// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // Defines Message, the abstract interface implemented by non-lite // protocol message objects. Although it's possible to implement this // interface manually, most users will use the protocol compiler to // generate implementations. // // Example usage: // // Say you have a message defined as: // // message Foo { // optional string text = 1; // repeated int32 numbers = 2; // } // // Then, if you used the protocol compiler to generate a class from the above // definition, you could use it like so: // // string data; // Will store a serialized version of the message. // // { // // Create a message and serialize it. // Foo foo; // foo.set_text("Hello World!"); // foo.add_numbers(1); // foo.add_numbers(5); // foo.add_numbers(42); // // foo.SerializeToString(&data); // } // // { // // Parse the serialized message and check that it contains the // // correct data. // Foo foo; // foo.ParseFromString(data); // // assert(foo.text() == "Hello World!"); // assert(foo.numbers_size() == 3); // assert(foo.numbers(0) == 1); // assert(foo.numbers(1) == 5); // assert(foo.numbers(2) == 42); // } // // { // // Same as the last block, but do it dynamically via the Message // // reflection interface. // Message* foo = new Foo; // const Descriptor* descriptor = foo->GetDescriptor(); // // // Get the descriptors for the fields we're interested in and verify // // their types. // const FieldDescriptor* text_field = descriptor->FindFieldByName("text"); // assert(text_field != NULL); // assert(text_field->type() == FieldDescriptor::TYPE_STRING); // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL); // const FieldDescriptor* numbers_field = descriptor-> // FindFieldByName("numbers"); // assert(numbers_field != NULL); // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32); // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED); // // // Parse the message. // foo->ParseFromString(data); // // // Use the reflection interface to examine the contents. // const Reflection* reflection = foo->GetReflection(); // assert(reflection->GetString(*foo, text_field) == "Hello World!"); // assert(reflection->FieldSize(*foo, numbers_field) == 3); // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1); // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5); // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42); // // delete foo; // } #ifndef GOOGLE_PROTOBUF_MESSAGE_H__ #define GOOGLE_PROTOBUF_MESSAGE_H__ #include #include #include #include #include #include #include #include #define GOOGLE_PROTOBUF_HAS_ONEOF #define GOOGLE_PROTOBUF_HAS_ARENAS namespace google { namespace protobuf { // Defined in this file. class Message; class Reflection; class MessageFactory; // Defined in other files. class MapKey; class MapValueRef; class MapIterator; class MapReflectionTester; namespace internal { class MapFieldBase; } class UnknownFieldSet; // unknown_field_set.h namespace io { class ZeroCopyInputStream; // zero_copy_stream.h class ZeroCopyOutputStream; // zero_copy_stream.h class CodedInputStream; // coded_stream.h class CodedOutputStream; // coded_stream.h } namespace python { class MapReflectionFriend; // scalar_map_container.h } template class RepeatedField; // repeated_field.h template class RepeatedPtrField; // repeated_field.h // A container to hold message metadata. struct Metadata { const Descriptor* descriptor; const Reflection* reflection; }; // Abstract interface for protocol messages. // // See also MessageLite, which contains most every-day operations. Message // adds descriptors and reflection on top of that. // // The methods of this class that are virtual but not pure-virtual have // default implementations based on reflection. Message classes which are // optimized for speed will want to override these with faster implementations, // but classes optimized for code size may be happy with keeping them. See // the optimize_for option in descriptor.proto. class LIBPROTOBUF_EXPORT Message : public MessageLite { public: inline Message() {} virtual ~Message() {} // Basic Operations ------------------------------------------------ // Construct a new instance of the same type. Ownership is passed to the // caller. (This is also defined in MessageLite, but is defined again here // for return-type covariance.) virtual Message* New() const = 0; // Construct a new instance on the arena. Ownership is passed to the caller // if arena is a NULL. Default implementation allows for API compatibility // during the Arena transition. virtual Message* New(::google::protobuf::Arena* arena) const { Message* message = New(); if (arena != NULL) { arena->Own(message); } return message; } // Make this message into a copy of the given message. The given message // must have the same descriptor, but need not necessarily be the same class. // By default this is just implemented as "Clear(); MergeFrom(from);". virtual void CopyFrom(const Message& from); // Merge the fields from the given message into this message. Singular // fields will be overwritten, if specified in from, except for embedded // messages which will be merged. Repeated fields will be concatenated. // The given message must be of the same type as this message (i.e. the // exact same class). virtual void MergeFrom(const Message& from); // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with // a nice error message. void CheckInitialized() const; // Slowly build a list of all required fields that are not set. // This is much, much slower