// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace google { namespace protobuf { namespace internal { // =================================================================== bool UnknownFieldSetFieldSkipper::SkipField( io::CodedInputStream* input, uint32 tag) { return WireFormat::SkipField(input, tag, unknown_fields_); } bool UnknownFieldSetFieldSkipper::SkipMessage(io::CodedInputStream* input) { return WireFormat::SkipMessage(input, unknown_fields_); } void UnknownFieldSetFieldSkipper::SkipUnknownEnum( int field_number, int value) { unknown_fields_->AddVarint(field_number, value); } bool WireFormat::SkipField(io::CodedInputStream* input, uint32 tag, UnknownFieldSet* unknown_fields) { int number = WireFormatLite::GetTagFieldNumber(tag); // Field number 0 is illegal. if (number == 0) return false; switch (WireFormatLite::GetTagWireType(tag)) { case WireFormatLite::WIRETYPE_VARINT: { uint64 value; if (!input->ReadVarint64(&value)) return false; if (unknown_fields != NULL) unknown_fields->AddVarint(number, value); return true; } case WireFormatLite::WIRETYPE_FIXED64: { uint64 value; if (!input->ReadLittleEndian64(&value)) return false; if (unknown_fields != NULL) unknown_fields->AddFixed64(number, value); return true; } case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: { uint32 length; if (!input->ReadVarint32(&length)) return false; if (unknown_fields == NULL) { if (!input->Skip(length)) return false; } else { if (!input->ReadString(unknown_fields->AddLengthDelimited(number), length)) { return false; } } return true; } case WireFormatLite::WIRETYPE_START_GROUP: { if (!input->IncrementRecursionDepth()) return false; if (!SkipMessage(input, (unknown_fields == NULL) ? NULL : unknown_fields->AddGroup(number))) { return false; } input->DecrementRecursionDepth(); // Check that the ending tag matched the starting tag. if (!input->LastTagWas(WireFormatLite::MakeTag( WireFormatLite::GetTagFieldNumber(tag), WireFormatLite::WIRETYPE_END_GROUP))) { return false; } return true; } case WireFormatLite::WIRETYPE_END_GROUP: { return false; } case WireFormatLite::WIRETYPE_FIXED32: { uint32 value; if (!input->ReadLittleEndian32(&value)) return false; if (unknown_fields != NULL) unknown_fields->AddFixed32(number, value); return true; } default: { return false; } } } bool WireFormat::SkipMessage(io::CodedInputStream* input, UnknownFieldSet* unknown_fields) { while (true) { uint32 tag = input->ReadTag(); if (tag == 0) { // End of input. This is a valid place to end, so return true. return true; } WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag); if (wire_type == WireFormatLite::WIRETYPE_END_GROUP) { // Must be the end of the message. return true; } if (!SkipField(input, tag, unknown_fields)) return false; } } bool WireFormat::ReadPackedEnumPreserveUnknowns(io::CodedInputStream* input, uint32 field_number, bool (*is_valid)(int), UnknownFieldSet* unknown_fields, RepeatedField* values) { uint32 length; if (!input->ReadVarint32(&length)) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); while (input->BytesUntilLimit() > 0) { int value; if (!google::protobuf::internal::WireFormatLite::ReadPrimitive< int, WireFormatLite::TYPE_ENUM>(input, &value)) { return false; } if (is_valid == NULL || is_valid(value)) { values->Add(value); } else { unknown_fields->AddVarint(field_number, value); } } input->PopLimit(limit); return true; } void WireFormat::SerializeUnknownFields(const UnknownFieldSet& unknown_fields, io::CodedOutputStream* output) { for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); switch (field.type()) { case UnknownField::TYPE_VARINT: output->WriteVarint32(WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_VARINT)); output->WriteVarint64(field.varint()); break; case UnknownField::TYPE_FIXED32: output->WriteVarint32(WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_FIXED32)); output->WriteLittleEndian32(field.fixed32()); break; case