// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // This test is testing a lot more than just the UnknownFieldSet class. It // tests handling of unknown fields throughout the system. #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace google { namespace protobuf { using internal::WireFormat; class UnknownFieldSetTest : public testing::Test { protected: virtual void SetUp() { descriptor_ = unittest::TestAllTypes::descriptor(); TestUtil::SetAllFields(&all_fields_); all_fields_.SerializeToString(&all_fields_data_); ASSERT_TRUE(empty_message_.ParseFromString(all_fields_data_)); unknown_fields_ = empty_message_.mutable_unknown_fields(); } const UnknownField* GetField(const string& name) { const FieldDescriptor* field = descriptor_->FindFieldByName(name); if (field == NULL) return NULL; for (int i = 0; i < unknown_fields_->field_count(); i++) { if (unknown_fields_->field(i).number() == field->number()) { return &unknown_fields_->field(i); } } return NULL; } // Constructs a protocol buffer which contains fields with all the same // numbers as all_fields_data_ except that each field is some other wire // type. string GetBizarroData() { unittest::TestEmptyMessage bizarro_message; UnknownFieldSet* bizarro_unknown_fields = bizarro_message.mutable_unknown_fields(); for (int i = 0; i < unknown_fields_->field_count(); i++) { const UnknownField& unknown_field = unknown_fields_->field(i); if (unknown_field.type() == UnknownField::TYPE_VARINT) { bizarro_unknown_fields->AddFixed32(unknown_field.number(), 1); } else { bizarro_unknown_fields->AddVarint(unknown_field.number(), 1); } } string data; EXPECT_TRUE(bizarro_message.SerializeToString(&data)); return data; } const Descriptor* descriptor_; unittest::TestAllTypes all_fields_; string all_fields_data_; // An empty message that has been parsed from all_fields_data_. So, it has // unknown fields of every type. unittest::TestEmptyMessage empty_message_; UnknownFieldSet* unknown_fields_; }; namespace { TEST_F(UnknownFieldSetTest, AllFieldsPresent) { // All fields of TestAllTypes should be present, in numeric order (because // that's the order we parsed them in). Fields that are not valid field // numbers of TestAllTypes should NOT be present. int pos = 0; for (int i = 0; i < 1000; i++) { const FieldDescriptor* field = descriptor_->FindFieldByNumber(i); if (field != NULL) { ASSERT_LT(pos, unknown_fields_->field_count()); // Do not check oneof field if it is not set. if (field->containing_oneof() == NULL) { EXPECT_EQ(i, unknown_fields_->field(pos++).number()); } else if (i == unknown_fields_->field(pos).number()) { pos++; } if (field->is_repeated()) { // Should have a second instance. ASSERT_LT(pos, unknown_fields_->field_count()); EXPECT_EQ(i, unknown_fields_->field(pos++).number()); } } } EXPECT_EQ(unknown_fields_->field_count(), pos); } TEST_F(UnknownFieldSetTest, Varint) { const UnknownField* field = GetField("optional_int32"); ASSERT_TRUE(field != NULL); ASSERT_EQ(UnknownField::TYPE_VARINT, field->type()); EXPECT_EQ(all_fields_.optional_int32(), field->varint()); } TEST_F(UnknownFieldSetTest, Fixed32) { const UnknownField* field = GetField("optional_fixed32"); ASSERT_TRUE(field != NULL); ASSERT_EQ(UnknownField::TYPE_FIXED32, field->type()); EXPECT_EQ(all_fields_.optional_fixed32(), field->fixed32()); } TEST_F(UnknownFieldSetTest, Fixed64) { const UnknownField* field = GetField("optional_fixed64"); ASSERT_TRUE(field != NULL); ASSERT_EQ(UnknownField::TYPE_FIXED64, field->type()); EXPECT_EQ(all_fields_.optional_fixed64(), field->fixed64()); } TEST_F(UnknownFieldSetTest, LengthDelimited) { const UnknownField* field = GetField("optional_string"); ASSERT_TRUE(field != NULL); ASSERT_EQ(UnknownField::TYPE_LENGTH_DELIMITED, field->type()); EXPECT_EQ(all_fields_.optional_string(), field->length_delimited()); } TEST_F(UnknownFieldSetTest, Group) { const