// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // from google3/util/gtl/map_util.h // Author: Anton Carver #ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ #define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ #include #include #include #include #include #include namespace google { namespace protobuf { namespace internal { // Local implementation of RemoveConst to avoid including base/type_traits.h. template struct RemoveConst { typedef T type; }; template struct RemoveConst : RemoveConst {}; } // namespace internal // // Find*() // // Returns a const reference to the value associated with the given key if it // exists. Crashes otherwise. // // This is intended as a replacement for operator[] as an rvalue (for reading) // when the key is guaranteed to exist. // // operator[] for lookup is discouraged for several reasons: // * It has a side-effect of inserting missing keys // * It is not thread-safe (even when it is not inserting, it can still // choose to resize the underlying storage) // * It invalidates iterators (when it chooses to resize) // * It default constructs a value object even if it doesn't need to // // This version assumes the key is printable, and includes it in the fatal log // message. template const typename Collection::value_type::second_type& FindOrDie(const Collection& collection, const typename Collection::value_type::first_type& key) { typename Collection::const_iterator it = collection.find(key); GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; return it->second; } // Same as above, but returns a non-const reference. template typename Collection::value_type::second_type& FindOrDie(Collection& collection, // NOLINT const typename Collection::value_type::first_type& key) { typename Collection::iterator it = collection.find(key); GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; return it->second; } // Same as FindOrDie above, but doesn't log the key on failure. template const typename Collection::value_type::second_type& FindOrDieNoPrint(const Collection& collection, const typename Collection::value_type::first_type& key) { typename Collection::const_iterator it = collection.find(key); GOOGLE_CHECK(it != collection.end()) << "Map key not found"; return it->second; } // Same as above, but returns a non-const reference. template typename Collection::value_type::second_type& FindOrDieNoPrint(Collection& collection, // NOLINT const typename Collection::value_type::first_type& key) { typename Collection::iterator it = collection.find(key); GOOGLE_CHECK(it != collection.end()) << "Map key not found"; return it->second; } // Returns a const reference to the value associated with the given key if it // exists, otherwise returns a const reference to the provided default value. // // WARNING: If a temporary object is passed as the default "value," // this function will return a reference to that temporary object, // which will be destroyed at the end of the statement. A common // example: if you have a map with string values, and you pass a char* // as the default "value," either use the returned value immediately // or store it in a string (not string&). // Details: http://go/findwithdefault template const typename Collection::value_type::second_type& FindWithDefault(const Collection& collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& value) { typename Collection::const_iterator it = collection.find(key); if (it == collection.end()) { return value; } return it->second; } // Returns a pointer to the const value associated with the given key if it // exists, or NULL otherwise. template const typename Collection::value_type::second_type* FindOrNull(const Collection& collection, const typename Collection::value_type::first_type& key) { typename Collection::const_iterator it = collection.find(key); if (it == collection.end()) { return 0; } return &it->second; } // Same as above but returns a pointer to the non-const value. template typename Collection::value_type::second_type* FindOrNull(Collection& collection, // NOLINT const typename Collection::value_type::first_type& key) { typename Collection::iterator it = collection.find(key); if (it == collection.end()) { return 0; } return &it->second; } // Returns the pointer value associated with the given key. If none is found, // NULL is returned. The function is designed to be used with a map of keys to // pointers. // // This function does not distinguish between a missing key and a key mapped // to a NULL value. template typename Collection::value_type::second_type FindPtrOrNull(const Collection& collection, const typename Collection::value_type::first_type& key) { typename Collection::const_iterator it = collection.find(key); if (it == collection.end()) { return typename Collection::value_type::second_type(); } return it->second; } // Same as above, except takes non-const reference to collection. // // This function is needed for containers that propagate constness to the // pointee, such as boost::ptr_map. template