UnknownField::TYPE_FIXED64: output->WriteVarint32(WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_FIXED64)); output->WriteLittleEndian64(field.fixed64()); break; case UnknownField::TYPE_LENGTH_DELIMITED: output->WriteVarint32(WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED)); output->WriteVarint32(field.length_delimited().size()); output->WriteRawMaybeAliased(field.length_delimited().data(), field.length_delimited().size()); break; case UnknownField::TYPE_GROUP: output->WriteVarint32(WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_START_GROUP)); SerializeUnknownFields(field.group(), output); output->WriteVarint32(WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_END_GROUP)); break; } } } uint8* WireFormat::SerializeUnknownFieldsToArray( const UnknownFieldSet& unknown_fields, uint8* target) { for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); switch (field.type()) { case UnknownField::TYPE_VARINT: target = WireFormatLite::WriteInt64ToArray( field.number(), field.varint(), target); break; case UnknownField::TYPE_FIXED32: target = WireFormatLite::WriteFixed32ToArray( field.number(), field.fixed32(), target); break; case UnknownField::TYPE_FIXED64: target = WireFormatLite::WriteFixed64ToArray( field.number(), field.fixed64(), target); break; case UnknownField::TYPE_LENGTH_DELIMITED: target = WireFormatLite::WriteBytesToArray( field.number(), field.length_delimited(), target); break; case UnknownField::TYPE_GROUP: target = WireFormatLite::WriteTagToArray( field.number(), WireFormatLite::WIRETYPE_START_GROUP, target); target = SerializeUnknownFieldsToArray(field.group(), target); target = WireFormatLite::WriteTagToArray( field.number(), WireFormatLite::WIRETYPE_END_GROUP, target); break; } } return target; } void WireFormat::SerializeUnknownMessageSetItems( const UnknownFieldSet& unknown_fields, io::CodedOutputStream* output) { for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); // The only unknown fields that are allowed to exist in a MessageSet are // messages, which are length-delimited. if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) { // Start group. output->WriteVarint32(WireFormatLite::kMessageSetItemStartTag); // Write type ID. output->WriteVarint32(WireFormatLite::kMessageSetTypeIdTag); output->WriteVarint32(field.number()); // Write message. output->WriteVarint32(WireFormatLite::kMessageSetMessageTag); field.SerializeLengthDelimitedNoTag(output); // End group. output->WriteVarint32(WireFormatLite::kMessageSetItemEndTag); } } } uint8* WireFormat::SerializeUnknownMessageSetItemsToArray( const UnknownFieldSet& unknown_fields, uint8* target) { for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); // The only unknown fields that are allowed to exist in a MessageSet are // messages, which are length-delimited. if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) { // Start group. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetItemStartTag, target); // Write type ID. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetTypeIdTag, target); target = io::CodedOutputStream::WriteVarint32ToArray( field.number(), target); // Write message. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetMessageTag, target); target = field.SerializeLengthDelimitedNoTagToArray(target); // End group. target = io::CodedOutputStream::WriteTagToArray( WireFormatLite::kMessageSetItemEndTag, target); } } return target; } size_t WireFormat::ComputeUnknownFieldsSize( const UnknownFieldSet& unknown_fields) { size_t size = 0; for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); switch (field.type()) { case UnknownField::TYPE_VARINT: size += io::CodedOutputStream::VarintSize32( WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_VARINT)); size += io::CodedOutputStream::VarintSize64(field.varint()); break; case UnknownField::TYPE_FIXED32: size += io::CodedOutputStream::VarintSize32( WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_FIXED32)); size += sizeof(int32); break; case UnknownField::TYPE_FIXED64: size += io::CodedOutputStream::VarintSize32( WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_FIXED64)); size += sizeof(int64); break; case UnknownField::TYPE_LENGTH_DELIMITED: size += io::CodedOutputStream::VarintSize32( WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED)); size += io::CodedOutputStream::VarintSize32( field.length_delimited().size()); size += field.length_delimited().size(); break; case UnknownField::TYPE_GROUP: size += io::CodedOutputStream::VarintSize32( WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_START_GROUP)); size += ComputeUnknownFieldsSize(field.group()); size += io::CodedOutputStream::VarintSize32( WireFormatLite::MakeTag(field.number(), WireFormatLite::WIRETYPE_END_GROUP)); break; } } return size; } size_t WireFormat::ComputeUnknownMessageSetItemsSize( const UnknownFieldSet& unknown_fields) { size_t size = 0; for (int i = 0; i < unknown_fields.field_count(); i++) { const UnknownField& field = unknown_fields.field(i); // The only unknown fields that are allowed to exist in a MessageSet are // messages, which are length-delimited. if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) { size += WireFormatLite::kMessageSetItemTagsSize; size += io::CodedOutputStream::VarintSize32(field.number()); int field_size = field.GetLengthDelimitedSize(); size += io::CodedOutputStream::VarintSize32(field_size); size += field_size; } } return size; } // =================================================================== bool WireFormat::ParseAndMergePartial(io::CodedInputStream* input, Message* message) { const Descriptor* descriptor = message->GetDescriptor(); const Reflection* message_reflection = message->GetReflection(); while(true) { uint32 tag = input->ReadTag(); if (tag == 0) { // End of input. This is a valid place to end, so return true. return true; } if (WireFormatLite::GetTagWireType(tag) == WireFormatLite::WIRETYPE_END_GROUP) { // Must be the end of the message. return true; } const FieldDescriptor* field = NULL; if (descriptor != NULL) { int field_number = WireFormatLite::GetTagFieldNumber(tag); field = descriptor->FindFieldByNumber(field_number); // If that failed, check if the field is an extension. if (field == NULL && descriptor->IsExtensionNumber(field_number)) { if (input->GetExtensionPool() == NULL) { field = message_reflection->FindKnownExtensionByNumber(field_number); } else { field = input->GetExtensionPool() ->FindExtensionByNumber(descriptor, field_number); } } // If that failed, but we're a MessageSet, and this is the tag for a // MessageSet item, then parse that. if (field == NULL && descriptor->options().message_set_wire_format() && tag == WireFormatLite::kMessageSetItemStartTag) { if (!ParseAndMergeMessageSetItem(input, message)) { return false; } continue; // Skip ParseAndMergeField(); already taken care of. } } if (!ParseAndMergeField(tag, field, message, input)) { return false; } } } bool WireFormat::SkipMessageSetField(io::CodedInputStream* input, uint32 field_number, UnknownFieldSet* unknown_fields) { uint32 length; if (!input->ReadVarint32(&length)) return false; return input->ReadString( unknown_fields->AddLengthDelimited(field_number), length); } bool WireFormat::ParseAndMergeMessageSetField(uint32 field_number, const FieldDescriptor* field, Message* message, io::CodedInputStream* input) { const Reflection* message_reflection = message->GetReflection(); if (field == NULL) { // We store unknown MessageSet extensions as groups. return SkipMessageSetField( input, field_number, message_reflection->MutableUnknownFields(message)); } else if (field->is_repeated() || field->type() != FieldDescriptor::TYPE_MESSAGE) { // This shouldn't happen as we only allow optional message extensions to // MessageSet. GOOGLE_LOG(ERROR) << "Extensions