// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // DynamicMessage is implemented by constructing a data structure which // has roughly the same memory layout as a generated message would have. // Then, we use GeneratedMessageReflection to implement our reflection // interface. All the other operations we need to implement (e.g. // parsing, copying, etc.) are already implemented in terms of // Reflection, so the rest is easy. // // The up side of this strategy is that it's very efficient. We don't // need to use hash_maps or generic representations of fields. The // down side is that this is a low-level memory management hack which // can be tricky to get right. // // As mentioned in the header, we only expose a DynamicMessageFactory // publicly, not the DynamicMessage class itself. This is because // GenericMessageReflection wants to have a pointer to a "default" // copy of the class, with all fields initialized to their default // values. We only want to construct one of these per message type, // so DynamicMessageFactory stores a cache of default messages for // each type it sees (each unique Descriptor pointer). The code // refers to the "default" copy of the class as the "prototype". // // Note on memory allocation: This module often calls "operator new()" // to allocate untyped memory, rather than calling something like // "new uint8[]". This is because "operator new()" means "Give me some // space which I can use as I please." while "new uint8[]" means "Give // me an array of 8-bit integers.". In practice, the later may return // a pointer that is not aligned correctly for general use. I believe // Item 8 of "More Effective C++" discusses this in more detail, though // I don't have the book on me right now so I'm not sure. #include #include #include #ifndef _SHARED_PTR_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace google { namespace protobuf { using internal::DynamicMapField; using internal::ExtensionSet; using internal::GeneratedMessageReflection; using internal::InternalMetadataWithArena; using internal::MapField; using internal::ArenaStringPtr; // =================================================================== // Some helper tables and functions... namespace { bool IsMapFieldInApi(const FieldDescriptor* field) { return field->is_map(); } // Compute the byte size of the in-memory representation of the field. int FieldSpaceUsed(const FieldDescriptor* field) { typedef FieldDescriptor FD; // avoid line wrapping if (field->label() == FD::LABEL_REPEATED) { switch (field->cpp_type()) { case FD::CPPTYPE_INT32 : return sizeof(RepeatedField); case FD::CPPTYPE_INT64 : return sizeof(RepeatedField); case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField); case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField); case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField); case FD::CPPTYPE_FLOAT : return sizeof(RepeatedField); case FD::CPPTYPE_BOOL : return sizeof(RepeatedField); case FD::CPPTYPE_ENUM : return sizeof(RepeatedField); case FD::CPPTYPE_MESSAGE: if (IsMapFieldInApi(field)) { return sizeof(DynamicMapField); } else { return sizeof(RepeatedPtrField); } case FD::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: return sizeof(RepeatedPtrField); } break; } } else { switch (field->cpp_type()) { case FD::CPPTYPE_INT32 : return sizeof(int32 ); case FD::CPPTYPE_INT64 : return sizeof(int64 ); case FD::CPPTYPE_UINT32 : return sizeof(uint32 ); case FD::CPPTYPE_UINT64 : return sizeof(uint64 ); case FD::CPPTYPE_DOUBLE : return sizeof(double ); case FD::CPPTYPE_FLOAT : return sizeof(float ); case FD::CPPTYPE_BOOL : return sizeof(bool ); case FD::CPPTYPE_ENUM : return sizeof(int ); case FD::CPPTYPE_MESSAGE: return sizeof(Message*); case FD::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: return sizeof(ArenaStringPtr); } break; } } GOOGLE_LOG(DFATAL) << "Can't get here."; return 0; } // Compute the byte size of in-memory representation of the oneof fields // in default oneof instance. int OneofFieldSpaceUsed(const FieldDescriptor* field) { typedef FieldDescriptor FD; // avoid line wrapping switch (field->cpp_type()) { case FD::CPPTYPE_INT32 : return sizeof(int32 ); case FD::CPPTYPE_INT64 : return sizeof(int64 ); case FD::CPPTYPE_UINT32 : return sizeof(uint32 ); case FD::CPPTYPE_UINT64 : return sizeof(uint64 ); case FD::CPPTYPE_DOUBLE : return sizeof(double ); case FD::CPPTYPE_FLOAT : return sizeof(float ); case FD::CPPTYPE_BOOL : return sizeof(bool ); case FD::CPPTYPE_ENUM : return sizeof(int ); case FD::CPPTYPE_MESSAGE: return sizeof(Message*); case FD::CPPTYPE_STRING: switch (field->options().ctype()) { default: