some one needs the macro TYPE_BOOL in a file that includes this header, it's // possible to bring it back using push/pop_macro as follows. // // #pragma push_macro("TYPE_BOOL") // #include this header and/or all headers that need the macro to be undefined. // #pragma pop_macro("TYPE_BOOL") #undef TYPE_BOOL namespace google { namespace protobuf { template class RepeatedField; // repeated_field.h } namespace protobuf { namespace internal { class StringPieceField; // This class is for internal use by the protocol buffer library and by // protocol-complier-generated message classes. It must not be called // directly by clients. // // This class contains helpers for implementing the binary protocol buffer // wire format without the need for reflection. Use WireFormat when using // reflection. // // This class is really a namespace that contains only static methods. class LIBPROTOBUF_EXPORT WireFormatLite { public: // ----------------------------------------------------------------- // Helper constants and functions related to the format. These are // mostly meant for internal and generated code to use. // The wire format is composed of a sequence of tag/value pairs, each // of which contains the value of one field (or one element of a repeated // field). Each tag is encoded as a varint. The lower bits of the tag // identify its wire type, which specifies the format of the data to follow. // The rest of the bits contain the field number. Each type of field (as // declared by FieldDescriptor::Type, in descriptor.h) maps to one of // these wire types. Immediately following each tag is the field's value, // encoded in the format specified by the wire type. Because the tag // identifies the encoding of this data, it is possible to skip // unrecognized fields for forwards compatibility. enum WireType { WIRETYPE_VARINT = 0, WIRETYPE_FIXED64 = 1, WIRETYPE_LENGTH_DELIMITED = 2, WIRETYPE_START_GROUP = 3, WIRETYPE_END_GROUP = 4, WIRETYPE_FIXED32 = 5, }; // Lite alternative to FieldDescriptor::Type. Must be kept in sync. enum FieldType { TYPE_DOUBLE = 1, TYPE_FLOAT = 2, TYPE_INT64 = 3, TYPE_UINT64 = 4, TYPE_INT32 = 5, TYPE_FIXED64 = 6, TYPE_FIXED32 = 7, TYPE_BOOL = 8, TYPE_STRING = 9, TYPE_GROUP = 10, TYPE_MESSAGE = 11, TYPE_BYTES = 12, TYPE_UINT32 = 13, TYPE_ENUM = 14, TYPE_SFIXED32 = 15, TYPE_SFIXED64 = 16, TYPE_SINT32 = 17, TYPE_SINT64 = 18, MAX_FIELD_TYPE = 18, }; // Lite alternative to FieldDescriptor::CppType. Must be kept in sync. enum CppType { CPPTYPE_INT32 = 1, CPPTYPE_INT64 = 2, CPPTYPE_UINT32 = 3, CPPTYPE_UINT64 = 4, CPPTYPE_DOUBLE = 5, CPPTYPE_FLOAT = 6, CPPTYPE_BOOL = 7, CPPTYPE_ENUM = 8, CPPTYPE_STRING = 9, CPPTYPE_MESSAGE = 10, MAX_CPPTYPE = 10, }; // Helper method to get the CppType for a particular Type. static CppType FieldTypeToCppType(FieldType type); // Given a FieldSescriptor::Type return its WireType static inline WireFormatLite::WireType WireTypeForFieldType( WireFormatLite::FieldType type) { return kWireTypeForFieldType[type]; } // Number of bits in a tag which identify the wire type. static const int kTagTypeBits = 3; // Mask for those bits. static const uint32 kTagTypeMask = (1 << kTagTypeBits) - 1; // Helper functions for encoding and decoding tags. (Inlined below and in // _inl.h) // // This is different from MakeTag(field->number(), field->type()) in the case // of packed repeated fields. static uint32 MakeTag(int field_number, WireType type); static WireType GetTagWireType(uint32 tag); static int GetTagFieldNumber(uint32 tag); // Compute the byte size of a tag. For groups, this includes both the start // and end tags. static inline size_t TagSize(int field_number, WireFormatLite::FieldType type); // Skips a field value with the given tag. The input should start // positioned immediately after the tag. Skipped values are simply discarded, // not recorded anywhere. See WireFormat::SkipField() for a version that // records to an UnknownFieldSet. static bool SkipField(io::CodedInputStream* input, uint32 tag); // Skips a field value with the given tag. The input should start // positioned immediately after the tag. Skipped values are recorded to a // CodedOutputStream. static bool SkipField(io::CodedInputStream* input, uint32 tag, io::CodedOutputStream* output); // Reads and ignores a message from the input. Skipped values are simply // discarded, not recorded anywhere. See WireFormat::SkipMessage() for a // version that records to an UnknownFieldSet. static bool