of MessageSets must be optional messages."; return false; } else { Message* sub_message = message_reflection->MutableMessage( message, field, input->GetExtensionFactory()); return WireFormatLite::ReadMessage(input, sub_message); } } static bool StrictUtf8Check(const FieldDescriptor* field) { return field->file()->syntax() == FileDescriptor::SYNTAX_PROTO3; } bool WireFormat::ParseAndMergeField( uint32 tag, const FieldDescriptor* field, // May be NULL for unknown Message* message, io::CodedInputStream* input) { const Reflection* message_reflection = message->GetReflection(); enum { UNKNOWN, NORMAL_FORMAT, PACKED_FORMAT } value_format; if (field == NULL) { value_format = UNKNOWN; } else if (WireFormatLite::GetTagWireType(tag) == WireTypeForFieldType(field->type())) { value_format = NORMAL_FORMAT; } else if (field->is_packable() && WireFormatLite::GetTagWireType(tag) == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { value_format = PACKED_FORMAT; } else { // We don't recognize this field. Either the field number is unknown // or the wire type doesn't match. Put it in our unknown field set. value_format = UNKNOWN; } if (value_format == UNKNOWN) { return SkipField(input, tag, message_reflection->MutableUnknownFields(message)); } else if (value_format == PACKED_FORMAT) { uint32 length; if (!input->ReadVarint32(&length)) return false; io::CodedInputStream::Limit limit = input->PushLimit(length); switch (field->type()) { #define HANDLE_PACKED_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ while (input->BytesUntilLimit() > 0) { \ CPPTYPE value; \ if (!WireFormatLite::ReadPrimitive< \ CPPTYPE, WireFormatLite::TYPE_##TYPE>(input, &value)) \ return false; \ message_reflection->Add##CPPTYPE_METHOD(message, field, value); \ } \ break; \ } HANDLE_PACKED_TYPE( INT32, int32, Int32) HANDLE_PACKED_TYPE( INT64, int64, Int64) HANDLE_PACKED_TYPE(SINT32, int32, Int32) HANDLE_PACKED_TYPE(SINT64, int64, Int64) HANDLE_PACKED_TYPE(UINT32, uint32, UInt32) HANDLE_PACKED_TYPE(UINT64, uint64, UInt64) HANDLE_PACKED_TYPE( FIXED32, uint32, UInt32) HANDLE_PACKED_TYPE( FIXED64, uint64, UInt64) HANDLE_PACKED_TYPE(SFIXED32, int32, Int32) HANDLE_PACKED_TYPE(SFIXED64, int64, Int64) HANDLE_PACKED_TYPE(FLOAT , float , Float ) HANDLE_PACKED_TYPE(DOUBLE, double, Double) HANDLE_PACKED_TYPE(BOOL, bool, Bool) #undef HANDLE_PACKED_TYPE case FieldDescriptor::TYPE_ENUM: { while (input->BytesUntilLimit() > 0) { int value; if (!WireFormatLite::ReadPrimitive( input, &value)) return false; if (message->GetDescriptor()->file()->syntax() == FileDescriptor::SYNTAX_PROTO3) { message_reflection->AddEnumValue(message, field, value); } else { const EnumValueDescriptor* enum_value = field->enum_type()->FindValueByNumber(value); if (enum_value != NULL) { message_reflection->AddEnum(message, field, enum_value); } else { // The enum value is not one of the known values. Add it to the // UnknownFieldSet. int64 sign_extended_value = static_cast(value); message_reflection->MutableUnknownFields(message) ->AddVarint( WireFormatLite::GetTagFieldNumber(tag), sign_extended_value); } } } break; } case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_GROUP: case FieldDescriptor::TYPE_MESSAGE: case FieldDescriptor::TYPE_BYTES: // Can't have packed fields of these types: these should be caught by // the protocol compiler. return false; break; } input->PopLimit(limit); } else { // Non-packed value (value_format == NORMAL_FORMAT) switch (field->type()) { #define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ CPPTYPE value; \ if (!WireFormatLite::ReadPrimitive< \ CPPTYPE, WireFormatLite::TYPE_##TYPE>(input, &value)) \ return false; \ if (field->is_repeated()) { \ message_reflection->Add##CPPTYPE_METHOD(message, field, value); \ } else { \ message_reflection->Set##CPPTYPE_METHOD(message, field, value); \ } \ break; \ } HANDLE_TYPE( INT32, int32, Int32) HANDLE_TYPE( INT64, int64, Int64) HANDLE_TYPE(SINT32, int32, Int32) HANDLE_TYPE(SINT64, int64, Int64) HANDLE_TYPE(UINT32, uint32, UInt32) HANDLE_TYPE(UINT64, uint64, UInt64) HANDLE_TYPE( FIXED32, uint32, UInt32) HANDLE_TYPE( FIXED64, uint64, UInt64) HANDLE_TYPE(SFIXED32, int32, Int32) HANDLE_TYPE(SFIXED64, int64, Int64) HANDLE_TYPE(FLOAT , float , Float ) HANDLE_TYPE(DOUBLE, double, Double) HANDLE_TYPE(BOOL, bool, Bool) #undef HANDLE_TYPE case FieldDescriptor::TYPE_ENUM: { int value; if (!WireFormatLite::ReadPrimitive( input, &value)) return false; if (message->GetDescriptor()->file()->syntax() == FileDescriptor::SYNTAX_PROTO3) { if (field->is_repeated()) { message_reflection->AddEnumValue(message, field, value); } else { message_reflection->SetEnumValue(message, field, value); } } else { const EnumValueDescriptor* enum_value = field->enum_type()->FindValueByNumber(value); if (enum_value != NULL) { if (field->is_repeated()) { message_reflection->AddEnum(message, field, enum_value); } else { message_reflection->SetEnum(message, field, enum_value); } } else { // The enum value is not one of the known values. Add it to the // UnknownFieldSet. int64 sign_extended_value = static_cast(value); message_reflection->MutableUnknownFields(message) ->AddVarint( WireFormatLite::GetTagFieldNumber(tag), sign_extended_value); } } break; } // Handle strings separately so that we can optimize the ctype=CORD case. case FieldDescriptor::TYPE_STRING: { bool strict_utf8_check = StrictUtf8Check(field); string value; if (!WireFormatLite::ReadString(input, &value)) return false; if (strict_utf8_check) { if (!WireFormatLite::VerifyUtf8String( value.data(), value.length(), WireFormatLite::PARSE, field->full_name().c_str())) { return false; } } else { VerifyUTF8StringNamedField(value.data(), value.length(), PARSE, field->full_name().c_str()); } if (field->is_repeated()) { message_reflection->AddString(message, field, value); } else { message_reflection->SetString(message, field, value); } break; } case FieldDescriptor::TYPE_BYTES: { string value; if (!WireFormatLite::ReadBytes(input, &value)) return false; if (field->is_repeated()) { message_reflection->AddString(message, field, value); } else { message_reflection->SetString(message, field, value); } break; } case FieldDescriptor::TYPE_GROUP: { Message* sub_message; if (field->is_repeated()) { sub_message = message_reflection->AddMessage( message, field, input->GetExtensionFactory()); } else { sub_message = message_reflection->MutableMessage( message, field, input->GetExtensionFactory()); } if (!WireFormatLite::ReadGroup(WireFormatLite::GetTagFieldNumber(tag), input, sub_message)) return false; break; } case FieldDescriptor::TYPE_MESSAGE: { Message* sub_message; if (field->is_repeated()) { sub_message = message_reflection->AddMessage( message, field, input->GetExtensionFactory()); } else { sub_message = message_reflection->MutableMessage( message, field, input->GetExtensionFactory()); } if (!WireFormatLite::ReadMessage(input, sub_message)) return false; break; } } } return true; } bool WireFormat::ParseAndMergeMessageSetItem( io::CodedInputStream* input, Message* message) { const Reflection* message_reflection = message->GetReflection(); // This method parses a group which should contain two fields: // required int32 type_id = 2; // required data message = 3; uint32 last_type_id = 0; // Once we see a type_id, we'll look up the FieldDescriptor for the // extension. const FieldDescriptor* field = NULL; // If we see message data before the type_id, we'll append it to this so // we can parse it later. string message_data; while (true) { uint32 tag = input->ReadTag(); if (tag == 0) return false; switch (tag) { case WireFormatLite::kMessageSetTypeIdTag: { uint32 type_id; if (!input->ReadVarint32(&type_id)) return false; last_type_id = type_id; field = message_reflection->FindKnownExtensionByNumber(type_id); if (!message_data.empty()) { // We