than IsInitialized() as it is implemented // purely via reflection. Generally, you should not call this unless you // have already determined that an error exists by calling IsInitialized(). void FindInitializationErrors(std::vector* errors) const; // Like FindInitializationErrors, but joins all the strings, delimited by // commas, and returns them. string InitializationErrorString() const; // Clears all unknown fields from this message and all embedded messages. // Normally, if unknown tag numbers are encountered when parsing a message, // the tag and value are stored in the message's UnknownFieldSet and // then written back out when the message is serialized. This allows servers // which simply route messages to other servers to pass through messages // that have new field definitions which they don't yet know about. However, // this behavior can have security implications. To avoid it, call this // method after parsing. // // See Reflection::GetUnknownFields() for more on unknown fields. virtual void DiscardUnknownFields(); // Computes (an estimate of) the total number of bytes currently used for // storing the message in memory. The default implementation calls the // Reflection object's SpaceUsed() method. // // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented // using reflection (rather than the generated code implementation for // ByteSize()). Like ByteSize(), its CPU time is linear in the number of // fields defined for the proto. virtual int SpaceUsed() const; // Debugging & Testing---------------------------------------------- // Generates a human readable form of this message, useful for debugging // and other purposes. string DebugString() const; // Like DebugString(), but with less whitespace. string ShortDebugString() const; // Like DebugString(), but do not escape UTF-8 byte sequences. string Utf8DebugString() const; // Convenience function useful in GDB. Prints DebugString() to stdout. void PrintDebugString() const; // Heavy I/O ------------------------------------------------------- // Additional parsing and serialization methods not implemented by // MessageLite because they are not supported by the lite library. // Parse a protocol buffer from a file descriptor. If successful, the entire // input will be consumed. bool ParseFromFileDescriptor(int file_descriptor); // Like ParseFromFileDescriptor(), but accepts messages that are missing // required fields. bool ParsePartialFromFileDescriptor(int file_descriptor); // Parse a protocol buffer from a C++ istream. If successful, the entire // input will be consumed. bool ParseFromIstream(std::istream* input); // Like ParseFromIstream(), but accepts messages that are missing // required fields. bool ParsePartialFromIstream(std::istream* input); // Serialize the message and write it to the given file descriptor. All // required fields must be set. bool SerializeToFileDescriptor(int file_descriptor) const; // Like SerializeToFileDescriptor(), but allows missing required fields. bool SerializePartialToFileDescriptor(int file_descriptor) const; // Serialize the message and write it to the given C++ ostream. All // required fields must be set. bool SerializeToOstream(std::ostream* output) const; // Like SerializeToOstream(), but allows missing required fields. bool SerializePartialToOstream(std::ostream* output) const; // Reflection-based methods ---------------------------------------- // These methods are pure-virtual in MessageLite, but Message provides // reflection-based default implementations. virtual string GetTypeName() const; virtual void Clear(); virtual bool IsInitialized() const; virtual void CheckTypeAndMergeFrom(const MessageLite& other); virtual bool MergePartialFromCodedStream(io::CodedInputStream* input); virtual size_t ByteSizeLong() const; virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const; private: // This is called only by the default implementation of ByteSize(), to // update the cached size. If you override ByteSize(), you do not need // to override this. If you do not override ByteSize(), you MUST override // this; the default implementation will crash. // // The method is private because subclasses should never call it; only // override it. Yes, C++ lets you do that. Crazy, huh? virtual void SetCachedSize(int size) const; public: // Introspection --------------------------------------------------- // Typedef for backwards-compatibility. typedef google::protobuf::Reflection Reflection; // Get a Descriptor for this message's type. This describes what // fields the message contains, the types of those fields, etc. const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; } // Get the Reflection interface for this Message, which can be used to // read and modify the fields of the Message dynamically (in other words, // without knowing the message type at compile time). This object remains // property of the Message. // // This method remains virtual in case a subclass does not implement // reflection and wants to override the default behavior. virtual const Reflection* GetReflection() const { return GetMetadata().reflection; } protected: // Get a struct containing the metadata for the Message. Most subclasses only // need to implement this method, rather than the GetDescriptor() and // GetReflection() wrappers. virtual Metadata GetMetadata() const = 0; private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message); }; namespace internal { // Forward-declare interfaces used to implement RepeatedFieldRef. // These