SkipMessage(io::CodedInputStream* input); // Reads and ignores a message from the input. Skipped values are recorded // to a CodedOutputStream. static bool SkipMessage(io::CodedInputStream* input, io::CodedOutputStream* output); // This macro does the same thing as WireFormatLite::MakeTag(), but the // result is usable as a compile-time constant, which makes it usable // as a switch case or a template input. WireFormatLite::MakeTag() is more // type-safe, though, so prefer it if possible. #define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \ static_cast( \ ((FIELD_NUMBER) << ::google::protobuf::internal::WireFormatLite::kTagTypeBits) \ | (TYPE)) // These are the tags for the old MessageSet format, which was defined as: // message MessageSet { // repeated group Item = 1 { // required int32 type_id = 2; // required string message = 3; // } // } static const int kMessageSetItemNumber = 1; static const int kMessageSetTypeIdNumber = 2; static const int kMessageSetMessageNumber = 3; static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP); static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP); static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT); static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED); // Byte size of all tags of a MessageSet::Item combined. static const size_t kMessageSetItemTagsSize; // Helper functions for converting between floats/doubles and IEEE-754 // uint32s/uint64s so that they can be written. (Assumes your platform // uses IEEE-754 floats.) static uint32 EncodeFloat(float value); static float DecodeFloat(uint32 value); static uint64 EncodeDouble(double value); static double DecodeDouble(uint64 value); // Helper functions for mapping signed integers to unsigned integers in // such a way that numbers with small magnitudes will encode to smaller // varints. If you simply static_cast a negative number to an unsigned // number and varint-encode it, it will always take 10 bytes, defeating // the purpose of varint. So, for the "sint32" and "sint64" field types, // we ZigZag-encode the values. static uint32 ZigZagEncode32(int32 n); static int32 ZigZagDecode32(uint32 n); static uint64 ZigZagEncode64(int64 n); static int64 ZigZagDecode64(uint64 n); // ================================================================= // Methods for reading/writing individual field. The implementations // of these methods are defined in wire_format_lite_inl.h; you must #include // that file to use these. #ifdef NDEBUG #define INL GOOGLE_ATTRIBUTE_ALWAYS_INLINE #else // Avoid excessive inlining in non-optimized builds. Without other optimizations // the inlining is not going to provide benefits anyway and the huge resulting // functions, especially in the proto-generated serialization functions, produce // stack frames so large that many tests run into stack overflows (b/32192897). #define INL #endif // Read fields, not including tags. The assumption is that you already // read the tag to determine what field to read. // For primitive fields, we just use a templatized routine parameterized by // the represented type and the FieldType. These are specialized with the // appropriate definition for each declared type. template INL static bool ReadPrimitive(io::CodedInputStream* input, CType* value); // Reads repeated primitive values, with optimizations for repeats. // tag_size and tag should both be compile-time constants provided by the // protocol compiler. template INL static bool ReadRepeatedPrimitive(int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* value); // Identical to ReadRepeatedPrimitive, except will not inline the // implementation. template static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32 tag, io::CodedInputStream* input, RepeatedField* value); // Reads a primitive value directly from the provided buffer. It returns a // pointer past the segment of data that was read. // // This is only implemented for the types with fixed wire size, e.g. // float, double, and the (s)fixed* types. template INL static const uint8* ReadPrimitiveFromArray(const uint8* buffer, CType* value); // Reads a primitive packed field. // // This is only implemented for packable types. template INL static bool ReadPackedPrimitive(io::CodedInputStream* input, RepeatedField* value); // Identical to ReadPackedPrimitive, except will not inline the // implementation. template static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input, RepeatedField* value); // Read