UnknownField* field = GetField("optionalgroup"); ASSERT_TRUE(field != NULL); ASSERT_EQ(UnknownField::TYPE_GROUP, field->type()); ASSERT_EQ(1, field->group().field_count()); const UnknownField& nested_field = field->group().field(0); const FieldDescriptor* nested_field_descriptor = unittest::TestAllTypes::OptionalGroup::descriptor()->FindFieldByName("a"); ASSERT_TRUE(nested_field_descriptor != NULL); EXPECT_EQ(nested_field_descriptor->number(), nested_field.number()); ASSERT_EQ(UnknownField::TYPE_VARINT, nested_field.type()); EXPECT_EQ(all_fields_.optionalgroup().a(), nested_field.varint()); } TEST_F(UnknownFieldSetTest, SerializeFastAndSlowAreEquivalent) { int size = WireFormat::ComputeUnknownFieldsSize( empty_message_.unknown_fields()); string slow_buffer; string fast_buffer; slow_buffer.resize(size); fast_buffer.resize(size); uint8* target = reinterpret_cast(string_as_array(&fast_buffer)); uint8* result = WireFormat::SerializeUnknownFieldsToArray( empty_message_.unknown_fields(), target); EXPECT_EQ(size, result - target); { io::ArrayOutputStream raw_stream(string_as_array(&slow_buffer), size, 1); io::CodedOutputStream output_stream(&raw_stream); WireFormat::SerializeUnknownFields(empty_message_.unknown_fields(), &output_stream); ASSERT_FALSE(output_stream.HadError()); } EXPECT_TRUE(fast_buffer == slow_buffer); } TEST_F(UnknownFieldSetTest, Serialize) { // Check that serializing the UnknownFieldSet produces the original data // again. string data; empty_message_.SerializeToString(&data); // Don't use EXPECT_EQ because we don't want to dump raw binary data to // stdout. EXPECT_TRUE(data == all_fields_data_); } TEST_F(UnknownFieldSetTest, ParseViaReflection) { // Make sure fields are properly parsed to the UnknownFieldSet when parsing // via reflection. unittest::TestEmptyMessage message; io::ArrayInputStream raw_input(all_fields_data_.data(), all_fields_data_.size()); io::CodedInputStream input(&raw_input); ASSERT_TRUE(WireFormat::ParseAndMergePartial(&input, &message)); EXPECT_EQ(message.DebugString(), empty_message_.DebugString()); } TEST_F(UnknownFieldSetTest, SerializeViaReflection) { // Make sure fields are properly written from the UnknownFieldSet when // serializing via reflection. string data; { io::StringOutputStream raw_output(&data); io::CodedOutputStream output(&raw_output); int size = WireFormat::ByteSize(empty_message_); WireFormat::SerializeWithCachedSizes(empty_message_, size, &output); ASSERT_FALSE(output.HadError()); } // Don't use EXPECT_EQ because we don't want to dump raw binary data to // stdout. EXPECT_TRUE(data == all_fields_data_); } TEST_F(UnknownFieldSetTest, CopyFrom) { unittest::TestEmptyMessage message; message.CopyFrom(empty_message_); EXPECT_EQ(empty_message_.DebugString(), message.DebugString()); } TEST_F(UnknownFieldSetTest, Swap) { unittest::TestEmptyMessage other_message; ASSERT_TRUE(other_message.ParseFromString(GetBizarroData())); EXPECT_GT(empty_message_.unknown_fields().field_count(), 0); EXPECT_GT(other_message.unknown_fields().field_count(), 0); const string debug_string = empty_message_.DebugString(); const string other_debug_string = other_message.DebugString(); EXPECT_NE(debug_string, other_debug_string); empty_message_.Swap(&other_message); EXPECT_EQ(debug_string, other_message.DebugString()); EXPECT_EQ(other_debug_string, empty_message_.DebugString()); } TEST_F(UnknownFieldSetTest, SwapWithSelf) { const string debug_string = empty_message_.DebugString(); EXPECT_GT(empty_message_.unknown_fields().field_count(), 0); empty_message_.Swap(&empty_message_); EXPECT_GT(empty_message_.unknown_fields().field_count(), 0); EXPECT_EQ(debug_string, empty_message_.DebugString()); } TEST_F(UnknownFieldSetTest, MergeFrom) { unittest::TestEmptyMessage