are protobuf internals that users shouldn't care about. class RepeatedFieldAccessor; } // namespace internal // Forward-declare RepeatedFieldRef templates. The second type parameter is // used for SFINAE tricks. Users should ignore it. template class RepeatedFieldRef; template class MutableRepeatedFieldRef; // This interface contains methods that can be used to dynamically access // and modify the fields of a protocol message. Their semantics are // similar to the accessors the protocol compiler generates. // // To get the Reflection for a given Message, call Message::GetReflection(). // // This interface is separate from Message only for efficiency reasons; // the vast majority of implementations of Message will share the same // implementation of Reflection (GeneratedMessageReflection, // defined in generated_message.h), and all Messages of a particular class // should share the same Reflection object (though you should not rely on // the latter fact). // // There are several ways that these methods can be used incorrectly. For // example, any of the following conditions will lead to undefined // results (probably assertion failures): // - The FieldDescriptor is not a field of this message type. // - The method called is not appropriate for the field's type. For // each field type in FieldDescriptor::TYPE_*, there is only one // Get*() method, one Set*() method, and one Add*() method that is // valid for that type. It should be obvious which (except maybe // for TYPE_BYTES, which are represented using strings in C++). // - A Get*() or Set*() method for singular fields is called on a repeated // field. // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated // field. // - The Message object passed to any method is not of the right type for // this Reflection object (i.e. message.GetReflection() != reflection). // // You might wonder why there is not any abstract representation for a field // of arbitrary type. E.g., why isn't there just a "GetField()" method that // returns "const Field&", where "Field" is some class with accessors like // "GetInt32Value()". The problem is that someone would have to deal with // allocating these Field objects. For generated message classes, having to // allocate space for an additional object to wrap every field would at least // double the message's memory footprint, probably worse. Allocating the // objects on-demand, on the other hand, would be expensive and prone to // memory leaks. So, instead we ended up with this flat interface. // // TODO(kenton): Create a utility class which callers can use to read and // write fields from a Reflection without paying attention to the type. class LIBPROTOBUF_EXPORT Reflection { public: inline Reflection() {} virtual ~Reflection(); // Get the UnknownFieldSet for the message. This contains fields which // were seen when the Message was parsed but were not recognized according // to the Message's definition. For proto3 protos, this method will always // return an empty UnknownFieldSet. virtual const UnknownFieldSet& GetUnknownFields( const Message& message) const = 0; // Get a mutable pointer to the UnknownFieldSet for the message. This // contains fields which were seen when the Message was parsed but were not // recognized according to the Message's definition. For proto3 protos, this // method will return a valid mutable UnknownFieldSet pointer but modifying // it won't affect the serialized bytes of the message. virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0; // Estimate the amount of memory used by the message object. virtual int SpaceUsed(const Message& message) const = 0; // Check if the given non-repeated field is set. virtual bool HasField(const Message& message, const FieldDescriptor* field) const = 0; // Get the number of elements of a repeated field. virtual int FieldSize(const Message& message, const FieldDescriptor* field) const = 0; // Clear the value of a field, so that HasField() returns false or // FieldSize() returns zero. virtual void ClearField(Message* message, const FieldDescriptor* field) const = 0; // Check if the oneof is set. Returns true if any field in oneof // is set, false otherwise. // TODO(jieluo) - make it pure virtual after updating all // the subclasses. virtual bool HasOneof(const Message& /*message*/, const OneofDescriptor* /*oneof_descriptor*/) const { return false; } virtual void ClearOneof(Message* /*message*/, const OneofDescriptor* /*oneof_descriptor*/) const {} // Returns the field descriptor if the oneof is set. NULL otherwise. // TODO(jieluo) - make it pure virtual. virtual const FieldDescriptor* GetOneofFieldDescriptor( const Message& /*message*/, const OneofDescriptor* /*oneof_descriptor*/) const { return NULL; } // Removes the last element of a repeated field. // We don't provide a way to remove any element other than the last // because it invites inefficient use, such as O(n^2) filtering loops // that should have been O(n). If you want to remove an element other // than the last, the best way to do it is to re-arrange the elements // (using Swap()) so that the one you want removed is at the end, then // call RemoveLast(). virtual void RemoveLast(Message* message, const FieldDescriptor* field) const = 0; // Removes the last element of a repeated message field, and returns the // pointer to the caller. Caller takes ownership of the returned pointer. virtual Message* ReleaseLast(Message* message, const FieldDescriptor* field) const = 0; // Swap the complete contents of