// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #include #include #include #include #ifndef _SHARED_PTR_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include namespace google { namespace protobuf { namespace compiler { namespace cpp { using internal::WireFormat; using internal::WireFormatLite; namespace { template void PrintFieldComment(io::Printer* printer, const T* field) { // Print the field's (or oneof's) proto-syntax definition as a comment. // We don't want to print group bodies so we cut off after the first // line. DebugStringOptions options; options.elide_group_body = true; options.elide_oneof_body = true; string def = field->DebugStringWithOptions(options); printer->Print("// $def$\n", "def", def.substr(0, def.find_first_of('\n'))); } struct FieldOrderingByNumber { inline bool operator()(const FieldDescriptor* a, const FieldDescriptor* b) const { return a->number() < b->number(); } }; // Sort the fields of the given Descriptor by number into a new[]'d array // and return it. std::vector SortFieldsByNumber( const Descriptor* descriptor) { std::vector fields(descriptor->field_count()); for (int i = 0; i < descriptor->field_count(); i++) { fields[i] = descriptor->field(i); } std::sort(fields.begin(), fields.end(), FieldOrderingByNumber()); return fields; } // Functor for sorting extension ranges by their "start" field number. struct ExtensionRangeSorter { bool operator()(const Descriptor::ExtensionRange* left, const Descriptor::ExtensionRange* right) const { return left->start < right->start; } }; // Returns true if the "required" restriction check should be ignored for the // given field. inline static bool ShouldIgnoreRequiredFieldCheck(const FieldDescriptor* field, const Options& options) { return false; } // Returns true if the message type has any required fields. If it doesn't, // we can optimize out calls to its IsInitialized() method. // // already_seen is used to avoid checking the same type multiple times // (and also to protect against recursion). static bool HasRequiredFields(const Descriptor* type, const Options& options, hash_set* already_seen) { if (already_seen->count(type) > 0) { // Since the first occurrence of a required field causes the whole // function to return true, we can assume that if the type is already // in the cache it didn't have any required fields. return false; } already_seen->insert(type); // If the type has extensions, an extension with message type could contain // required fields, so we have to be conservative and assume such an // extension exists. if (type->extension_range_count() > 0) return true; for (int i = 0; i < type->field_count(); i++) { const FieldDescriptor* field = type->field(i); if (field->is_required()) { return true; } if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !ShouldIgnoreRequiredFieldCheck(field, options)) { if (HasRequiredFields(field->message_type(), options, already_seen)) { return true; } } } return false; } static bool HasRequiredFields(const Descriptor* type, const Options& options) { hash_set already_seen; return HasRequiredFields(type, options, &already_seen); } // This returns an estimate of the compiler's alignment for the field. This // can't guarantee to be correct because the generated code could be compiled on // different systems with different alignment rules. The estimates below assume // 64-bit pointers. int EstimateAlignmentSize(const FieldDescriptor* field) { if (field == NULL) return 0; if (field->is_repeated()) return 8; switch (field->cpp_type()) { case FieldDescriptor::CPPTYPE_BOOL: return 1; case FieldDescriptor::CPPTYPE_INT32: case FieldDescriptor::CPPTYPE_UINT32: case FieldDescriptor::CPPTYPE_ENUM: case FieldDescriptor::CPPTYPE_FLOAT: return 4; case FieldDescriptor::CPPTYPE_INT64: case FieldDescriptor::CPPTYPE_UINT64: case FieldDescriptor::CPPTYPE_DOUBLE: case FieldDescriptor::CPPTYPE_STRING: case FieldDescriptor::CPPTYPE_MESSAGE: return 8; } GOOGLE_LOG(FATAL) << "Can't get here."; return -1; // Make compiler happy. } // FieldGroup is just a helper for OptimizePadding below. It holds a vector of // fields that are grouped together because they have compatible alignment, and // a preferred location in the final field ordering. class FieldGroup { public: FieldGroup() : preferred_location_(0) {} // A group with a single field. FieldGroup(float preferred_location, const FieldDescriptor* field) : preferred_location_(preferred_location), fields_(1, field) {} // Append the fields in 'other' to this group. void Append(const FieldGroup& other) { if (other.fields_.empty()) { return; } // Preferred location is the average among all the fields, so we weight by // the number of fields on each FieldGroup object. preferred_location_ = (preferred_location_ * fields_.size() + (other.preferred_location_ * other.fields_.size())) / (fields_.size() + other.fields_.size()); fields_.insert(fields_.end(), other.fields_.begin(), other.fields_.end()); } void SetPreferredLocation(float location) { preferred_location_ = location; } const std::vector& fields() const { return fields_; } // FieldGroup objects sort by their preferred location. bool operator<(const FieldGroup& other) const { return preferred_location_ < other.preferred_location_; } private: // "preferred_location_" is an estimate of where this group should go in the // final list of fields. We compute this by taking the average index of each // field in this group in the original ordering of fields. This is very // approximate, but should put this group close to where its member fields // originally went. float preferred_location_; std::vector fields_; // We rely on the default copy constructor and operator= so this type can be // used in a vector. }; // Helper for the code that emits the Clear() method. bool CanInitializeByZeroing(const FieldDescriptor* field) { if (field->is_repeated() || field->is_extension()) return false; switch (field->cpp_type()) { case internal::WireFormatLite::CPPTYPE_ENUM: return field->default_value_enum()->number() == 0; case internal::WireFormatLite::CPPTYPE_INT32: return field->default_value_int32() == 0; case internal::WireFormatLite::CPPTYPE_INT64: return field->default_value_int64() == 0; case internal::WireFormatLite::CPPTYPE_UINT32: return field->default_value_uint32() == 0; case internal::WireFormatLite::CPPTYPE_UINT64: return field->default_value_uint64() == 0; case internal::WireFormatLite::CPPTYPE_FLOAT: return field->default_value_float() == 0; case internal::WireFormatLite::CPPTYPE_DOUBLE: return field->default_value_double() == 0; case internal::WireFormatLite::CPPTYPE_BOOL: return field->default_value_bool() == false; default: return false; } } bool IsPOD(const FieldDescriptor* field) { if (field->is_repeated() || field->is_extension()) return false; switch (field->cpp_type()) { case internal::WireFormatLite::CPPTYPE_ENUM: case internal::WireFormatLite::CPPTYPE_INT32: case internal::WireFormatLite::CPPTYPE_INT64: case internal::WireFormatLite::CPPTYPE_UINT32: case internal::WireFormatLite::CPPTYPE_UINT64: case internal::WireFormatLite::CPPTYPE_FLOAT: case internal::WireFormatLite::CPPTYPE_DOUBLE: case internal::WireFormatLite::CPPTYPE_BOOL: return true; case internal::WireFormatLite::CPPTYPE_STRING: return false; default: return false; } } // Helper for the code that emits the SharedCtor() method. bool CanConstructByZeroing(const FieldDescriptor* field, const Options& options) { bool ret = CanInitializeByZeroing(field); // Non-repeated, non-lazy message fields are simply raw pointers, so we can // use memset to initialize these in SharedCtor. We cannot use this in // Clear, as we need to potentially delete the existing value. ret = ret || (!field->is_repeated() && field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE); return