source, destination; destination.mutable_unknown_fields()->AddVarint(1, 1); destination.mutable_unknown_fields()->AddVarint(3, 2); source.mutable_unknown_fields()->AddVarint(2, 3); source.mutable_unknown_fields()->AddVarint(3, 4); destination.MergeFrom(source); EXPECT_EQ( // Note: The ordering of fields here depends on the ordering of adds // and merging, above. "1: 1\n" "3: 2\n" "2: 3\n" "3: 4\n", destination.DebugString()); } TEST_F(UnknownFieldSetTest, Clear) { // Clear the set. empty_message_.Clear(); EXPECT_EQ(0, unknown_fields_->field_count()); } TEST_F(UnknownFieldSetTest, ClearAndFreeMemory) { EXPECT_GT(unknown_fields_->field_count(), 0); unknown_fields_->ClearAndFreeMemory(); EXPECT_EQ(0, unknown_fields_->field_count()); unknown_fields_->AddVarint(123456, 654321); EXPECT_EQ(1, unknown_fields_->field_count()); } TEST_F(UnknownFieldSetTest, ParseKnownAndUnknown) { // Test mixing known and unknown fields when parsing. unittest::TestEmptyMessage source; source.mutable_unknown_fields()->AddVarint(123456, 654321); string data; ASSERT_TRUE(source.SerializeToString(&data)); unittest::TestAllTypes destination; ASSERT_TRUE(destination.ParseFromString(all_fields_data_ + data)); TestUtil::ExpectAllFieldsSet(destination); ASSERT_EQ(1, destination.unknown_fields().field_count()); ASSERT_EQ(UnknownField::TYPE_VARINT, destination.unknown_fields().field(0).type()); EXPECT_EQ(654321, destination.unknown_fields().field(0).varint()); } TEST_F(UnknownFieldSetTest, WrongTypeTreatedAsUnknown) { // Test that fields of the wrong wire type are treated like unknown fields // when parsing. unittest::TestAllTypes all_types_message; unittest::TestEmptyMessage empty_message; string bizarro_data = GetBizarroData(); ASSERT_TRUE(all_types_message.ParseFromString(bizarro_data)); ASSERT_TRUE(empty_message.ParseFromString(bizarro_data)); // All fields should have been interpreted as unknown, so the debug strings // should be the same. EXPECT_EQ(empty_message.DebugString(), all_types_message.DebugString()); } TEST_F(UnknownFieldSetTest, WrongTypeTreatedAsUnknownViaReflection) { // Same as WrongTypeTreatedAsUnknown but via the reflection interface. unittest::TestAllTypes all_types_message; unittest::TestEmptyMessage empty_message; string bizarro_data = GetBizarroData(); io::ArrayInputStream raw_input(bizarro_data.data(), bizarro_data.size()); io::CodedInputStream input(&raw_input); ASSERT_TRUE(WireFormat::ParseAndMergePartial(&input, &all_types_message)); ASSERT_TRUE(empty_message.ParseFromString(bizarro_data)); EXPECT_EQ(empty_message.DebugString(), all_types_message.DebugString()); } TEST_F(UnknownFieldSetTest, UnknownExtensions) { // Make sure fields are properly parsed to the UnknownFieldSet even when // they are declared as extension numbers. unittest::TestEmptyMessageWithExtensions message; ASSERT_TRUE(message.ParseFromString(all_fields_data_)); EXPECT_EQ(message.DebugString(), empty_message_.DebugString()); } TEST_F(UnknownFieldSetTest, UnknownExtensionsReflection) { // Same as UnknownExtensions except parsing via reflection. unittest::TestEmptyMessageWithExtensions message; io::ArrayInputStream raw_input(all_fields_data_.data(), all_fields_data_.size()); io::CodedInputStream input(&raw_input); ASSERT_TRUE(WireFormat::ParseAndMergePartial(&input, &message)); EXPECT_EQ(message.DebugString(), empty_message_.DebugString()); } TEST_F(UnknownFieldSetTest, WrongExtensionTypeTreatedAsUnknown) { // Test that fields of the wrong wire type are treated like unknown fields // when parsing extensions. unittest::TestAllExtensions all_extensions_message; unittest::TestEmptyMessage empty_message; string bizarro_data = GetBizarroData(); ASSERT_TRUE(all_extensions_message.ParseFromString(bizarro_data)); ASSERT_TRUE(empty_message.ParseFromString(bizarro_data)); // All fields should have been