typename Collection::value_type::second_type FindPtrOrNull(Collection& collection, // NOLINT const typename Collection::value_type::first_type& key) { typename Collection::iterator it = collection.find(key); if (it == collection.end()) { return typename Collection::value_type::second_type(); } return it->second; } // Finds the pointer value associated with the given key in a map whose values // are linked_ptrs. Returns NULL if key is not found. template typename Collection::value_type::second_type::element_type* FindLinkedPtrOrNull(const Collection& collection, const typename Collection::value_type::first_type& key) { typename Collection::const_iterator it = collection.find(key); if (it == collection.end()) { return 0; } // Since linked_ptr::get() is a const member returning a non const, // we do not need a version of this function taking a non const collection. return it->second.get(); } // Same as above, but dies if the key is not found. template typename Collection::value_type::second_type::element_type& FindLinkedPtrOrDie(const Collection& collection, const typename Collection::value_type::first_type& key) { typename Collection::const_iterator it = collection.find(key); GOOGLE_CHECK(it != collection.end()) << "key not found: " << key; // Since linked_ptr::operator*() is a const member returning a non const, // we do not need a version of this function taking a non const collection. return *it->second; } // Finds the value associated with the given key and copies it to *value (if not // NULL). Returns false if the key was not found, true otherwise. template bool FindCopy(const Collection& collection, const Key& key, Value* const value) { typename Collection::const_iterator it = collection.find(key); if (it == collection.end()) { return false; } if (value) { *value = it->second; } return true; } // // Contains*() // // Returns true if and only if the given collection contains the given key. template bool ContainsKey(const Collection& collection, const Key& key) { return collection.find(key) != collection.end(); } // Returns true if and only if the given collection contains the given key-value // pair. template bool ContainsKeyValuePair(const Collection& collection, const Key& key, const Value& value) { typedef typename Collection::const_iterator const_iterator; std::pair range = collection.equal_range(key); for (const_iterator it = range.first; it != range.second; ++it) { if (it->second == value) { return true; } } return false; } // // Insert*() // // Inserts the given key-value pair into the collection. Returns true if and // only if the key from the given pair didn't previously exist. Otherwise, the // value in the map is replaced with the value from the given pair. template bool InsertOrUpdate(Collection* const collection, const typename Collection::value_type& vt) { std::pair ret = collection->insert(vt); if (!ret.second) { // update ret.first->second = vt.second; return false; } return true; } // Same as above, except that the key and value are passed separately. template bool InsertOrUpdate(Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& value) { return InsertOrUpdate( collection, typename Collection::value_type(key, value)); } // Inserts/updates all the key-value pairs from the range defined by the // iterators "first" and "last" into the given collection. template void InsertOrUpdateMany(Collection* const collection, InputIterator first, InputIterator last) { for (; first != last; ++first) { InsertOrUpdate(collection, *first); } } // Change the value associated with a particular key in a map or hash_map // of the form map which owns the objects pointed to by the // value pointers. If there was an existing value for the key, it is deleted. // True indicates an insert took place, false indicates an update + delete. template bool InsertAndDeleteExisting( Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& value) { std::pair ret = collection->insert(typename Collection::value_type(key, value)); if (!ret.second) { delete ret.first->second; ret.first->second = value; return false; } return true; } // Inserts the given key and value into the given collection if and only if the // given key did NOT already exist in the collection. If the key previously // existed in the collection, the value is not changed. Returns true if the // key-value pair was inserted; returns false if the key was already present. template bool InsertIfNotPresent(Collection* const collection, const typename Collection::value_type& vt) { return collection->insert(vt).second; } // Same as above except the key and value are passed separately. template bool InsertIfNotPresent( Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& value) { return InsertIfNotPresent( collection, typename Collection::value_type(key, value)); } // Same as above except dies if the key already exists in the collection. template void InsertOrDie(Collection* const collection, const typename