a packed enum field. If the is_valid function is not NULL, values for // which is_valid(value) returns false are silently dropped. static bool ReadPackedEnumNoInline(io::CodedInputStream* input, bool (*is_valid)(int), RepeatedField* values); // Read a packed enum field. If the is_valid function is not NULL, values for // which is_valid(value) returns false are appended to unknown_fields_stream. static bool ReadPackedEnumPreserveUnknowns( io::CodedInputStream* input, int field_number, bool (*is_valid)(int), io::CodedOutputStream* unknown_fields_stream, RepeatedField* values); // Read a string. ReadString(..., string* value) requires an existing string. static inline bool ReadString(io::CodedInputStream* input, string* value); // ReadString(..., string** p) is internal-only, and should only be called // from generated code. It starts by setting *p to "new string" // if *p == &GetEmptyStringAlreadyInited(). It then invokes // ReadString(io::CodedInputStream* input, *p). This is useful for reducing // code size. static inline bool ReadString(io::CodedInputStream* input, string** p); // Analogous to ReadString(). static bool ReadBytes(io::CodedInputStream* input, string* value); static bool ReadBytes(io::CodedInputStream* input, string** p); enum Operation { PARSE = 0, SERIALIZE = 1, }; // Returns true if the data is valid UTF-8. static bool VerifyUtf8String(const char* data, int size, Operation op, const char* field_name); static inline bool ReadGroup(int field_number, io::CodedInputStream* input, MessageLite* value); static inline bool ReadMessage(io::CodedInputStream* input, MessageLite* value); // Like above, but de-virtualize the call to MergePartialFromCodedStream(). // The pointer must point at an instance of MessageType, *not* a subclass (or // the subclass must not override MergePartialFromCodedStream()). template static inline bool ReadGroupNoVirtual(int field_number, io::CodedInputStream* input, MessageType* value); template static inline bool ReadMessageNoVirtual(io::CodedInputStream* input, MessageType* value); // The same, but do not modify input's recursion depth. This is useful // when reading a bunch of groups or messages in a loop, because then the // recursion depth can be incremented before the loop and decremented after. template static inline bool ReadGroupNoVirtualNoRecursionDepth( int field_number, io::CodedInputStream* input, MessageType* value); template static inline bool ReadMessageNoVirtualNoRecursionDepth( io::CodedInputStream* input, MessageType* value); // Write a tag. The Write*() functions typically include the tag, so // normally there's no need to call this unless using the Write*NoTag() // variants. INL static void WriteTag(int field_number, WireType type, io::CodedOutputStream* output); // Write fields, without tags. INL static void WriteInt32NoTag(int32 value, io::CodedOutputStream* output); INL static void WriteInt64NoTag(int64 value, io::CodedOutputStream* output); INL static void WriteUInt32NoTag(uint32 value, io::CodedOutputStream* output); INL static void WriteUInt64NoTag(uint64 value, io::CodedOutputStream* output); INL static void WriteSInt32NoTag(int32 value, io::CodedOutputStream* output); INL static void WriteSInt64NoTag(int64 value, io::CodedOutputStream* output); INL static void WriteFixed32NoTag(uint32 value, io::CodedOutputStream* output); INL static void WriteFixed64NoTag(uint64 value, io::CodedOutputStream* output); INL static void WriteSFixed32NoTag(int32 value, io::CodedOutputStream* output); INL static void WriteSFixed64NoTag(int64 value, io::CodedOutputStream* output); INL static void WriteFloatNoTag(float value, io::CodedOutputStream* output); INL static void WriteDoubleNoTag(double value, io::CodedOutputStream* output); INL static void WriteBoolNoTag(bool value, io::CodedOutputStream* output); INL static void WriteEnumNoTag(int value, io::CodedOutputStream* output); // Write array of primitive fields, without tags static void WriteFloatArray(const float* a, int n, io::CodedOutputStream* output); static void WriteDoubleArray(const double* a, int n, io::CodedOutputStream* output); static void WriteFixed32Array(const uint32* a, int n, io::CodedOutputStream* output); static void WriteFixed64Array(const uint64* a, int n, io::CodedOutputStream* output); static void WriteSFixed32Array(const int32* a, int n, io::CodedOutputStream* output); static void WriteSFixed64Array(const int64* a, int n, io::CodedOutputStream* output); static