two messages. virtual void Swap(Message* message1, Message* message2) const = 0; // Swap fields listed in fields vector of two messages. virtual void SwapFields(Message* message1, Message* message2, const std::vector& fields) const = 0; // Swap two elements of a repeated field. virtual void SwapElements(Message* message, const FieldDescriptor* field, int index1, int index2) const = 0; // List all fields of the message which are currently set. This includes // extensions. Singular fields will only be listed if HasField(field) would // return true and repeated fields will only be listed if FieldSize(field) // would return non-zero. Fields (both normal fields and extension fields) // will be listed ordered by field number. virtual void ListFields( const Message& message, std::vector* output) const = 0; // Singular field getters ------------------------------------------ // These get the value of a non-repeated field. They return the default // value for fields that aren't set. virtual int32 GetInt32 (const Message& message, const FieldDescriptor* field) const = 0; virtual int64 GetInt64 (const Message& message, const FieldDescriptor* field) const = 0; virtual uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const = 0; virtual uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const = 0; virtual float GetFloat (const Message& message, const FieldDescriptor* field) const = 0; virtual double GetDouble(const Message& message, const FieldDescriptor* field) const = 0; virtual bool GetBool (const Message& message, const FieldDescriptor* field) const = 0; virtual string GetString(const Message& message, const FieldDescriptor* field) const = 0; virtual const EnumValueDescriptor* GetEnum( const Message& message, const FieldDescriptor* field) const = 0; // GetEnumValue() returns an enum field's value as an integer rather than // an EnumValueDescriptor*. If the integer value does not correspond to a // known value descriptor, a new value descriptor is created. (Such a value // will only be present when the new unknown-enum-value semantics are enabled // for a message.) virtual int GetEnumValue( const Message& message, const FieldDescriptor* field) const = 0; // See MutableMessage() for the meaning of the "factory" parameter. virtual const Message& GetMessage(const Message& message, const FieldDescriptor* field, MessageFactory* factory = NULL) const = 0; // Get a string value without copying, if possible. // // GetString() necessarily returns a copy of the string. This can be // inefficient when the string is already stored in a string object in the // underlying message. GetStringReference() will return a reference to the // underlying string in this case. Otherwise, it will copy the string into // *scratch and return that. // // Note: It is perfectly reasonable and useful to write code like: // str = reflection->GetStringReference(field, &str); // This line would ensure that only one copy of the string is made // regardless of the field's underlying representation. When initializing // a newly-constructed string, though, it's just as fast and more readable // to use code like: // string str = reflection->GetString(message, field); virtual const string& GetStringReference(const Message& message, const FieldDescriptor* field, string* scratch) const = 0; // Singular field mutators ----------------------------------------- // These mutate the value of a non-repeated field. virtual void SetInt32 (Message* message, const FieldDescriptor* field, int32 value) const = 0; virtual void SetInt64 (Message* message, const FieldDescriptor* field, int64 value) const = 0; virtual void SetUInt32(Message* message, const FieldDescriptor* field, uint32 value) const = 0; virtual void SetUInt64(Message* message, const FieldDescriptor* field, uint64 value) const = 0; virtual void SetFloat (Message* message, const FieldDescriptor* field, float value) const = 0; virtual void SetDouble(Message* message, const FieldDescriptor* field, double value) const = 0; virtual void SetBool (Message* message, const FieldDescriptor* field, bool value) const = 0; virtual void SetString(Message* message, const FieldDescriptor* field, const string& value) const = 0; virtual void SetEnum (Message* message, const FieldDescriptor* field, const EnumValueDescriptor* value) const = 0; // Set an enum field's value with an integer rather than EnumValueDescriptor. // If the value does not correspond to a known enum value, either behavior is // undefined (for proto2 messages), or the value is accepted silently for // messages with new unknown-enum-value semantics. virtual void SetEnumValue(Message* message, const FieldDescriptor* field, int value) const = 0; // Get a mutable pointer to a field with a message type. If a MessageFactory // is provided, it will be used to construct instances of the sub-message; // otherwise, the default factory is used. If the field is an extension that // does not live in the same pool as the containing message's descriptor (e.g. // it lives in an overlay pool), then a MessageFactory must be provided. // If you have no idea what that meant, then you probably don't need to worry // about it (don't provide a MessageFactory). WARNING: If the // FieldDescriptor is for a compiled-in extension, then // factory->GetPrototype(field->message_type()) MUST return an instance of // the compiled-in class for this type, NOT DynamicMessage. virtual Message* MutableMessage(Message* message, const FieldDescriptor* field, MessageFactory* factory = NULL) const = 0; // Replaces the message specified by 'field' with the already-allocated object // sub_message, passing ownership to the message. If the field contained a // message, that message is deleted. If sub_message is NULL, the field is // cleared. virtual void SetAllocatedMessage(Message* message, Message* sub_message, const FieldDescriptor* field) const = 0; // Releases the message specified by 'field' and returns the pointer, // ReleaseMessage() will return the message the message object if it exists. // Otherwise, it may or may not return NULL. In any case, if the return value // is non-NULL, the caller takes ownership of the pointer. // If the field existed (HasField() is true), then the returned pointer will // be the same as the pointer returned by MutableMessage(). // This function has the same effect as ClearField(). virtual Message* ReleaseMessage(Message* message, const FieldDescriptor* field, MessageFactory* factory = NULL) const = 0; // Repeated field getters ------------------------------------------ // These get the value of one element of a repeated field. virtual int32 GetRepeatedInt32 (const Message& message, const FieldDescriptor* field, int index) const = 0; virtual int64 GetRepeatedInt64 (const Message& message, const FieldDescriptor* field, int index) const = 0; virtual uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field, int index) const = 0; virtual uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field, int index) const = 0; virtual float GetRepeatedFloat (const Message& message, const FieldDescriptor* field, int index) const = 0; virtual double GetRepeatedDouble(const Message& message, const FieldDescriptor* field, int index) const = 0; virtual bool GetRepeatedBool (const Message& message, const FieldDescriptor* field, int index) const = 0; virtual string GetRepeatedString(const Message& message, const FieldDescriptor* field, int index) const = 0; virtual const EnumValueDescriptor* GetRepeatedEnum( const Message& message, const FieldDescriptor* field, int index) const = 0; // GetRepeatedEnumValue() returns an enum field's value as an integer rather // than an EnumValueDescriptor*. If the integer value does not correspond to a // known value descriptor, a new value descriptor is created. (Such a value // will only be present when the new unknown-enum-value semantics are enabled // for a message.) virtual int GetRepeatedEnumValue( const Message& message, const FieldDescriptor* field, int index) const = 0; virtual const Message& GetRepeatedMessage( const Message& message, const FieldDescriptor* field, int index) const = 0; // See GetStringReference(), above. virtual const string& GetRepeatedStringReference( const Message& message, const FieldDescriptor* field, int index, string* scratch) const = 0; // Repeated field mutators ----------------------------------------- // These mutate the value of one element of a repeated field. virtual void SetRepeatedInt32 (Message* message, const FieldDescriptor* field, int index, int32 value) const = 0; virtual void SetRepeatedInt64 (Message* message, const FieldDescriptor* field, int index, int64 value) const = 0; virtual void SetRepeatedUInt32(Message* message, const FieldDescriptor* field, int index, uint32 value) const = 0; virtual void SetRepeatedUInt64(Message* message, const FieldDescriptor* field, int index, uint64 value) const = 0; virtual void SetRepeatedFloat (Message* message, const FieldDescriptor* field, int index, float value) const = 0; virtual void SetRepeatedDouble(Message* message, const FieldDescriptor* field, int index, double value) const = 0; virtual void SetRepeatedBool (Message* message, const FieldDescriptor* field, int index, bool value) const = 0; virtual void SetRepeatedString(Message* message, const FieldDescriptor* field, int index, const string& value) const = 0; virtual void SetRepeatedEnum(Message* message, const FieldDescriptor* field, int index, const EnumValueDescriptor* value) const = 0; // Set an enum field's value with an integer rather than EnumValueDescriptor. // If the value does not correspond to a known enum value, either behavior is // undefined (for proto2 messages), or the value is accepted silently for // messages with new unknown-enum-value semantics. virtual void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field, int index, int value) const = 0; // Get a mutable pointer to an element of a repeated field with a message // type. virtual Message* MutableRepeatedMessage( Message* message, const FieldDescriptor* field, int index) const = 0; // Repeated field adders ------------------------------------------- // These add an element to a repeated field. virtual void AddInt32 (Message* message, const FieldDescriptor* field, int32 value) const = 0; virtual void AddInt64 (Message* message, const FieldDescriptor* field, int64 value) const = 0; virtual void AddUInt32(Message* message, const FieldDescriptor* field, uint32 value) const = 0; virtual void AddUInt64(Message* message, const FieldDescriptor* field, uint64 value) const = 0; virtual void AddFloat (Message* message, const FieldDescriptor* field, float value) const = 0; virtual void AddDouble(Message* message, const FieldDescriptor* field, double value) const = 0; virtual void AddBool (Message* message, const FieldDescriptor* field, bool value) const = 0; virtual void AddString(Message* message, const FieldDescriptor* field, const string& value) const = 0; virtual void AddEnum (Message* message, const FieldDescriptor* field, const