Collection::value_type& value) { GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value; } // Same as above except doesn't log the value on error. template void InsertOrDieNoPrint(Collection* const collection, const typename Collection::value_type& value) { GOOGLE_CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; } // Inserts the key-value pair into the collection. Dies if key was already // present. template void InsertOrDie(Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& data) { GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key: " << key; } // Same as above except doesn't log the key on error. template void InsertOrDieNoPrint( Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& data) { GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; } // Inserts a new key and default-initialized value. Dies if the key was already // present. Returns a reference to the value. Example usage: // // map m; // SomeProto& proto = InsertKeyOrDie(&m, 3); // proto.set_field("foo"); template typename Collection::value_type::second_type& InsertKeyOrDie( Collection* const collection, const typename Collection::value_type::first_type& key) { typedef typename Collection::value_type value_type; std::pair res = collection->insert(value_type(key, typename value_type::second_type())); GOOGLE_CHECK(res.second) << "duplicate key: " << key; return res.first->second; } // // Lookup*() // // Looks up a given key and value pair in a collection and inserts the key-value // pair if it's not already present. Returns a reference to the value associated // with the key. template typename Collection::value_type::second_type& LookupOrInsert(Collection* const collection, const typename Collection::value_type& vt) { return collection->insert(vt).first->second; } // Same as above except the key-value are passed separately. template typename Collection::value_type::second_type& LookupOrInsert(Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& value) { return LookupOrInsert( collection, typename Collection::value_type(key, value)); } // Counts the number of equivalent elements in the given "sequence", and stores // the results in "count_map" with element as the key and count as the value. // // Example: // vector v = {"a", "b", "c", "a", "b"}; // map m; // AddTokenCounts(v, 1, &m); // assert(m["a"] == 2); // assert(m["b"] == 2); // assert(m["c"] == 1); template void AddTokenCounts( const Sequence& sequence, const typename Collection::value_type::second_type& increment, Collection* const count_map) { for (typename Sequence::const_iterator it = sequence.begin(); it != sequence.end(); ++it) { typename Collection::value_type::second_type& value = LookupOrInsert(count_map, *it, typename Collection::value_type::second_type()); value += increment; } } // Returns a reference to the value associated with key. If not found, a value // is default constructed on the heap and added to the map. // // This function is useful for containers of the form map, where // inserting a new key, value pair involves constructing a new heap-allocated // Value, and storing a pointer to that in the collection. template typename Collection::value_type::second_type& LookupOrInsertNew(Collection* const collection, const typename Collection::value_type::first_type& key) { typedef typename std::iterator_traits< typename Collection::value_type::second_type>::value_type Element; std::pair ret = collection->insert(typename Collection::value_type( key, static_cast(NULL))); if (ret.second) { ret.first->second = new Element(); } return ret.first->second; } // Same as above but constructs the value using the single-argument constructor // and the given "arg". template typename Collection::value_type::second_type& LookupOrInsertNew(Collection* const collection, const typename Collection::value_type::first_type& key, const Arg& arg) { typedef typename std::iterator_traits< typename Collection::value_type::second_type>::value_type Element; std::pair ret = collection->insert(typename Collection::value_type( key, static_cast(NULL))); if (ret.second) { ret.first->second = new Element(arg); } return ret.first->second; } // Lookup of linked/shared pointers is used in two scenarios: // // Use LookupOrInsertNewLinkedPtr if the container owns the elements. // In this case it is fine working with the raw pointer as long as it is // guaranteed that no other thread can delete/update an accessed element. // A mutex will need to lock the container operation as well as the use // of the returned elements. Finding an element may be performed using // FindLinkedPtr*(). // // Use LookupOrInsertNewSharedPtr if the container does not own the elements // for their whole lifetime. This is typically the case when a reader allows // parallel updates to the container. In this case a Mutex only needs to lock // container operations, but all element operations must be performed on the // shared pointer. Finding an element must be performed using FindPtr*() and // cannot be done with FindLinkedPtr*() even though it compiles. // Lookup