void WriteBoolArray(const bool* a, int n, io::CodedOutputStream* output); // Write fields, including tags. static void WriteInt32(int field_number, int32 value, io::CodedOutputStream* output); static void WriteInt64(int field_number, int64 value, io::CodedOutputStream* output); static void WriteUInt32(int field_number, uint32 value, io::CodedOutputStream* output); static void WriteUInt64(int field_number, uint64 value, io::CodedOutputStream* output); static void WriteSInt32(int field_number, int32 value, io::CodedOutputStream* output); static void WriteSInt64(int field_number, int64 value, io::CodedOutputStream* output); static void WriteFixed32(int field_number, uint32 value, io::CodedOutputStream* output); static void WriteFixed64(int field_number, uint64 value, io::CodedOutputStream* output); static void WriteSFixed32(int field_number, int32 value, io::CodedOutputStream* output); static void WriteSFixed64(int field_number, int64 value, io::CodedOutputStream* output); static void WriteFloat(int field_number, float value, io::CodedOutputStream* output); static void WriteDouble(int field_number, double value, io::CodedOutputStream* output); static void WriteBool(int field_number, bool value, io::CodedOutputStream* output); static void WriteEnum(int field_number, int value, io::CodedOutputStream* output); static void WriteString(int field_number, const string& value, io::CodedOutputStream* output); static void WriteBytes(int field_number, const string& value, io::CodedOutputStream* output); static void WriteStringMaybeAliased(int field_number, const string& value, io::CodedOutputStream* output); static void WriteBytesMaybeAliased(int field_number, const string& value, io::CodedOutputStream* output); static void WriteGroup(int field_number, const MessageLite& value, io::CodedOutputStream* output); static void WriteMessage(int field_number, const MessageLite& value, io::CodedOutputStream* output); // Like above, but these will check if the output stream has enough // space to write directly to a flat array. static void WriteGroupMaybeToArray(int field_number, const MessageLite& value, io::CodedOutputStream* output); static void WriteMessageMaybeToArray(int field_number, const MessageLite& value, io::CodedOutputStream* output); // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The // pointer must point at an instance of MessageType, *not* a subclass (or // the subclass must not override SerializeWithCachedSizes()). template static inline void WriteGroupNoVirtual(int field_number, const MessageType& value, io::CodedOutputStream* output); template static inline void WriteMessageNoVirtual(int field_number, const MessageType& value, io::CodedOutputStream* output); // Like above, but use only *ToArray methods of CodedOutputStream. INL static uint8* WriteTagToArray(int field_number, WireType type, uint8* target); // Write fields, without tags. INL static uint8* WriteInt32NoTagToArray(int32 value, uint8* target); INL static uint8* WriteInt64NoTagToArray(int64 value, uint8* target); INL static uint8* WriteUInt32NoTagToArray(uint32 value, uint8* target); INL static uint8* WriteUInt64NoTagToArray(uint64 value, uint8* target); INL static uint8* WriteSInt32NoTagToArray(int32 value, uint8* target); INL static uint8* WriteSInt64NoTagToArray(int64 value, uint8* target); INL static uint8* WriteFixed32NoTagToArray(uint32 value, uint8* target); INL static uint8* WriteFixed64NoTagToArray(uint64 value, uint8* target); INL static uint8* WriteSFixed32NoTagToArray(int32 value, uint8* target); INL static uint8* WriteSFixed64NoTagToArray(int64 value, uint8* target); INL static uint8* WriteFloatNoTagToArray(float value, uint8* target); INL static uint8* WriteDoubleNoTagToArray(double value, uint8* target); INL static uint8* WriteBoolNoTagToArray(bool value, uint8* target); INL static uint8* WriteEnumNoTagToArray(int value, uint8* target); // Write fields, without tags. These require that value.size() > 0. template INL static uint8* WritePrimitiveNoTagToArray( const RepeatedField& value, uint8* (*Writer)(T, uint8*), uint8* target); template INL static uint8* WriteFixedNoTagToArray( const RepeatedField& value, uint8* (*Writer)(T, uint8*), uint8* target); INL static uint8* WriteInt32NoTagToArray( const RepeatedField< int32>& value, uint8* output); INL static uint8* WriteInt64NoTagToArray( const RepeatedField< int64>& value, uint8* output); INL static uint8* WriteUInt32NoTagToArray( const