EnumValueDescriptor* value) const = 0; // Set an enum field's value with an integer rather than EnumValueDescriptor. // If the value does not correspond to a known enum value, either behavior is // undefined (for proto2 messages), or the value is accepted silently for // messages with new unknown-enum-value semantics. virtual void AddEnumValue(Message* message, const FieldDescriptor* field, int value) const = 0; // See MutableMessage() for comments on the "factory" parameter. virtual Message* AddMessage(Message* message, const FieldDescriptor* field, MessageFactory* factory = NULL) const = 0; // Appends an already-allocated object 'new_entry' to the repeated field // specifyed by 'field' passing ownership to the message. // TODO(tmarek): Make virtual after all subclasses have been // updated. virtual void AddAllocatedMessage(Message* /* message */, const FieldDescriptor* /*field */, Message* /* new_entry */) const {} // Get a RepeatedFieldRef object that can be used to read the underlying // repeated field. The type parameter T must be set according to the // field's cpp type. The following table shows the mapping from cpp type // to acceptable T. // // field->cpp_type() T // CPPTYPE_INT32 int32 // CPPTYPE_UINT32 uint32 // CPPTYPE_INT64 int64 // CPPTYPE_UINT64 uint64 // CPPTYPE_DOUBLE double // CPPTYPE_FLOAT float // CPPTYPE_BOOL bool // CPPTYPE_ENUM generated enum type or int32 // CPPTYPE_STRING string // CPPTYPE_MESSAGE generated message type or google::protobuf::Message // // A RepeatedFieldRef object can be copied and the resulted object will point // to the same repeated field in the same message. The object can be used as // long as the message is not destroyed. // // Note that to use this method users need to include the header file // "google/protobuf/reflection.h" (which defines the RepeatedFieldRef // class templates). template RepeatedFieldRef GetRepeatedFieldRef( const Message& message, const FieldDescriptor* field) const; // Like GetRepeatedFieldRef() but return an object that can also be used // manipulate the underlying repeated field. template MutableRepeatedFieldRef GetMutableRepeatedFieldRef( Message* message, const FieldDescriptor* field) const; // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field // access. The following repeated field accesors will be removed in the // future. // // Repeated field accessors ------------------------------------------------- // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular // access to the data in a RepeatedField. The methods below provide aggregate // access by exposing the RepeatedField object itself with the Message. // Applying these templates to inappropriate types will lead to an undefined // reference at link time (e.g. GetRepeatedField<***double>), or possibly a // template matching error at compile time (e.g. GetRepeatedPtrField). // // Usage example: my_doubs = refl->GetRepeatedField(msg, fd); // DEPRECATED. Please use GetRepeatedFieldRef(). // // for T = Cord and all protobuf scalar types except enums. template const RepeatedField& GetRepeatedField( const Message&, const FieldDescriptor*) const; // DEPRECATED. Please use GetMutableRepeatedFieldRef(). // // for T = Cord and all protobuf scalar types except enums. template RepeatedField* MutableRepeatedField( Message*, const FieldDescriptor*) const; // DEPRECATED. Please use GetRepeatedFieldRef(). // // for T = string, google::protobuf::internal::StringPieceField // google::protobuf::Message & descendants. template const RepeatedPtrField& GetRepeatedPtrField( const Message&, const FieldDescriptor*) const; // DEPRECATED. Please use GetMutableRepeatedFieldRef(). // // for T = string, google::protobuf::internal::StringPieceField // google::protobuf::Message & descendants. template RepeatedPtrField* MutableRepeatedPtrField( Message*, const FieldDescriptor*) const; // Extensions ---------------------------------------------------------------- // Try to find an extension of this message type by fully-qualified field // name. Returns NULL if no extension is known for this name or number. virtual const FieldDescriptor* FindKnownExtensionByName( const string& name) const = 0; // Try to find an extension of this message type by field number. // Returns NULL if no extension is known for this name or number. virtual const FieldDescriptor* FindKnownExtensionByNumber( int number) const = 0; // Feature Flags ------------------------------------------------------------- // Does this message support storing arbitrary integer values in enum fields? // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions // take arbitrary integer values, and the legacy GetEnum() getter will // dynamically create an EnumValueDescriptor for any integer value without // one. If |false|, setting an unknown enum value via the integer-based // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails). // // Generic code that uses reflection to handle messages with enum fields // should check this flag before using the integer-based setter, and either // downgrade to a compatible value or use the UnknownFieldSet if not. For // example: // // int new_value = GetValueFromApplicationLogic(); // if (reflection->SupportsUnknownEnumValues()) { // reflection->SetEnumValue(message, field, new_value); // } else { // if (field_descriptor->enum_type()-> // FindValueByNumber(new_value) != NULL) { // reflection->SetEnumValue(message, field, new_value); // } else if (emit_unknown_enum_values) { // reflection->MutableUnknownFields(message)->AddVarint( // field->number(), new_value); // } else { // // convert value to a compatible/default value. // new_value = CompatibleDowngrade(new_value); // reflection->SetEnumValue(message, field, new_value); // } // } virtual bool SupportsUnknownEnumValues() const { return false; } // Returns the MessageFactory associated with this message. This can be // useful for determining if a message is a generated message or not, for // example: // if (message->GetReflection()->GetMessageFactory() == // google::protobuf::MessageFactory::generated_factory()) { // // This is a generated message. // } // It can also be used to create more messages of this type, though // Message::New() is an easier way to accomplish this. virtual MessageFactory* GetMessageFactory() const; // --------------------------------------------------------------------------- protected: // Obtain a pointer to a Repeated Field Structure and do some type checking: // on field->cpp_type(), // on field->field_option().ctype() (if ctype >= 0) // of field->message_type() (if message_type != NULL). // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer). virtual void* MutableRawRepeatedField( Message* message, const FieldDescriptor* field, FieldDescriptor::CppType, int ctype, const Descriptor* message_type) const = 0; // TODO(jieluo) - make it pure virtual after updating all the subclasses. virtual const void* GetRawRepeatedField( const Message& message, const FieldDescriptor* field, FieldDescriptor::CppType cpptype, int ctype, const Descriptor* message_type) const { return MutableRawRepeatedField( const_cast(&message), field, cpptype, ctype, message_type); } // The following methods are used to implement (Mutable)RepeatedFieldRef. // A Ref object will store a raw pointer to the repeated field data (obtained // from RepeatedFieldData()) and a pointer to a Accessor (obtained from // RepeatedFieldAccessor) which will be used to access the raw data. // // TODO(xiaofeng): Make these methods pure-virtual. // Returns a raw pointer to the repeated field // // "cpp_type" and "message_type" are decuded from the type parameter T passed // to Get(Mutable)RepeatedFieldRef. If T is a generated message type, // "message_type" should be set to its descriptor. Otherwise "message_type" // should be set to NULL. Implementations of this method should check whether // "cpp_type"/"message_type" is consistent with the actual type of the field. // We use 1 routine rather than 2 (const vs mutable) because it is protected // and it doesn't change the message. virtual void* RepeatedFieldData( Message* message, const FieldDescriptor* field, FieldDescriptor::CppType cpp_type, const Descriptor* message_type) const; // The returned pointer should point to a singleton instance which implements // the RepeatedFieldAccessor interface. virtual const internal::RepeatedFieldAccessor* RepeatedFieldAccessor( const FieldDescriptor* field) const; private: template friend class RepeatedFieldRef; template friend class MutableRepeatedFieldRef; friend class ::google::protobuf::python::MapReflectionFriend; // Special version for specialized implementations of string. We can't call // MutableRawRepeatedField directly here because we don't have access to // FieldOptions::* which are defined in descriptor.pb.h. Including that // file here is not possible because it would cause a circular include cycle. // We use 1 routine rather than 2 (const vs mutable) because it is private // and mutable a repeated string field doesn't change the message. void* MutableRawRepeatedString( Message* message, const FieldDescriptor* field, bool is_string) const; friend class MapReflectionTester; // TODO(jieluo) - make the map APIs pure virtual after updating // all the subclasses. // Returns true if key is in map. Returns false if key is not in map field. virtual bool ContainsMapKey(const Message& /* message*/, const FieldDescriptor* /* field */, const MapKey& /* key */) const { return false; } // If key is in map field: Saves the value pointer to val and returns // false. If key in not in map field: Insert the key into map, saves // value pointer to val and retuns true. virtual bool InsertOrLookupMapValue(Message* /* message */, const FieldDescriptor* /* field */, const MapKey& /* key */, MapValueRef* /* val */) const { return false; } // Delete and returns true if key is in the map field. Returns false // otherwise. virtual bool DeleteMapValue(Message* /* mesage */, const FieldDescriptor* /* field */, const MapKey& /* key */) const { return false; } // Returns a MapIterator referring to the first element in the map field. // If the map field is empty, this function returns the same as // reflection::MapEnd. Mutation to the field may invalidate the iterator. virtual MapIterator MapBegin( Message* message, const FieldDescriptor* field) const; // Returns a MapIterator referring to the theoretical element that would // follow the last element in the map field. It does not point to any // real element. Mutation to the field may invalidate the iterator. virtual MapIterator MapEnd( Message* message, const FieldDescriptor* field) const; // Get the number of pair of a map field. The result may be // different from FieldSize which can have duplicate keys. virtual int MapSize(const Message& /* message */, const FieldDescriptor* /* field */) const { return 0; } // Help method for MapIterator. friend class MapIterator; virtual internal::MapFieldBase* MapData( Message* /* message */, const FieldDescriptor* /* field */) const { return