case FieldOptions::STRING: return sizeof(ArenaStringPtr); } break; } GOOGLE_LOG(DFATAL) << "Can't get here."; return 0; } inline int DivideRoundingUp(int i, int j) { return (i + (j - 1)) / j; } static const int kSafeAlignment = sizeof(uint64); static const int kMaxOneofUnionSize = sizeof(uint64); inline int AlignTo(int offset, int alignment) { return DivideRoundingUp(offset, alignment) * alignment; } // Rounds the given byte offset up to the next offset aligned such that any // type may be stored at it. inline int AlignOffset(int offset) { return AlignTo(offset, kSafeAlignment); } #define bitsizeof(T) (sizeof(T) * 8) } // namespace // =================================================================== class DynamicMessage : public Message { public: struct TypeInfo { int size; int has_bits_offset; int oneof_case_offset; int internal_metadata_offset; int extensions_offset; // Not owned by the TypeInfo. DynamicMessageFactory* factory; // The factory that created this object. const DescriptorPool* pool; // The factory's DescriptorPool. const Descriptor* type; // Type of this DynamicMessage. // Warning: The order in which the following pointers are defined is // important (the prototype must be deleted *before* the offsets). google::protobuf::scoped_array offsets; google::protobuf::scoped_array has_bits_indices; google::protobuf::scoped_ptr reflection; // Don't use a scoped_ptr to hold the prototype: the destructor for // DynamicMessage needs to know whether it is the prototype, and does so by // looking back at this field. This would assume details about the // implementation of scoped_ptr. const DynamicMessage* prototype; int weak_field_map_offset; // The offset for the weak_field_map; TypeInfo() : prototype(NULL) {} ~TypeInfo() { delete prototype; } }; DynamicMessage(const TypeInfo* type_info); ~DynamicMessage(); // Called on the prototype after construction to initialize message fields. void CrossLinkPrototypes(); // implements Message ---------------------------------------------- Message* New() const; Message* New(::google::protobuf::Arena* arena) const; ::google::protobuf::Arena* GetArena() const { return NULL; }; int GetCachedSize() const; void SetCachedSize(int size) const; Metadata GetMetadata() const; // We actually allocate more memory than sizeof(*this) when this // class's memory is allocated via the global operator new. Thus, we need to // manually call the global operator delete. Calling the destructor is taken // care of for us. This makes DynamicMessage compatible with -fsized-delete. // It doesn't work for MSVC though. #ifndef _MSC_VER static void operator delete(void* ptr) { ::operator delete(ptr); } #endif // !_MSC_VER private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage); DynamicMessage(const TypeInfo* type_info, ::google::protobuf::Arena* arena); void SharedCtor(); inline bool is_prototype() const { return type_info_->prototype == this || // If type_info_->prototype is NULL, then we must be constructing // the prototype now, which means we must be the prototype. type_info_->prototype == NULL; } inline void* OffsetToPointer(int offset) { return reinterpret_cast(this) + offset; } inline const void* OffsetToPointer(int offset) const { return reinterpret_cast(this) + offset; } const TypeInfo* type_info_; // TODO(kenton): Make this an atomic when C++ supports it. mutable int cached_byte_size_; }; DynamicMessage::DynamicMessage(const TypeInfo* type_info) : type_info_(type_info), cached_byte_size_(0) { SharedCtor(); } DynamicMessage::DynamicMessage(const TypeInfo* type_info, ::google::protobuf::Arena* arena) : type_info_(type_info), cached_byte_size_(0) { SharedCtor(); } void DynamicMessage::SharedCtor() { // We need to call constructors for various fields manually and set // default values where appropriate. We use placement new to call // constructors. If you haven't heard of placement new, I suggest Googling // it now. We use placement new even for primitive types that don't have // constructors for consistency. (In theory, placement new should be used // any time you are trying to convert untyped memory to typed memory, though // in practice that's not strictly necessary for types that don't have a // constructor.) const Descriptor* descriptor = type_info_->type; // Initialize oneof cases. for (int i = 0 ; i < descriptor->oneof_decl_count(); ++i) { new (OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32) * i)) uint32(0); } new (OffsetToPointer(type_info_->internal_metadata_offset)) InternalMetadataWithArena; if (type_info_->extensions_offset != -1) { new (OffsetToPointer(type_info_->extensions_offset)) ExtensionSet; } for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); void* field_ptr = OffsetToPointer(type_info_->offsets[i]); if (field->containing_oneof()) { continue; } switch (field->cpp_type()) { #define HANDLE_TYPE(CPPTYPE, TYPE) \ case FieldDescriptor::CPPTYPE_##CPPTYPE: \ if (!field->is_repeated()) { \ new(field_ptr) TYPE(field->default_value_##TYPE()); \ } else { \ new(field_ptr) RepeatedField(); \ } \ break; HANDLE_TYPE(INT32 , int32 ); HANDLE_TYPE(INT64 , int64 ); HANDLE_TYPE(UINT32, uint32); HANDLE_TYPE(UINT64, uint64); HANDLE_TYPE(DOUBLE, double); HANDLE_TYPE(FLOAT , float ); HANDLE_TYPE(BOOL , bool ); #undef HANDLE_TYPE case FieldDescriptor::CPPTYPE_ENUM: if (!field->is_repeated()) { new(field_ptr) int(field->default_value_enum()->number()); } else { new(field_ptr) RepeatedField(); } break; case FieldDescriptor::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: if (!field->is_repeated()) { const string* default_value; if (is_prototype()) { default_value = &field->default_value_string(); } else { default_value = &(reinterpret_cast( type_info_->prototype->OffsetToPointer( type_info_->offsets[i])) ->Get()); } ArenaStringPtr* asp = new(field_ptr) ArenaStringPtr(); asp->UnsafeSetDefault(default_value); } else { new(field_ptr) RepeatedPtrField(); } break; } break; case FieldDescriptor::CPPTYPE_MESSAGE: { if (!field->is_repeated()) { new(field_ptr) Message*(NULL); } else { if (IsMapFieldInApi(field)) { new (field_ptr) DynamicMapField( type_info_->factory->GetPrototypeNoLock(field->message_type())); } else { new (field_ptr) RepeatedPtrField(); } } break; } } } } DynamicMessage::~DynamicMessage() { const Descriptor* descriptor = type_info_->type; reinterpret_cast( OffsetToPointer(type_info_->internal_metadata_offset)) ->~InternalMetadataWithArena(); if (type_info_->extensions_offset != -1) { reinterpret_cast( OffsetToPointer(type_info_->extensions_offset))->~ExtensionSet(); } // We need to manually run the destructors for repeated fields and strings, // just as we ran their constructors in the DynamicMessage constructor. // We also need to manually delete oneof fields if it is set and is string // or message. // Additionally, if any singular embedded messages have been allocated, we // need to delete them, UNLESS we are the prototype message of this type, // in which case any embedded messages are other prototypes and shouldn't // be touched. for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); if (field->containing_oneof()) { void* field_ptr = OffsetToPointer( type_info_->oneof_case_offset + sizeof(uint32) * field->containing_oneof()->index()); if (*(reinterpret_cast(field_ptr)) == field->number()) { field_ptr = OffsetToPointer(type_info_->offsets[ descriptor->field_count() + field->containing_oneof()->index()]); if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { switch (field->options().ctype()) { default: case FieldOptions::STRING: { const ::std::string* default_value = &(reinterpret_cast( reinterpret_cast( type_info_->prototype) + type_info_->offsets[i]) ->Get()); reinterpret_cast(field_ptr)->Destroy( default_value, NULL); break; } } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { delete *reinterpret_cast(field_ptr); } } continue; } void* field_ptr = OffsetToPointer(type_info_->offsets[i]); if (field->is_repeated()) { switch (field->cpp_type()) { #define HANDLE_TYPE(UPPERCASE, LOWERCASE) \ case FieldDescriptor::CPPTYPE_##UPPERCASE : \ reinterpret_cast*>(field_ptr) \ ->~RepeatedField(); \ break HANDLE_TYPE( INT32, int32); HANDLE_TYPE( INT64, int64); HANDLE_TYPE(UINT32, uint32); HANDLE_TYPE(UINT64, uint64); HANDLE_TYPE(DOUBLE, double); HANDLE_TYPE( FLOAT, float); HANDLE_TYPE( BOOL, bool); HANDLE_TYPE( ENUM, int); #undef HANDLE_TYPE case FieldDescriptor::CPPTYPE_STRING: switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: reinterpret_cast*>(field_ptr) ->~RepeatedPtrField(); break; } break; case FieldDescriptor::CPPTYPE_MESSAGE: if (IsMapFieldInApi(field)) { reinterpret_cast(field_ptr)->~DynamicMapField(); } else { reinterpret_cast*>(field_ptr) ->~RepeatedPtrField(); } break; } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { switch (field->options().ctype()) { default: // TODO(kenton): Support other string reps. case FieldOptions::STRING: { const ::std::string* default_value = &(reinterpret_cast( type_info_->prototype->OffsetToPointer( type_info_->offsets[i])) ->Get()); reinterpret_cast(field_ptr)->Destroy( default_value, NULL); break; } } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { if (!is_prototype()) { Message* message = *reinterpret_cast(field_ptr); if (message != NULL) { delete message; } } } } } void DynamicMessage::CrossLinkPrototypes() { // This should only be called on the prototype message. GOOGLE_CHECK(is_prototype()); DynamicMessageFactory* factory = type_info_->factory; const Descriptor* descriptor = type_info_->type; // Cross-link default messages. for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); void* field_ptr = OffsetToPointer(type_info_->offsets[i]); if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !field->is_repeated()) { // For fields with message types, we need to cross-link with the // prototype for the field's type. // For singular fields, the field is just a pointer which should // point to the prototype. *reinterpret_cast(field_ptr) = factory->GetPrototypeNoLock(field->message_type()); } } } Message* DynamicMessage::New() const { void* new_base = operator new(type_info_->size); memset(new_base, 0, type_info_->size); return new(new_base) DynamicMessage(type_info_); } Message* DynamicMessage::New(::google::protobuf::Arena* arena) const { if (arena != NULL) { Message* message = New(); arena->Own(message); return message; } else { return New(); } } int DynamicMessage::GetCachedSize() const { return cached_byte_size_; } void DynamicMessage::SetCachedSize(int size) const { // This is theoretically not thread-compatible, but in practice it works // because if multiple threads write this simultaneously, they will be // writing the exact same value. GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN(); cached_byte_size_ = size; GOOGLE_SAFE_CONCURRENT_WRITES_END(); } Metadata DynamicMessage::GetMetadata() const { Metadata metadata; metadata.descriptor = type_info_->type; metadata.reflection = type_info_->reflection.get(); return metadata; } // =================================================================== struct DynamicMessageFactory::PrototypeMap { typedef hash_map Map; Map map_; }; DynamicMessageFactory::DynamicMessageFactory() : pool_(NULL), delegate_to_generated_factory_(false), prototypes_(new PrototypeMap) { } DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool) : pool_(pool), delegate_to_generated_factory_(false), prototypes_(new PrototypeMap) { } DynamicMessageFactory::~DynamicMessageFactory() { for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin(); iter != prototypes_->map_.end(); ++iter) { DeleteDefaultOneofInstance(iter->second->type, iter->second->offsets.get(), iter->second->prototype); delete iter->second; } } const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) { MutexLock lock(&prototypes_mutex_); return GetPrototypeNoLock(type); } const Message* DynamicMessageFactory::GetPrototypeNoLock( const Descriptor* type) { if (delegate_to_generated_factory_ && type->file()->pool() == DescriptorPool::generated_pool()) { return MessageFactory::generated_factory()->GetPrototype(type); } const DynamicMessage::TypeInfo** target = &prototypes_->map_[type]; if (*target != NULL) { // Already exists. return (*target)->prototype; } DynamicMessage::TypeInfo* type_info = new DynamicMessage::TypeInfo; *target = type_info; type_info->type = type; type_info->pool = (pool_ == NULL) ? type->file()->pool() : pool_; type_info->factory = this; // We need to construct all the structures passed to // GeneratedMessageReflection's constructor. This includes: // - A block of memory that contains space for all the message's fields. // - An array of integers indicating the byte offset of each field within // this block. // - A big bitfield containing a bit for each field indicating whether // or not that field is set. // Compute size and offsets. uint32* offsets = new uint32[type->field_count() + type->oneof_decl_count()]; type_info->offsets.reset(offsets); // Decide all field offsets by packing in order. // We place the DynamicMessage object itself at the beginning of the allocated // space. int size = sizeof(DynamicMessage); size = AlignOffset(size); // Next the has_bits, which is an array of uint32s. if (type->file()->syntax() == FileDescriptor::SYNTAX_PROTO3) { type_info->has_bits_offset = -1; } else { type_info->has_bits_offset = size; int has_bits_array_size = DivideRoundingUp(type->field_count(), bitsizeof(uint32)); size += has_bits_array_size * sizeof(uint32); size = AlignOffset(size); uint32* has_bits_indices = new uint32[type->field_count()]; for (int i = 0; i < type->field_count(); i++) { has_bits_indices[i] = i; } type_info->has_bits_indices.reset(has_bits_indices); } // The oneof_case, if any. It is an array of uint32s. if (type->oneof_decl_count() > 0) { type_info->oneof_case_offset = size; size += type->oneof_decl_count() * sizeof(uint32); size = AlignOffset(size); } // The ExtensionSet, if any. if (type->extension_range_count() > 0) { type_info->extensions_offset = size; size += sizeof(ExtensionSet); size = AlignOffset(size); } else { // No extensions. type_info->extensions_offset = -1; } // All the fields. // // TODO(b/31226269): Optimize the order of fields to minimize padding. int num_weak_fields = 0; for (int i = 0; i < type->field_count(); i++) { // Make sure field is aligned to avoid bus errors. // Oneof fields do not use any space. if (!type->field(i)->containing_oneof()) { int field_size = FieldSpaceUsed(type->field(i)); size = AlignTo(size, std::min(kSafeAlignment, field_size)); offsets[i] = size; size += field_size; } } // The oneofs. for (int i = 0; i < type->oneof_decl_count(); i++) { size = AlignTo(size, kSafeAlignment); offsets[type->field_count() + i] = size; size += kMaxOneofUnionSize; } // Add the InternalMetadataWithArena to the end. size = AlignOffset(size); type_info->internal_metadata_offset = size; size += sizeof(InternalMetadataWithArena); type_info->weak_field_map_offset = -1; // Align the final size to make sure no clever allocators think that // alignment is not necessary. type_info->size = size; // Construct the reflection object. if (type->oneof_decl_count() > 0) { // Compute the size of default oneof instance and offsets of default // oneof fields. for (int i = 0; i < type->oneof_decl_count(); i++) { for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = type->oneof_decl(i)->field(j); int field_size = OneofFieldSpaceUsed(field); size = AlignTo(size, std::min(kSafeAlignment, field_size)); offsets[field->index()] = size; size += field_size; } } } size = AlignOffset(size); // Allocate the prototype + oneof fields. void* base = operator new(size); memset(base, 0, size); // The prototype in type_info has to be set before creating the prototype // instance on memory. e.g., message Foo { map a = 1; }. When // creating prototype for Foo, prototype of the map entry will also be // created, which needs the address of the prototype of Foo (the value in // map). To break the cyclic dependency, we have to assgin the address of // prototype into type_info first. type_info->prototype = static_cast(base); DynamicMessage* prototype = new(base) DynamicMessage(type_info); if (type->oneof_decl_count() > 0 || num_weak_fields > 0) { // Construct default oneof instance. ConstructDefaultOneofInstance(type_info->type, type_info->offsets.get(), prototype); } internal::ReflectionSchema schema = { type_info->prototype, type_info->offsets.get(), type_info->has_bits_indices.get(), type_info->has_bits_offset, type_info->internal_metadata_offset, type_info->extensions_offset, type_info->oneof_case_offset, type_info->size, type_info->weak_field_map_offset}; type_info->reflection.reset(new GeneratedMessageReflection( type_info->type, schema, type_info->pool, this)); // Cross link prototypes. prototype->CrossLinkPrototypes(); return prototype; } void DynamicMessageFactory::ConstructDefaultOneofInstance( const Descriptor* type, const uint32 offsets[], void* default_oneof_or_weak_instance) { for (int i = 0; i < type->oneof_decl_count(); i++) { for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = type->oneof_decl(i)->field(j); void* field_ptr = reinterpret_cast( default_oneof_or_weak_instance) + offsets[field->index()]; switch (field->cpp_type()) { #define HANDLE_TYPE(CPPTYPE, TYPE) \ case FieldDescriptor::CPPTYPE_##CPPTYPE: \ new(field_ptr) TYPE(field->default_value_##TYPE()); \ break; HANDLE_TYPE(INT32 , int32 ); HANDLE_TYPE(INT64 , int64 ); HANDLE_TYPE(UINT32, uint32); HANDLE_TYPE(UINT64, uint64); HANDLE_TYPE(DOUBLE, double); HANDLE_TYPE(FLOAT , float ); HANDLE_TYPE(BOOL , bool ); #undef HANDLE_TYPE case FieldDescriptor::CPPTYPE_ENUM: new(field_ptr) int(field->default_value_enum()->number()); break; case FieldDescriptor::CPPTYPE_STRING: switch (field->options().ctype()) { default: case FieldOptions::STRING: ArenaStringPtr* asp = new (field_ptr) ArenaStringPtr(); asp->UnsafeSetDefault(&field->default_value_string()); break; } break; case FieldDescriptor::CPPTYPE_MESSAGE: { new(field_ptr) Message*(NULL); break; } } } } } void DynamicMessageFactory::DeleteDefaultOneofInstance( const Descriptor* type, const uint32 offsets[], const void* default_oneof_instance) { for (int i = 0; i < type->oneof_decl_count(); i++) { for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = type->oneof_decl(i)->field(j); if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { switch (field->options().ctype()) { default: case FieldOptions::STRING: break; } } } } } } // namespace protobuf } // namespace google