RepeatedField& value, uint8* output); INL static uint8* WriteUInt64NoTagToArray( const RepeatedField& value, uint8* output); INL static uint8* WriteSInt32NoTagToArray( const RepeatedField< int32>& value, uint8* output); INL static uint8* WriteSInt64NoTagToArray( const RepeatedField< int64>& value, uint8* output); INL static uint8* WriteFixed32NoTagToArray( const RepeatedField& value, uint8* output); INL static uint8* WriteFixed64NoTagToArray( const RepeatedField& value, uint8* output); INL static uint8* WriteSFixed32NoTagToArray( const RepeatedField< int32>& value, uint8* output); INL static uint8* WriteSFixed64NoTagToArray( const RepeatedField< int64>& value, uint8* output); INL static uint8* WriteFloatNoTagToArray( const RepeatedField< float>& value, uint8* output); INL static uint8* WriteDoubleNoTagToArray( const RepeatedField& value, uint8* output); INL static uint8* WriteBoolNoTagToArray( const RepeatedField< bool>& value, uint8* output); INL static uint8* WriteEnumNoTagToArray( const RepeatedField< int>& value, uint8* output); // Write fields, including tags. INL static uint8* WriteInt32ToArray(int field_number, int32 value, uint8* target); INL static uint8* WriteInt64ToArray(int field_number, int64 value, uint8* target); INL static uint8* WriteUInt32ToArray(int field_number, uint32 value, uint8* target); INL static uint8* WriteUInt64ToArray(int field_number, uint64 value, uint8* target); INL static uint8* WriteSInt32ToArray(int field_number, int32 value, uint8* target); INL static uint8* WriteSInt64ToArray(int field_number, int64 value, uint8* target); INL static uint8* WriteFixed32ToArray(int field_number, uint32 value, uint8* target); INL static uint8* WriteFixed64ToArray(int field_number, uint64 value, uint8* target); INL static uint8* WriteSFixed32ToArray(int field_number, int32 value, uint8* target); INL static uint8* WriteSFixed64ToArray(int field_number, int64 value, uint8* target); INL static uint8* WriteFloatToArray(int field_number, float value, uint8* target); INL static uint8* WriteDoubleToArray(int field_number, double value, uint8* target); INL static uint8* WriteBoolToArray(int field_number, bool value, uint8* target); INL static uint8* WriteEnumToArray(int field_number, int value, uint8* target); template INL static uint8* WritePrimitiveToArray( int field_number, const RepeatedField& value, uint8* (*Writer)(int, T, uint8*), uint8* target); INL static uint8* WriteInt32ToArray( int field_number, const RepeatedField< int32>& value, uint8* output); INL static uint8* WriteInt64ToArray( int field_number, const RepeatedField< int64>& value, uint8* output); INL static uint8* WriteUInt32ToArray( int field_number, const RepeatedField& value, uint8* output); INL static uint8* WriteUInt64ToArray( int field_number, const RepeatedField& value, uint8* output); INL static uint8* WriteSInt32ToArray( int field_number, const RepeatedField< int32>& value, uint8* output); INL static uint8* WriteSInt64ToArray( int field_number, const RepeatedField< int64>& value, uint8* output); INL static uint8* WriteFixed32ToArray( int field_number, const RepeatedField& value, uint8* output); INL static uint8* WriteFixed64ToArray( int field_number, const RepeatedField& value, uint8* output); INL static uint8* WriteSFixed32ToArray( int field_number, const RepeatedField< int32>& value, uint8* output); INL static uint8* WriteSFixed64ToArray( int field_number, const RepeatedField< int64>& value, uint8* output); INL static uint8* WriteFloatToArray( int field_number, const RepeatedField< float>& value, uint8* output); INL static uint8* WriteDoubleToArray( int field_number, const RepeatedField& value, uint8* output); INL static uint8* WriteBoolToArray( int field_number, const RepeatedField< bool>& value, uint8* output); INL static uint8* WriteEnumToArray( int field_number, const RepeatedField< int>& value, uint8* output); INL static uint8* WriteStringToArray(int field_number, const string& value, uint8* target); INL static uint8* WriteBytesToArray(int field_number, const string& value, uint8* target); // Whether to serialize deterministically (e.g., map keys are // sorted) is a property of a CodedOutputStream, and in the process // of serialization, the "ToArray" variants may be invoked. But they don't // have a CodedOutputStream available, so they get an additional parameter // telling them whether to serialize deterministically. INL static uint8* InternalWriteGroupToArray(int field_number, const