ret; } // Reorder 'fields' so that if the fields are output into a c++ class in the new // order, fields of similiar family (see below) are together and within each // family, alignment padding is minimized. // // We try to do this while keeping each field as close as possible to its // declaration order (from the .proto file) so that we don't reduce cache // locality much for function that access each field in order. This is also the // only (weak) signal we have for author intent concerning field layout. // // TODO(ckennelly): If/when we have profiles available for the compiler, use // those rather than respect declaration order. // // We classify each field into a particular "family" of fields, that we perform // the same operation on in our generated functions. // // REPEATED is placed first, as the C++ compiler automatically initializes // these fields in layout order. // // STRING is grouped next, as our Clear/SharedCtor/SharedDtor walks it and // calls ArenaStringPtr::Destroy on each. // // // MESSAGE is grouped next, as our Clear/SharedDtor code walks it and calls // delete on each. We initialize these fields with a NULL pointer (see // MessageFieldGenerator::GenerateConstructorCode), which allows them to be // memset. // // ZERO_INITIALIZABLE is memset in Clear/SharedCtor // // OTHER these fields are initialized one-by-one. void OptimizePadding(std::vector* fields, const Options& options) { // The sorted numeric order of Family determines the declaration order in the // memory layout. enum Family { REPEATED = 0, STRING = 1, MESSAGE = 2, ZERO_INITIALIZABLE = 4, OTHER = 5, kMaxFamily }; // First divide fields into those that align to 1 byte, 4 bytes or 8 bytes. std::vector aligned_to_1[kMaxFamily]; std::vector aligned_to_4[kMaxFamily]; std::vector aligned_to_8[kMaxFamily]; for (int i = 0; i < fields->size(); ++i) { const FieldDescriptor* field = (*fields)[i]; Family f = OTHER; if (field->is_repeated()) { f = REPEATED; } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { f = STRING; } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { f = MESSAGE; } else if (CanInitializeByZeroing(field)) { f = ZERO_INITIALIZABLE; } switch (EstimateAlignmentSize(field)) { case 1: aligned_to_1[f].push_back(FieldGroup(i, field)); break; case 4: aligned_to_4[f].push_back(FieldGroup(i, field)); break; case 8: aligned_to_8[f].push_back(FieldGroup(i, field)); break; default: GOOGLE_LOG(FATAL) << "Unknown alignment size."; } } // For each family, group fields to optimize padding. for (int f = 0; f < kMaxFamily; f++) { // Now group fields aligned to 1 byte into sets of 4, and treat those like a // single field aligned to 4 bytes. for (int i = 0; i < aligned_to_1[f].size(); i += 4) { FieldGroup field_group; for (int j = i; j < aligned_to_1[f].size() && j < i + 4; ++j) { field_group.Append(aligned_to_1[f][j]); } aligned_to_4[f].push_back(field_group); } // Sort by preferred location to keep fields as close to their declaration // order as possible. Using stable_sort ensures that the output is // consistent across runs. std::stable_sort(aligned_to_4[f].begin(), aligned_to_4[f].end()); // Now group fields aligned to 4 bytes (or the 4-field groups created above) // into pairs, and treat those like a single field aligned to 8 bytes. for (int i = 0; i < aligned_to_4[f].size(); i += 2) { FieldGroup field_group; for (int j = i; j < aligned_to_4[f].size() && j < i + 2; ++j) { field_group.Append(aligned_to_4[f][j]); } if (i == aligned_to_4[f].size() - 1) { if (f == OTHER) { // Move incomplete 4-byte block to the beginning. This is done to // pair with the (possible) leftover blocks from the // ZERO_INITIALIZABLE family. field_group.SetPreferredLocation(-1); } else { // Move incomplete 4-byte block to the end. field_group.SetPreferredLocation(fields->size() + 