a key in a map or hash_map whose values are linked_ptrs. If it is // missing, set collection[key].reset(new Value::element_type) and return that. // Value::element_type must be default constructable. template typename Collection::value_type::second_type::element_type* LookupOrInsertNewLinkedPtr( Collection* const collection, const typename Collection::value_type::first_type& key) { typedef typename Collection::value_type::second_type Value; std::pair ret = collection->insert(typename Collection::value_type(key, Value())); if (ret.second) { ret.first->second.reset(new typename Value::element_type); } return ret.first->second.get(); } // A variant of LookupOrInsertNewLinkedPtr where the value is constructed using // a single-parameter constructor. Note: the constructor argument is computed // even if it will not be used, so only values cheap to compute should be passed // here. On the other hand it does not matter how expensive the construction of // the actual stored value is, as that only occurs if necessary. template typename Collection::value_type::second_type::element_type* LookupOrInsertNewLinkedPtr( Collection* const collection, const typename Collection::value_type::first_type& key, const Arg& arg) { typedef typename Collection::value_type::second_type Value; std::pair ret = collection->insert(typename Collection::value_type(key, Value())); if (ret.second) { ret.first->second.reset(new typename Value::element_type(arg)); } return ret.first->second.get(); } // Lookup a key in a map or hash_map whose values are shared_ptrs. If it is // missing, set collection[key].reset(new Value::element_type). Unlike // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of // the raw pointer. Value::element_type must be default constructable. template typename Collection::value_type::second_type& LookupOrInsertNewSharedPtr( Collection* const collection, const typename Collection::value_type::first_type& key) { typedef typename Collection::value_type::second_type SharedPtr; typedef typename Collection::value_type::second_type::element_type Element; std::pair ret = collection->insert(typename Collection::value_type(key, SharedPtr())); if (ret.second) { ret.first->second.reset(new Element()); } return ret.first->second; } // A variant of LookupOrInsertNewSharedPtr where the value is constructed using // a single-parameter constructor. Note: the constructor argument is computed // even if it will not be used, so only values cheap to compute should be passed // here. On the other hand it does not matter how expensive the construction of // the actual stored value is, as that only occurs if necessary. template typename Collection::value_type::second_type& LookupOrInsertNewSharedPtr( Collection* const collection, const typename Collection::value_type::first_type& key, const Arg& arg) { typedef typename Collection::value_type::second_type SharedPtr; typedef typename Collection::value_type::second_type::element_type Element; std::pair ret = collection->insert(typename Collection::value_type(key, SharedPtr())); if (ret.second) { ret.first->second.reset(new Element(arg)); } return ret.first->second; } // // Misc Utility Functions // // Updates the value associated with the given key. If the key was not already // present, then the key-value pair are inserted and "previous" is unchanged. If // the key was already present, the value is updated and "*previous" will // contain a copy of the old value. // // InsertOrReturnExisting has complementary behavior that returns the // address of an already existing value, rather than updating it. template bool UpdateReturnCopy(Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& value, typename Collection::value_type::second_type* previous) { std::pair ret = collection->insert(typename Collection::value_type(key, value)); if (!ret.second) { // update if (previous) { *previous = ret.first->second; } ret.first->second = value; return true; } return false; } // Same as above except that the key and value are passed as a pair. template bool UpdateReturnCopy(Collection* const collection, const typename Collection::value_type& vt, typename Collection::value_type::second_type* previous) { std::pair ret = collection->insert(vt); if (!ret.second) { // update if (previous) { *previous = ret.first->second; } ret.first->second = vt.second; return true; } return false; } // Tries to insert the given key-value pair into the collection. Returns NULL if // the insert succeeds. Otherwise, returns a pointer to the existing value. // // This complements UpdateReturnCopy in that it allows to update only after // verifying the old value and still insert quickly without having to look up // twice. Unlike UpdateReturnCopy this also does not come with the issue of an // undefined previous* in case new data was inserted. template typename Collection::value_type::second_type* const InsertOrReturnExisting(Collection* const collection, const typename Collection::value_type& vt) { std::pair ret = collection->insert(vt); if (ret.second) { return NULL; // Inserted, no existing previous value. } else { return &ret.first->second; // Return address of already existing value. } } // Same as above, except for explicit key and data. template typename Collection::value_type::second_type* const InsertOrReturnExisting( Collection* const collection, const typename Collection::value_type::first_type& key, const typename Collection::value_type::second_type& data) { return InsertOrReturnExisting(collection, typename Collection::value_type(key, data)); } // Erases the collection item identified by the given key, and returns the value // associated with that key. It is assumed that the value (i.e., the // mapped_type) is a pointer. Returns NULL if the key was not found in the // collection. // // Examples: // map my_map; // // One line cleanup: // delete EraseKeyReturnValuePtr(&my_map, "abc"); // // Use returned value: // std::unique_ptr value_ptr( // EraseKeyReturnValuePtr(&my_map, "abc")); // if (value_ptr.get()) // value_ptr->DoSomething(); // template typename Collection::value_type::second_type EraseKeyReturnValuePtr( Collection* const collection, const typename Collection::value_type::first_type& key) { typename Collection::iterator it = collection->find(key); if (it == collection->end()) { return NULL; } typename Collection::value_type::second_type v = it->second; collection->erase(it); return v; } // Inserts all the keys from map_container into key_container, which must // support insert(MapContainer::key_type). // // Note: any initial contents of the key_container are not cleared. template void InsertKeysFromMap(const MapContainer& map_container, KeyContainer* key_container) { GOOGLE_CHECK(key_container != NULL); for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { key_container->insert(it->first); } } // Appends all the keys from map_container into key_container, which must // support push_back(MapContainer::key_type). // // Note: any initial contents of the key_container are not cleared. template void AppendKeysFromMap(const MapContainer& map_container, KeyContainer* key_container) { GOOGLE_CHECK(key_container != NULL); for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { key_container->push_back(it->first); } } // A more specialized overload of AppendKeysFromMap to optimize reallocations // for the common case in which we're appending keys to a vector and hence can // (and sometimes should) call reserve() first. // // (It would be possible to play SFINAE games to call reserve() for any // container that supports it, but this seems to get us 99% of what we need // without the complexity of a SFINAE-based solution.) template void AppendKeysFromMap(const MapContainer& map_container, std::vector* key_container) { GOOGLE_CHECK(key_container != NULL); // We now have the opportunity to call reserve(). Calling reserve() every // time is a bad idea for some use cases: libstdc++'s implementation of // vector<>::reserve() resizes the vector's backing store to exactly the // given size (unless it's already at least that big). Because of this, // the use case that involves appending a lot of small maps (total size // N) one by one to a vector would be O(N^2). But never calling reserve() // loses the opportunity to improve the use case of adding from a large // map to an empty vector (this improves performance by up to 33%). A // number of heuristics are possible; see the discussion in // cl/34081696. Here we use the simplest one. if (key_container->empty()) { key_container->reserve(map_container.size()); } for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { key_container->push_back(it->first); } } // Inserts all the values from map_container into value_container, which must // support push_back(MapContainer::mapped_type). // // Note: any initial contents of the value_container are not cleared. template void AppendValuesFromMap(const MapContainer& map_container, ValueContainer* value_container) { GOOGLE_CHECK(value_container != NULL); for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { value_container->push_back(it->second); } } // A more specialized overload of AppendValuesFromMap to optimize reallocations // for the common case in which we're appending values to a vector and hence // can (and sometimes should) call reserve() first. // // (It would be possible to play SFINAE games to call reserve() for any // container that supports it, but this seems to get us 99% of what we need // without the complexity of a SFINAE-based solution.) template void AppendValuesFromMap(const MapContainer& map_container, std::vector* value_container) { GOOGLE_CHECK(value_container != NULL); // See AppendKeysFromMap for why this is done. if (value_container->empty()) { value_container->reserve(map_container.size()); } for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { value_container->push_back(it->second); } } } // namespace protobuf } // namespace google #endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__