interpreted as unknown, so the debug strings // should be the same. EXPECT_EQ(empty_message.DebugString(), all_extensions_message.DebugString()); } TEST_F(UnknownFieldSetTest, UnknownEnumValue) { using unittest::TestAllTypes; using unittest::TestAllExtensions; using unittest::TestEmptyMessage; const FieldDescriptor* singular_field = TestAllTypes::descriptor()->FindFieldByName("optional_nested_enum"); const FieldDescriptor* repeated_field = TestAllTypes::descriptor()->FindFieldByName("repeated_nested_enum"); ASSERT_TRUE(singular_field != NULL); ASSERT_TRUE(repeated_field != NULL); string data; { TestEmptyMessage empty_message; UnknownFieldSet* unknown_fields = empty_message.mutable_unknown_fields(); unknown_fields->AddVarint(singular_field->number(), TestAllTypes::BAR); unknown_fields->AddVarint(singular_field->number(), 5); // not valid unknown_fields->AddVarint(repeated_field->number(), TestAllTypes::FOO); unknown_fields->AddVarint(repeated_field->number(), 4); // not valid unknown_fields->AddVarint(repeated_field->number(), TestAllTypes::BAZ); unknown_fields->AddVarint(repeated_field->number(), 6); // not valid empty_message.SerializeToString(&data); } { TestAllTypes message; ASSERT_TRUE(message.ParseFromString(data)); EXPECT_EQ(TestAllTypes::BAR, message.optional_nested_enum()); ASSERT_EQ(2, message.repeated_nested_enum_size()); EXPECT_EQ(TestAllTypes::FOO, message.repeated_nested_enum(0)); EXPECT_EQ(TestAllTypes::BAZ, message.repeated_nested_enum(1)); const UnknownFieldSet& unknown_fields = message.unknown_fields(); ASSERT_EQ(3, unknown_fields.field_count()); EXPECT_EQ(singular_field->number(), unknown_fields.field(0).number()); ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(0).type()); EXPECT_EQ(5, unknown_fields.field(0).varint()); EXPECT_EQ(repeated_field->number(), unknown_fields.field(1).number()); ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(1).type()); EXPECT_EQ(4, unknown_fields.field(1).varint()); EXPECT_EQ(repeated_field->number(), unknown_fields.field(2).number()); ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(2).type()); EXPECT_EQ(6, unknown_fields.field(2).varint()); } { using unittest::optional_nested_enum_extension; using unittest::repeated_nested_enum_extension; TestAllExtensions message; ASSERT_TRUE(message.ParseFromString(data)); EXPECT_EQ(TestAllTypes::BAR, message.GetExtension(optional_nested_enum_extension)); ASSERT_EQ(2, message.ExtensionSize(repeated_nested_enum_extension)); EXPECT_EQ(TestAllTypes::FOO, message.GetExtension(repeated_nested_enum_extension, 0)); EXPECT_EQ(TestAllTypes::BAZ, message.GetExtension(repeated_nested_enum_extension, 1)); const UnknownFieldSet& unknown_fields = message.unknown_fields(); ASSERT_EQ(3, unknown_fields.field_count()); EXPECT_EQ(singular_field->number(), unknown_fields.field(0).number()); ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(0).type()); EXPECT_EQ(5, unknown_fields.field(0).varint()); EXPECT_EQ(repeated_field->number(), unknown_fields.field(1).number()); ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(1).type()); EXPECT_EQ(4, unknown_fields.field(1).varint()); EXPECT_EQ(repeated_field->number(), unknown_fields.field(2).number()); ASSERT_EQ(UnknownField::TYPE_VARINT, unknown_fields.field(2).type()); EXPECT_EQ(6, unknown_fields.field(2).varint()); } } TEST_F(UnknownFieldSetTest, SpaceUsedExcludingSelf) { UnknownFieldSet empty; empty.AddVarint(1, 0); EXPECT_EQ(sizeof(std::vector) + sizeof(UnknownField), empty.SpaceUsedExcludingSelf()); } TEST_F(UnknownFieldSetTest, SpaceUsed) { unittest::TestEmptyMessage empty_message; // Make sure an unknown field set has zero space used until a field is // actually added. int base_size = empty_message.SpaceUsed(); UnknownFieldSet* unknown_fields = empty_message.mutable_unknown_fields(); EXPECT_EQ(base_size, empty_message.SpaceUsed()); // Make