1); } } aligned_to_8[f].push_back(field_group); } // Sort by preferred location. std::stable_sort(aligned_to_8[f].begin(), aligned_to_8[f].end()); } // Now pull out all the FieldDescriptors in order. fields->clear(); for (int f = 0; f < kMaxFamily; ++f) { for (int i = 0; i < aligned_to_8[f].size(); ++i) { fields->insert(fields->end(), aligned_to_8[f][i].fields().begin(), aligned_to_8[f][i].fields().end()); } } } string MessageTypeProtoName(const FieldDescriptor* field) { return field->message_type()->full_name(); } // Emits an if-statement with a condition that evaluates to true if |field| is // considered non-default (will be sent over the wire), for message types // without true field presence. Should only be called if // !HasFieldPresence(message_descriptor). bool EmitFieldNonDefaultCondition(io::Printer* printer, const string& prefix, const FieldDescriptor* field) { // Merge and serialize semantics: primitive fields are merged/serialized only // if non-zero (numeric) or non-empty (string). if (!field->is_repeated() && !field->containing_oneof()) { if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { printer->Print( "if ($prefix$$name$().size() > 0) {\n", "prefix", prefix, "name", FieldName(field)); } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { // Message fields still have has_$name$() methods. printer->Print( "if ($prefix$has_$name$()) {\n", "prefix", prefix, "name", FieldName(field)); } else { printer->Print( "if ($prefix$$name$() != 0) {\n", "prefix", prefix, "name", FieldName(field)); } printer->Indent(); return true; } else if (field->containing_oneof()) { printer->Print( "if (has_$name$()) {\n", "name", FieldName(field)); printer->Indent(); return true; } return false; } // Does the given field have a has_$name$() method? bool HasHasMethod(const FieldDescriptor* field) { if (HasFieldPresence(field->file())) { // In proto1/proto2, every field has a has_$name$() method. return true; } // For message types without true field presence, only fields with a message // type have a has_$name$() method. return field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE; } // Collects map entry message type information. void CollectMapInfo(const Descriptor* descriptor, std::map* variables) { GOOGLE_CHECK(IsMapEntryMessage(descriptor)); const FieldDescriptor* key = descriptor->FindFieldByName("key"); const FieldDescriptor* val = descriptor->FindFieldByName("value"); (*variables)["key"] = PrimitiveTypeName(key->cpp_type()); switch (val->cpp_type()) { case FieldDescriptor::CPPTYPE_MESSAGE: (*variables)["val"] = FieldMessageTypeName(val); break; case FieldDescriptor::CPPTYPE_ENUM: (*variables)["val"] = ClassName(val->enum_type(), true); break; default: (*variables)["val"] = PrimitiveTypeName(val->cpp_type()); } (*variables)["key_wire_type"] = "::google::protobuf::internal::WireFormatLite::TYPE_" + ToUpper(DeclaredTypeMethodName(key->type())); (*variables)["val_wire_type"] = "::google::protobuf::internal::WireFormatLite::TYPE_" + ToUpper(DeclaredTypeMethodName(val->type())); } // Does the given field have a private (internal helper only) has_$name$() // method? bool HasPrivateHasMethod(const FieldDescriptor* field) { // Only for oneofs in message types with no field presence. has_$name$(), // based on the oneof case, is still useful internally for generated code. return (!HasFieldPresence(field->file()) && field->containing_oneof() != NULL); } } // anonymous namespace // =================================================================== MessageGenerator::MessageGenerator(const Descriptor* descriptor, const Options& options) : descriptor_(descriptor), classname_(ClassName(descriptor, false)), options_(options), field_generators_(descriptor, options), max_has_bit_index_(0), nested_generators_(new google::protobuf::scoped_ptr< MessageGenerator>[descriptor->nested_type_count()]), enum_generators_( new