saw some message data before the type_id. Have to parse it // now. io::ArrayInputStream raw_input(message_data.data(), message_data.size()); io::CodedInputStream sub_input(&raw_input); if (!ParseAndMergeMessageSetField(last_type_id, field, message, &sub_input)) { return false; } message_data.clear(); } break; } case WireFormatLite::kMessageSetMessageTag: { if (last_type_id == 0) { // We haven't seen a type_id yet. Append this data to message_data. string temp; uint32 length; if (!input->ReadVarint32(&length)) return false; if (!input->ReadString(&temp, length)) return false; io::StringOutputStream output_stream(&message_data); io::CodedOutputStream coded_output(&output_stream); coded_output.WriteVarint32(length); coded_output.WriteString(temp); } else { // Already saw type_id, so we can parse this directly. if (!ParseAndMergeMessageSetField(last_type_id, field, message, input)) { return false; } } break; } case WireFormatLite::kMessageSetItemEndTag: { return true; } default: { if (!SkipField(input, tag, NULL)) return false; } } } } // =================================================================== void WireFormat::SerializeWithCachedSizes( const Message& message, int size, io::CodedOutputStream* output) { const Descriptor* descriptor = message.GetDescriptor(); const Reflection* message_reflection = message.GetReflection(); int expected_endpoint = output->ByteCount() + size; std::vector fields; message_reflection->ListFields(message, &fields); for (int i = 0; i < fields.size(); i++) { SerializeFieldWithCachedSizes(fields[i], message, output); } if (descriptor->options().message_set_wire_format()) { SerializeUnknownMessageSetItems( message_reflection->GetUnknownFields(message), output); } else { SerializeUnknownFields( message_reflection->GetUnknownFields(message), output); } GOOGLE_CHECK_EQ(output->ByteCount(), expected_endpoint) << ": Protocol message serialized to a size different from what was " "originally expected. Perhaps it was modified by another thread " "during serialization?"; } void WireFormat::SerializeFieldWithCachedSizes( const FieldDescriptor* field, const Message& message, io::CodedOutputStream* output) { const Reflection* message_reflection = message.GetReflection(); if (field->is_extension() && field->containing_type()->options().message_set_wire_format() && field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !field->is_repeated()) { SerializeMessageSetItemWithCachedSizes(field, message, output); return; } int count = 0; if (field->is_repeated()) { count = message_reflection->FieldSize(message, field); } else if (message_reflection->HasField(message, field)) { count = 1; } // map_entries is for maps that'll be deterministically serialized. std::vector map_entries; if (count > 1 && field->is_map() && output->IsSerializationDeterministic()) { map_entries = DynamicMapSorter::Sort(message, count, message_reflection, field); } const bool is_packed = field->is_packed(); if (is_packed && count > 0) { WireFormatLite::WriteTag(field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED, output); const size_t data_size = FieldDataOnlyByteSize(field, message); output->WriteVarint32(data_size); } for (int j = 0; j < count; j++) { switch (field->type()) { #define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: { \ const CPPTYPE value = field->is_repeated() ? \ message_reflection->GetRepeated##CPPTYPE_METHOD( \ message, field, j) : \ message_reflection->Get##CPPTYPE_METHOD( \ message, field); \ if (is_packed) { \ WireFormatLite::Write##TYPE_METHOD##NoTag(value, output); \ } else { \ WireFormatLite::Write##TYPE_METHOD(field->number(), value, output); \ } \ break; \ } HANDLE_PRIMITIVE_TYPE( INT32, int32, Int32, Int32) HANDLE_PRIMITIVE_TYPE( INT64, int64, Int64, Int64) HANDLE_PRIMITIVE_TYPE(SINT32, int32, SInt32, Int32) HANDLE_PRIMITIVE_TYPE(SINT64, int64, SInt64, Int64) HANDLE_PRIMITIVE_TYPE(UINT32, uint32, UInt32, UInt32) HANDLE_PRIMITIVE_TYPE(UINT64, uint64, UInt64, UInt64) HANDLE_PRIMITIVE_TYPE( FIXED32, uint32, Fixed32, UInt32) HANDLE_PRIMITIVE_TYPE( FIXED64, uint64, Fixed64, UInt64) HANDLE_PRIMITIVE_TYPE(SFIXED32, int32, SFixed32, Int32) HANDLE_PRIMITIVE_TYPE(SFIXED64, int64, SFixed64, Int64) HANDLE_PRIMITIVE_TYPE(FLOAT , float , Float , Float ) HANDLE_PRIMITIVE_TYPE(DOUBLE, double, Double, Double) HANDLE_PRIMITIVE_TYPE(BOOL, bool, Bool, Bool) #undef HANDLE_PRIMITIVE_TYPE #define HANDLE_TYPE(TYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: \ WireFormatLite::Write##TYPE_METHOD( \ field->number(), \ field->is_repeated() ? \ (map_entries.empty() ? \ message_reflection->GetRepeated##CPPTYPE_METHOD( \ message, field, j) : \ *map_entries[j]) : \ message_reflection->Get##CPPTYPE_METHOD(message, field), \ output); \ break; HANDLE_TYPE(GROUP , Group , Message) HANDLE_TYPE(MESSAGE, Message, Message) #undef HANDLE_TYPE case FieldDescriptor::TYPE_ENUM: { const EnumValueDescriptor* value = field->is_repeated() ? message_reflection->GetRepeatedEnum(message, field, j) : message_reflection->GetEnum(message, field); if (is_packed) { WireFormatLite::WriteEnumNoTag(value->number(), output); } else { WireFormatLite::WriteEnum(field->number(), value->number(), output); } break; } // Handle strings separately so that we can get string references // instead of copying. case FieldDescriptor::TYPE_STRING: { bool strict_utf8_check = StrictUtf8Check(field); string scratch; const string& value = field->is_repeated() ? message_reflection->GetRepeatedStringReference( message, field, j, &scratch) : message_reflection->GetStringReference(message, field, &scratch); if (strict_utf8_check) { WireFormatLite::VerifyUtf8String(value.data(), value.length(), WireFormatLite::SERIALIZE, field->full_name().c_str()); } else { VerifyUTF8StringNamedField(value.data(), value.length(), SERIALIZE, field->full_name().c_str()); } WireFormatLite::WriteString(field->number(), value, output); break; } case FieldDescriptor::TYPE_BYTES: { string scratch; const string& value = field->is_repeated() ? message_reflection->GetRepeatedStringReference( message, field, j, &scratch) : message_reflection->GetStringReference(message, field, &scratch); WireFormatLite::WriteBytes(field->number(), value, output); break; } } } } void WireFormat::SerializeMessageSetItemWithCachedSizes( const FieldDescriptor* field, const Message& message, io::CodedOutputStream* output) { const Reflection* message_reflection = message.GetReflection(); // Start group. output->WriteVarint32(WireFormatLite::kMessageSetItemStartTag); // Write type ID. output->WriteVarint32(WireFormatLite::kMessageSetTypeIdTag); output->WriteVarint32(field->number()); // Write message. output->WriteVarint32(WireFormatLite::kMessageSetMessageTag); const Message& sub_message = message_reflection->GetMessage(message, field); output->WriteVarint32(sub_message.GetCachedSize()); sub_message.SerializeWithCachedSizes(output); // End group. output->WriteVarint32(WireFormatLite::kMessageSetItemEndTag); } // =================================================================== size_t WireFormat::ByteSize(const Message& message) { const Descriptor* descriptor = message.GetDescriptor(); const Reflection* message_reflection = message.GetReflection(); size_t our_size = 0; std::vector fields; message_reflection->ListFields(message, &fields); for (int i = 0; i < fields.size(); i++) { our_size += FieldByteSize(fields[i], message); } if (descriptor->options().message_set_wire_format()) { our_size += ComputeUnknownMessageSetItemsSize( message_reflection->GetUnknownFields(message)); } else { our_size += ComputeUnknownFieldsSize( message_reflection->GetUnknownFields(message)); } return our_size; } size_t WireFormat::FieldByteSize( const FieldDescriptor* field, const Message& message) { const Reflection* message_reflection = message.GetReflection(); if (field->is_extension() && field->containing_type()->options().message_set_wire_format() && field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !field->is_repeated()) { return MessageSetItemByteSize(field, message); } size_t count = 0; if (field->is_repeated()) { count = FromIntSize(message_reflection->FieldSize(message, field)); } else if (message_reflection->HasField(message, field)) { count = 1; } const size_t data_size = FieldDataOnlyByteSize(field, message); size_t our_size = data_size; if (field->is_packed()) { if (data_size > 0) { // Packed fields get serialized like a string, not their native type. // Technically this doesn't really matter; the size only changes if it's // a GROUP our_size += TagSize(field->number(), FieldDescriptor::TYPE_STRING); our_size += io::CodedOutputStream::VarintSize32(data_size); } } else { our_size += count * TagSize(field->number(), field->type()); } return our_size; } size_t WireFormat::FieldDataOnlyByteSize( const FieldDescriptor* field, const Message& message) { const Reflection* message_reflection = message.GetReflection(); size_t count = 0; if (field->is_repeated()) { count = internal::FromIntSize(message_reflection->FieldSize(message, field)); } else if (message_reflection->HasField(message, field)) { count = 1; } size_t data_size = 0; switch (field->type()) { #define HANDLE_TYPE(TYPE, TYPE_METHOD, CPPTYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: \ if (field->is_repeated()) { \ for (int j = 0; j < count; j++) { \ data_size += WireFormatLite::TYPE_METHOD##Size( \ message_reflection->GetRepeated##CPPTYPE_METHOD( \ message, field, j)); \ } \ } else { \ data_size += WireFormatLite::TYPE_METHOD##Size( \ message_reflection->Get##CPPTYPE_METHOD(message, field)); \ } \ break; #define HANDLE_FIXED_TYPE(TYPE, TYPE_METHOD) \ case FieldDescriptor::TYPE_##TYPE: \ data_size += count * WireFormatLite::k##TYPE_METHOD##Size; \ break; HANDLE_TYPE( INT32, Int32, Int32) HANDLE_TYPE( INT64, Int64, Int64) HANDLE_TYPE(SINT32, SInt32, Int32) HANDLE_TYPE(SINT64, SInt64, Int64) HANDLE_TYPE(UINT32, UInt32, UInt32) HANDLE_TYPE(UINT64, UInt64, UInt64) HANDLE_FIXED_TYPE( FIXED32, Fixed32) HANDLE_FIXED_TYPE( FIXED64, Fixed64) HANDLE_FIXED_TYPE(SFIXED32, SFixed32) HANDLE_FIXED_TYPE(SFIXED64, SFixed64) HANDLE_FIXED_TYPE(FLOAT , Float ) HANDLE_FIXED_TYPE(DOUBLE, Double) HANDLE_FIXED_TYPE(BOOL, Bool) HANDLE_TYPE(GROUP , Group , Message) HANDLE_TYPE(MESSAGE, Message, Message) #undef HANDLE_TYPE #undef HANDLE_FIXED_TYPE case FieldDescriptor::TYPE_ENUM: { if (field->is_repeated()) { for (int j = 0; j < count; j++) { data_size += WireFormatLite::EnumSize( message_reflection->GetRepeatedEnum(message, field, j)->number()); } } else { data_size += WireFormatLite::EnumSize( message_reflection->GetEnum(message, field)->number()); } break; } // Handle strings separately so that we can get string references // instead of copying. case FieldDescriptor::TYPE_STRING: case FieldDescriptor::TYPE_BYTES: { for (int j = 0; j < count; j++) { string scratch; const string& value = field->is_repeated() ? message_reflection->GetRepeatedStringReference( message, field, j, &scratch) : message_reflection->GetStringReference(message, field, &scratch); data_size += WireFormatLite::StringSize(value); } break; } } return data_size; } size_t WireFormat::MessageSetItemByteSize( const FieldDescriptor* field, const Message& message) { const Reflection* message_reflection = message.GetReflection(); size_t our_size = WireFormatLite::kMessageSetItemTagsSize; // type_id our_size += io::CodedOutputStream::VarintSize32(field->number()); // message const Message& sub_message = message_reflection->GetMessage(message, field); size_t message_size = sub_message.ByteSizeLong(); our_size += io::CodedOutputStream::VarintSize32(message_size); our_size += message_size; return our_size; } } // namespace internal } // namespace protobuf } // namespace google