MessageLite& value, bool deterministic, uint8* target); INL static uint8* InternalWriteMessageToArray(int field_number, const MessageLite& value, bool deterministic, uint8* target); // Like above, but de-virtualize the call to SerializeWithCachedSizes(). The // pointer must point at an instance of MessageType, *not* a subclass (or // the subclass must not override SerializeWithCachedSizes()). template INL static uint8* InternalWriteGroupNoVirtualToArray(int field_number, const MessageType& value, bool deterministic, uint8* target); template INL static uint8* InternalWriteMessageNoVirtualToArray( int field_number, const MessageType& value, bool deterministic, uint8* target); // For backward-compatibility, the last four methods also have versions // that are non-deterministic always. INL static uint8* WriteGroupToArray(int field_number, const MessageLite& value, uint8* target) { return InternalWriteGroupToArray(field_number, value, false, target); } INL static uint8* WriteMessageToArray(int field_number, const MessageLite& value, uint8* target) { return InternalWriteMessageToArray(field_number, value, false, target); } template INL static uint8* WriteGroupNoVirtualToArray(int field_number, const MessageType& value, uint8* target) { return InternalWriteGroupNoVirtualToArray(field_number, value, false, target); } template INL static uint8* WriteMessageNoVirtualToArray(int field_number, const MessageType& value, uint8* target) { return InternalWriteMessageNoVirtualToArray(field_number, value, false, target); } #undef INL // Compute the byte size of a field. The XxSize() functions do NOT include // the tag, so you must also call TagSize(). (This is because, for repeated // fields, you should only call TagSize() once and multiply it by the element // count, but you may have to call XxSize() for each individual element.) static inline size_t Int32Size ( int32 value); static inline size_t Int64Size ( int64 value); static inline size_t UInt32Size (uint32 value); static inline size_t UInt64Size (uint64 value); static inline size_t SInt32Size ( int32 value); static inline size_t SInt64Size ( int64 value); static inline size_t EnumSize ( int value); static size_t Int32Size (const RepeatedField< int32>& value); static inline size_t Int64Size (const RepeatedField< int64>& value); static size_t UInt32Size(const RepeatedField& value); static inline size_t UInt64Size(const RepeatedField& value); static size_t SInt32Size(const RepeatedField< int32>& value); static inline size_t SInt64Size(const RepeatedField< int64>& value); static size_t EnumSize (const RepeatedField< int>& value); // These types always have the same size. static const size_t kFixed32Size = 4; static const size_t kFixed64Size = 8; static const size_t kSFixed32Size = 4; static const size_t kSFixed64Size = 8; static const size_t kFloatSize = 4; static const size_t kDoubleSize = 8; static const size_t kBoolSize = 1; static inline size_t StringSize(const string& value); static inline size_t BytesSize (const string& value); static inline size_t GroupSize (const MessageLite& value); static inline size_t MessageSize(const MessageLite& value); // Like above, but de-virtualize the call to ByteSize(). The // pointer must point at an instance of MessageType, *not* a subclass (or // the subclass must not override ByteSize()). template static inline size_t GroupSizeNoVirtual (const MessageType& value); template static inline size_t MessageSizeNoVirtual(const MessageType& value); // Given the length of data, calculate the byte size of the data on the // wire if we encode the data as a length delimited field. static inline size_t LengthDelimitedSize(size_t length); private: // A helper method for the repeated primitive reader. This method has // optimizations for primitive types that have fixed size on the wire, and // can be read using potentially faster paths. template GOOGLE_ATTRIBUTE_ALWAYS_INLINE static bool ReadRepeatedFixedSizePrimitive( int tag_size, uint32 tag, google::protobuf::io::CodedInputStream* input, RepeatedField* value); // Like ReadRepeatedFixedSizePrimitive but for packed primitive fields. template GOOGLE_ATTRIBUTE_ALWAYS_INLINE static bool ReadPackedFixedSizePrimitive( google::protobuf::io::CodedInputStream* input, RepeatedField* value); static const CppType kFieldTypeToCppTypeMap[]; static const WireFormatLite::WireType kWireTypeForFieldType[]; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(WireFormatLite); }; // A class which