google::protobuf::scoped_ptr[descriptor->enum_type_count()]), extension_generators_(new google::protobuf::scoped_ptr< ExtensionGenerator>[descriptor->extension_count()]), use_dependent_base_(false) { // Compute optimized field order to be used for layout and initialization // purposes. for (int i = 0; i < descriptor_->field_count(); i++) { if (!descriptor_->field(i)->containing_oneof()) { optimized_order_.push_back(descriptor_->field(i)); } } OptimizePadding(&optimized_order_, options_); if (HasFieldPresence(descriptor_->file())) { // We use -1 as a sentinel. has_bit_indices_.resize(descriptor_->field_count(), -1); for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; // Skip fields that do not have has bits. if (field->is_repeated()) { continue; } has_bit_indices_[field->index()] = max_has_bit_index_++; } } for (int i = 0; i < descriptor->nested_type_count(); i++) { nested_generators_[i].reset( new MessageGenerator(descriptor->nested_type(i), options)); } for (int i = 0; i < descriptor->enum_type_count(); i++) { enum_generators_[i].reset( new EnumGenerator(descriptor->enum_type(i), options)); } for (int i = 0; i < descriptor->extension_count(); i++) { extension_generators_[i].reset( new ExtensionGenerator(descriptor->extension(i), options)); } num_required_fields_ = 0; for (int i = 0; i < descriptor->field_count(); i++) { if (descriptor->field(i)->is_required()) { ++num_required_fields_; } if (options.proto_h && IsFieldDependent(descriptor->field(i))) { use_dependent_base_ = true; } } if (options.proto_h && descriptor->oneof_decl_count() > 0) { // Always make oneofs dependent. use_dependent_base_ = true; } } MessageGenerator::~MessageGenerator() {} size_t MessageGenerator::HasBitsSize() const { size_t sizeof_has_bits = (max_has_bit_index_ + 31) / 32 * 4; if (sizeof_has_bits == 0) { // Zero-size arrays aren't technically allowed, and MSVC in particular // doesn't like them. We still need to declare these arrays to make // other code compile. Since this is an uncommon case, we'll just declare // them with size 1 and waste some space. Oh well. sizeof_has_bits = 4; } return sizeof_has_bits; } void MessageGenerator::Flatten(std::vector* list) { for (int i = 0; i < descriptor_->nested_type_count(); i++) { nested_generators_[i]->Flatten(list); } list->push_back(this); } void MessageGenerator::AddGenerators( std::vector* enum_generators, std::vector* extension_generators) { for (int i = 0; i < descriptor_->enum_type_count(); i++) { enum_generators->push_back(enum_generators_[i].get()); } for (int i = 0; i < descriptor_->extension_count(); i++) { extension_generators->push_back(extension_generators_[i].get()); } } void MessageGenerator::FillMessageForwardDeclarations( std::map* class_names) { if (IsMapEntryMessage(descriptor_)) return; (*class_names)[classname_] = descriptor_; } void MessageGenerator:: GenerateDependentFieldAccessorDeclarations(io::Printer* printer) { for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); PrintFieldComment(printer, field); std::map vars; SetCommonFieldVariables(field, &vars, options_); if (use_dependent_base_ && IsFieldDependent(field)) { // If the message is dependent, the inline clear_*() method will need // to delete the message type, so it must be in the dependent base // class. (See also GenerateFieldAccessorDeclarations.) printer->Print(vars, "$deprecated_attr$void clear_$name$();\n"); } // Generate type-specific accessor declarations. field_generators_.get(field).GenerateDependentAccessorDeclarations(printer); printer->Print("\n"); } } void MessageGenerator:: GenerateFieldAccessorDeclarations(io::Printer* printer) { // optimized_fields_ does not contain fields where // field->containing_oneof() != NULL // so we need to iterate over those as well. // // We place the non-oneof fields in optimized_order_, as that controls the // order of the _has_bits_ entries and we want