sure each thing we add to the set increases the SpaceUsed(). unknown_fields->AddVarint(1, 0); EXPECT_LT(base_size, empty_message.SpaceUsed()); base_size = empty_message.SpaceUsed(); string* str = unknown_fields->AddLengthDelimited(1); EXPECT_LT(base_size, empty_message.SpaceUsed()); base_size = empty_message.SpaceUsed(); str->assign(sizeof(string) + 1, 'x'); EXPECT_LT(base_size, empty_message.SpaceUsed()); base_size = empty_message.SpaceUsed(); UnknownFieldSet* group = unknown_fields->AddGroup(1); EXPECT_LT(base_size, empty_message.SpaceUsed()); base_size = empty_message.SpaceUsed(); group->AddVarint(1, 0); EXPECT_LT(base_size, empty_message.SpaceUsed()); } TEST_F(UnknownFieldSetTest, Empty) { UnknownFieldSet unknown_fields; EXPECT_TRUE(unknown_fields.empty()); unknown_fields.AddVarint(6, 123); EXPECT_FALSE(unknown_fields.empty()); unknown_fields.Clear(); EXPECT_TRUE(unknown_fields.empty()); } TEST_F(UnknownFieldSetTest, DeleteSubrange) { // Exhaustively test the deletion of every possible subrange in arrays of all // sizes from 0 through 9. for (int size = 0; size < 10; ++size) { for (int num = 0; num <= size; ++num) { for (int start = 0; start < size - num; ++start) { // Create a set with "size" fields. UnknownFieldSet unknown; for (int i = 0; i < size; ++i) { unknown.AddFixed32(i, i); } // Delete the specified subrange. unknown.DeleteSubrange(start, num); // Make sure the resulting field values are still correct. EXPECT_EQ(size - num, unknown.field_count()); for (int i = 0; i < unknown.field_count(); ++i) { if (i < start) { EXPECT_EQ(i, unknown.field(i).fixed32()); } else { EXPECT_EQ(i + num, unknown.field(i).fixed32()); } } } } } } void CheckDeleteByNumber(const std::vector& field_numbers, int deleted_number, const std::vector& expected_field_nubmers) { UnknownFieldSet unknown_fields; for (int i = 0; i < field_numbers.size(); ++i) { unknown_fields.AddFixed32(field_numbers[i], i); } unknown_fields.DeleteByNumber(deleted_number); ASSERT_EQ(expected_field_nubmers.size(), unknown_fields.field_count()); for (int i = 0; i < expected_field_nubmers.size(); ++i) { EXPECT_EQ(expected_field_nubmers[i], unknown_fields.field(i).number()); } } #define MAKE_VECTOR(x) std::vector(x, x + GOOGLE_ARRAYSIZE(x)) TEST_F(UnknownFieldSetTest, DeleteByNumber) { CheckDeleteByNumber(std::vector(), 1, std::vector()); static const int kTestFieldNumbers1[] = {1, 2, 3}; static const int kFieldNumberToDelete1 = 1; static const int kExpectedFieldNumbers1[] = {2, 3}; CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers1), kFieldNumberToDelete1, MAKE_VECTOR(kExpectedFieldNumbers1)); static const int kTestFieldNumbers2[] = {1, 2, 3}; static const int kFieldNumberToDelete2 = 2; static const int kExpectedFieldNumbers2[] = {1, 3}; CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers2), kFieldNumberToDelete2, MAKE_VECTOR(kExpectedFieldNumbers2)); static const int kTestFieldNumbers3[] = {1, 2, 3}; static const int kFieldNumberToDelete3 = 3; static const int kExpectedFieldNumbers3[] = {1, 2}; CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers3), kFieldNumberToDelete3, MAKE_VECTOR(kExpectedFieldNumbers3)); static const int kTestFieldNumbers4[] = {1, 2, 1, 4, 1}; static const int kFieldNumberToDelete4 = 1; static const int kExpectedFieldNumbers4[] = {2, 4}; CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers4), kFieldNumberToDelete4, MAKE_VECTOR(kExpectedFieldNumbers4)); static const int kTestFieldNumbers5[] = {1, 2, 3, 4, 5}; static const int kFieldNumberToDelete5 = 6; static const int kExpectedFieldNumbers5[] = {1, 2, 3, 4, 5}; CheckDeleteByNumber(MAKE_VECTOR(kTestFieldNumbers5), kFieldNumberToDelete5, MAKE_VECTOR(kExpectedFieldNumbers5)); } #undef MAKE_VECTOR } // namespace } // namespace protobuf } // namespace google