NULL; } GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection); }; // Abstract interface for a factory for message objects. class LIBPROTOBUF_EXPORT MessageFactory { public: inline MessageFactory() {} virtual ~MessageFactory(); // Given a Descriptor, gets or constructs the default (prototype) Message // of that type. You can then call that message's New() method to construct // a mutable message of that type. // // Calling this method twice with the same Descriptor returns the same // object. The returned object remains property of the factory. Also, any // objects created by calling the prototype's New() method share some data // with the prototype, so these must be destroyed before the MessageFactory // is destroyed. // // The given descriptor must outlive the returned message, and hence must // outlive the MessageFactory. // // Some implementations do not support all types. GetPrototype() will // return NULL if the descriptor passed in is not supported. // // This method may or may not be thread-safe depending on the implementation. // Each implementation should document its own degree thread-safety. virtual const Message* GetPrototype(const Descriptor* type) = 0; // Gets a MessageFactory which supports all generated, compiled-in messages. // In other words, for any compiled-in type FooMessage, the following is true: // MessageFactory::generated_factory()->GetPrototype( // FooMessage::descriptor()) == FooMessage::default_instance() // This factory supports all types which are found in // DescriptorPool::generated_pool(). If given a descriptor from any other // pool, GetPrototype() will return NULL. (You can also check if a // descriptor is for a generated message by checking if // descriptor->file()->pool() == DescriptorPool::generated_pool().) // // This factory is 100% thread-safe; calling GetPrototype() does not modify // any shared data. // // This factory is a singleton. The caller must not delete the object. static MessageFactory* generated_factory(); // For internal use only: Registers a .proto file at static initialization // time, to be placed in generated_factory. The first time GetPrototype() // is called with a descriptor from this file, |register_messages| will be // called, with the file name as the parameter. It must call // InternalRegisterGeneratedMessage() (below) to register each message type // in the file. This strange mechanism is necessary because descriptors are // built lazily, so we can't register types by their descriptor until we // know that the descriptor exists. |filename| must be a permanent string. static void InternalRegisterGeneratedFile( const char* filename, void (*register_messages)(const string&)); // For internal use only: Registers a message type. Called only by the // functions which are registered with InternalRegisterGeneratedFile(), // above. static void InternalRegisterGeneratedMessage(const Descriptor* descriptor, const Message* prototype); private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory); }; #define DECLARE_GET_REPEATED_FIELD(TYPE) \ template<> \ LIBPROTOBUF_EXPORT \ const RepeatedField& Reflection::GetRepeatedField( \ const Message& message, const FieldDescriptor* field) const; \ \ template<> \ LIBPROTOBUF_EXPORT \ RepeatedField* Reflection::MutableRepeatedField( \ Message* message, const FieldDescriptor* field) const; DECLARE_GET_REPEATED_FIELD(int32) DECLARE_GET_REPEATED_FIELD(int64) DECLARE_GET_REPEATED_FIELD(uint32) DECLARE_GET_REPEATED_FIELD(uint64) DECLARE_GET_REPEATED_FIELD(float) DECLARE_GET_REPEATED_FIELD(double) DECLARE_GET_REPEATED_FIELD(bool) #undef DECLARE_GET_REPEATED_FIELD // ============================================================================= // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide // specializations for , and and handle // everything else with the default template which will match any type having // a method with signature "static const google::protobuf::Descriptor* descriptor()". // Such a type presumably is a descendant of google::protobuf::Message. template<> inline const RepeatedPtrField& Reflection::GetRepeatedPtrField( const Message& message, const FieldDescriptor* field) const { return *static_cast* >( MutableRawRepeatedString(const_cast(&message), field, true)); } template<> inline RepeatedPtrField* Reflection::MutableRepeatedPtrField( Message* message, const FieldDescriptor* field) const { return static_cast* >( MutableRawRepeatedString(message, field, true)); } // ----- template<> inline const RepeatedPtrField& Reflection::GetRepeatedPtrField( const Message& message, const FieldDescriptor* field) const { return *static_cast* >( GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, NULL)); } template<> inline RepeatedPtrField* Reflection::MutableRepeatedPtrField( Message* message, const FieldDescriptor* field) const { return static_cast* >( MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, NULL)); } template inline const RepeatedPtrField& Reflection::GetRepeatedPtrField( const Message& message, const FieldDescriptor* field) const { return *static_cast* >( GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, PB::default_instance().GetDescriptor())); } template inline RepeatedPtrField* Reflection::MutableRepeatedPtrField( Message* message, const FieldDescriptor* field) const { return static_cast* >( MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, PB::default_instance().GetDescriptor())); } } // namespace protobuf } // namespace google #endif // GOOGLE_PROTOBUF_MESSAGE_H__