GDB's pretty printers to be // able to infer these indices from the k[FIELDNAME]FieldNumber order. std::vector ordered_fields; ordered_fields.reserve(descriptor_->field_count()); ordered_fields.insert( ordered_fields.begin(), optimized_order_.begin(), optimized_order_.end()); for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); if (field->containing_oneof() == NULL) { continue; } ordered_fields.push_back(field); } for (int i = 0; i < ordered_fields.size(); i++) { const FieldDescriptor* field = ordered_fields[i]; PrintFieldComment(printer, field); std::map vars; SetCommonFieldVariables(field, &vars, options_); vars["constant_name"] = FieldConstantName(field); bool dependent_field = use_dependent_base_ && IsFieldDependent(field); if (dependent_field && field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !field->is_map()) { // If this field is dependent, the dependent base class determines // the message type from the derived class (which is a template // parameter). This typedef is for that: printer->Print( "private:\n" "typedef $field_type$ $dependent_type$;\n" "public:\n", "field_type", FieldMessageTypeName(field), "dependent_type", DependentTypeName(field)); } if (field->is_repeated()) { printer->Print(vars, "$deprecated_attr$int $name$_size() const;\n"); } else if (HasHasMethod(field)) { printer->Print(vars, "$deprecated_attr$bool has_$name$() const;\n"); } else if (HasPrivateHasMethod(field)) { printer->Print(vars, "private:\n" "bool has_$name$() const;\n" "public:\n"); } if (!dependent_field) { // If this field is dependent, then its clear_() method is in the // depenent base class. (See also GenerateDependentAccessorDeclarations.) printer->Print(vars, "$deprecated_attr$void clear_$name$();\n"); } printer->Print(vars, "$deprecated_attr$static const int $constant_name$ = " "$number$;\n"); // Generate type-specific accessor declarations. field_generators_.get(field).GenerateAccessorDeclarations(printer); printer->Print("\n"); } if (descriptor_->extension_range_count() > 0) { // Generate accessors for extensions. We just call a macro located in // extension_set.h since the accessors about 80 lines of static code. printer->Print( "GOOGLE_PROTOBUF_EXTENSION_ACCESSORS($classname$)\n", "classname", classname_); } for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "$camel_oneof_name$Case $oneof_name$_case() const;\n", "camel_oneof_name", UnderscoresToCamelCase(descriptor_->oneof_decl(i)->name(), true), "oneof_name", descriptor_->oneof_decl(i)->name()); } } void MessageGenerator:: GenerateDependentFieldAccessorDefinitions(io::Printer* printer) { if (!use_dependent_base_) return; printer->Print("// $classname$\n\n", "classname", DependentBaseClassTemplateName(descriptor_)); for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); if (field->options().weak()) continue; PrintFieldComment(printer, field); // These functions are not really dependent: they are part of the // (non-dependent) derived class. However, they need to live outside // any #ifdef guards, so we treat them as if they were dependent. // // See the comment in FileGenerator::GenerateInlineFunctionDefinitions // for a more complete explanation. if (use_dependent_base_ && IsFieldDependent(field)) { std::map vars; SetCommonFieldVariables(field, &vars, options_); vars["inline"] = "inline "; if (field->containing_oneof()) { vars["field_name"] = UnderscoresToCamelCase(field->name(), true); vars["oneof_name"] = field->containing_oneof()->name(); vars["oneof_index"] = SimpleItoa(field->containing_oneof()->index()); GenerateOneofMemberHasBits(field, vars, printer); } else if (!field->is_repeated()) { // There will be no header guard, so this always has to be inline. GenerateSingularFieldHasBits(field, vars, printer); } // vars needed for clear_(), which is in the dependent base: // (See also