deals with unknown values. The default implementation just // discards them. WireFormat defines a subclass which writes to an // UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since // ExtensionSet is part of the lite library but UnknownFieldSet is not. class LIBPROTOBUF_EXPORT FieldSkipper { public: FieldSkipper() {} virtual ~FieldSkipper() {} // Skip a field whose tag has already been consumed. virtual bool SkipField(io::CodedInputStream* input, uint32 tag); // Skip an entire message or group, up to an end-group tag (which is consumed) // or end-of-stream. virtual bool SkipMessage(io::CodedInputStream* input); // Deal with an already-parsed unrecognized enum value. The default // implementation does nothing, but the UnknownFieldSet-based implementation // saves it as an unknown varint. virtual void SkipUnknownEnum(int field_number, int value); }; // Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream. class LIBPROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper { public: explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields) : unknown_fields_(unknown_fields) {} virtual ~CodedOutputStreamFieldSkipper() {} // implements FieldSkipper ----------------------------------------- virtual bool SkipField(io::CodedInputStream* input, uint32 tag); virtual bool SkipMessage(io::CodedInputStream* input); virtual void SkipUnknownEnum(int field_number, int value); protected: io::CodedOutputStream* unknown_fields_; }; // inline methods ==================================================== inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType(FieldType type) { return kFieldTypeToCppTypeMap[type]; } inline uint32 WireFormatLite::MakeTag(int field_number, WireType type) { return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type); } inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32 tag) { return static_cast(tag & kTagTypeMask); } inline int WireFormatLite::GetTagFieldNumber(uint32 tag) { return static_cast(tag >> kTagTypeBits); } inline size_t WireFormatLite::TagSize(int field_number, WireFormatLite::FieldType type) { size_t result = io::CodedOutputStream::VarintSize32( field_number << kTagTypeBits); if (type == TYPE_GROUP) { // Groups have both a start and an end tag. return result * 2; } else { return result; } } inline uint32 WireFormatLite::EncodeFloat(float value) { union {float f; uint32 i;}; f = value; return i; } inline float WireFormatLite::DecodeFloat(uint32 value) { union {float f; uint32 i;}; i = value; return f; } inline uint64 WireFormatLite::EncodeDouble(double value) { union {double f; uint64 i;}; f = value; return i; } inline double WireFormatLite::DecodeDouble(uint64 value) { union {double f; uint64 i;}; i = value; return f; } // ZigZag Transform: Encodes signed integers so that they can be // effectively used with varint encoding. // // varint operates on unsigned integers, encoding smaller numbers into // fewer bytes. If you try to use it on a signed integer, it will treat // this number as a very large unsigned integer, which means that even // small signed numbers like -1 will take the maximum number of bytes // (10) to encode. ZigZagEncode() maps signed integers to unsigned // in such a way that those with a small absolute value will have smaller // encoded values, making them appropriate for encoding using varint. // // int32 -> uint32 // ------------------------- // 0 -> 0 // -1 -> 1 // 1 -> 2 // -2 -> 3 // ... -> ... // 2147483647 -> 4294967294 // -2147483648 -> 4294967295 // // >> encode >> // << decode << inline uint32 WireFormatLite::ZigZagEncode32(int32 n) { // Note: the right-shift must be arithmetic return (static_cast(n) << 1) ^ (n >> 31); } inline int32 WireFormatLite::ZigZagDecode32(uint32 n) { return (n >> 1) ^ -static_cast(n & 1); } inline uint64 WireFormatLite::ZigZagEncode64(int64 n) { // Note: the right-shift must be arithmetic return (static_cast(n) << 1) ^ (n >> 63); } inline int64 WireFormatLite::ZigZagDecode64(uint64 n) { return (n >> 1) ^ -static_cast(n & 1); } // String is for UTF-8 text only, but, even so, ReadString() can simply // call ReadBytes(). inline bool WireFormatLite::ReadString(io::CodedInputStream* input, string* value) { return ReadBytes(input, value); } inline bool WireFormatLite::ReadString(io::CodedInputStream* input, string** p) { return ReadBytes(input, p); } } // namespace internal } // namespace protobuf } // namespace google #endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__