GenerateDependentFieldAccessorDeclarations.) vars["tmpl"] = "template\n"; vars["dependent_classname"] = DependentBaseClassTemplateName(descriptor_) + ""; vars["this_message"] = DependentBaseDownCast(); vars["this_const_message"] = DependentBaseConstDownCast(); GenerateFieldClear(field, vars, printer); } // Generate type-specific accessors. field_generators_.get(field) .GenerateDependentInlineAccessorDefinitions(printer); printer->Print("\n"); } // Generate has_$name$() and clear_has_$name$() functions for oneofs // Similar to other has-bits, these must always be in the header if we // are using a dependent base class. GenerateOneofHasBits(printer, true /* is_inline */); } void MessageGenerator:: GenerateSingularFieldHasBits(const FieldDescriptor* field, std::map vars, io::Printer* printer) { if (HasFieldPresence(descriptor_->file())) { // N.B.: without field presence, we do not use has-bits or generate // has_$name$() methods. int has_bit_index = has_bit_indices_[field->index()]; GOOGLE_CHECK_GE(has_bit_index, 0); vars["has_array_index"] = SimpleItoa(has_bit_index / 32); vars["has_mask"] = StrCat(strings::Hex(1u << (has_bit_index % 32), strings::ZERO_PAD_8)); printer->Print(vars, "$inline$" "bool $classname$::has_$name$() const {\n" " return (_has_bits_[$has_array_index$] & 0x$has_mask$u) != 0;\n" "}\n" "$inline$" "void $classname$::set_has_$name$() {\n" " _has_bits_[$has_array_index$] |= 0x$has_mask$u;\n" "}\n" "$inline$" "void $classname$::clear_has_$name$() {\n" " _has_bits_[$has_array_index$] &= ~0x$has_mask$u;\n" "}\n"); } else { // Message fields have a has_$name$() method. if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { bool is_lazy = false; if (is_lazy) { printer->Print(vars, "$inline$" "bool $classname$::has_$name$() const {\n" " return !$name$_.IsCleared();\n" "}\n"); } else { printer->Print( vars, "$inline$" "bool $classname$::has_$name$() const {\n" " return this != internal_default_instance() && $name$_ != NULL;\n" "}\n"); } } } } void MessageGenerator:: GenerateOneofHasBits(io::Printer* printer, bool is_inline) { for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { std::map vars; vars["oneof_name"] = descriptor_->oneof_decl(i)->name(); vars["oneof_index"] = SimpleItoa(descriptor_->oneof_decl(i)->index()); vars["cap_oneof_name"] = ToUpper(descriptor_->oneof_decl(i)->name()); vars["classname"] = classname_; vars["inline"] = (is_inline ? "inline " : ""); printer->Print( vars, "$inline$" "bool $classname$::has_$oneof_name$() const {\n" " return $oneof_name$_case() != $cap_oneof_name$_NOT_SET;\n" "}\n" "$inline$" "void $classname$::clear_has_$oneof_name$() {\n" " _oneof_case_[$oneof_index$] = $cap_oneof_name$_NOT_SET;\n" "}\n"); } } void MessageGenerator:: GenerateOneofMemberHasBits(const FieldDescriptor* field, const std::map& vars, io::Printer* printer) { // Singular field in a oneof // N.B.: Without field presence, we do not use has-bits or generate // has_$name$() methods, but oneofs still have set_has_$name$(). // Oneofs also have has_$name$() but only as a private helper // method, so that generated code is slightly cleaner (vs. comparing // _oneof_case_[index] against a constant everywhere). printer->Print(vars, "$inline$" "bool $classname$::has_$name$() const {\n" " return $oneof_name$_case() == k$field_name$;\n" "}\n"); printer->Print(vars, "$inline$" "void $classname$::set_has_$name$() {\n" " _oneof_case_[$oneof_index$] = k$field_name$;\n" "}\n"); } void MessageGenerator:: GenerateFieldClear(const FieldDescriptor* field, const std::map& vars, io::Printer* printer) { // Generate clear_$name$() (See GenerateFieldAccessorDeclarations and // GenerateDependentFieldAccessorDeclarations, $dependent_classname$ is // set by the Generate*Definitions functions.) printer->Print(vars, "$tmpl$" "$inline$" "void $dependent_classname$::clear_$name$() {\n"); printer->Indent(); if (field->containing_oneof()) { // Clear this field only if it is the active field in this oneof, // otherwise ignore printer->Print(vars, "if ($this_message$has_$name$()) {\n"); printer->Indent(); field_generators_.get(field) .GenerateClearingCode(printer); printer->Print(vars, "$this_message$clear_has_$oneof_name$();\n"); printer->Outdent(); printer->Print("}\n"); } else { field_generators_.get(field) .GenerateClearingCode(printer); if (HasFieldPresence(descriptor_->file())) { if (!field->is_repeated()) { printer->Print(vars, "$this_message$clear_has_$name$();\n"); } } } printer->Outdent(); printer->Print("}\n"); } void MessageGenerator:: GenerateFieldAccessorDefinitions(io::Printer* printer, bool is_inline) { printer->Print("// $classname$\n\n", "classname", classname_); for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); PrintFieldComment(printer, field); std::map vars; SetCommonFieldVariables(field, &vars, options_); vars["inline"] = is_inline ? "inline " : ""; if (use_dependent_base_ && IsFieldDependent(field)) { vars["tmpl"] = "template\n"; vars["dependent_classname"] = DependentBaseClassTemplateName(descriptor_) + ""; vars["this_message"] = "reinterpret_cast(this)->"; vars["this_const_message"] = "reinterpret_cast(this)->"; } else { vars["tmpl"] = ""; vars["dependent_classname"] = vars["classname"]; vars["this_message"] = ""; vars["this_const_message"] = ""; } // Generate has_$name$() or $name$_size(). if (field->is_repeated()) { printer->Print(vars, "$inline$" "int $classname$::$name$_size() const {\n" " return $name$_.size();\n" "}\n"); } else if (field->containing_oneof()) { vars["field_name"] = UnderscoresToCamelCase(field->name(), true); vars["oneof_name"] = field->containing_oneof()->name(); vars["oneof_index"] = SimpleItoa(field->containing_oneof()->index()); if (!use_dependent_base_ || !IsFieldDependent(field)) { GenerateOneofMemberHasBits(field, vars, printer); } } else { // Singular field. if (!use_dependent_base_ || !IsFieldDependent(field)) { GenerateSingularFieldHasBits(field, vars, printer); } } if (!use_dependent_base_ || !IsFieldDependent(field)) { GenerateFieldClear(field, vars, printer); } // Generate type-specific accessors. field_generators_.get(field).GenerateInlineAccessorDefinitions(printer, is_inline); printer->Print("\n"); } if (!use_dependent_base_) { // Generate has_$name$() and clear_has_$name$() functions for oneofs // If we aren't using a dependent base, they can be with the other functions // that are #ifdef-guarded. GenerateOneofHasBits(printer, is_inline); } } void MessageGenerator:: GenerateDependentBaseClassDefinition(io::Printer* printer) { if (!use_dependent_base_) { return; } std::map vars; vars["classname"] = DependentBaseClassTemplateName(descriptor_); vars["full_name"] = descriptor_->full_name(); vars["superclass"] = SuperClassName(descriptor_, options_); printer->Print(vars, "template \n" "class $classname$ : public $superclass$ " "/* @@protoc_insertion_point(dep_base_class_definition:$full_name$) */ {\n" " public:\n"); printer->Indent(); printer->Print(vars, "$classname$() {}\n" "virtual ~$classname$() {}\n" "\n"); // Generate dependent accessor methods for all fields. GenerateDependentFieldAccessorDeclarations(printer); printer->Outdent(); printer->Print("};\n"); } void MessageGenerator:: GenerateClassDefinition(io::Printer* printer) { if (IsMapEntryMessage(descriptor_)) return; if (use_dependent_base_) { GenerateDependentBaseClassDefinition(printer); printer->Print("\n"); } std::map vars; vars["classname"] = classname_; vars["full_name"] = descriptor_->full_name(); vars["field_count"] = SimpleItoa(descriptor_->field_count()); vars["oneof_decl_count"] = SimpleItoa(descriptor_->oneof_decl_count()); if (options_.dllexport_decl.empty()) { vars["dllexport"] = ""; } else { vars["dllexport"] = options_.dllexport_decl + " "; } if (use_dependent_base_) { vars["superclass"] = DependentBaseClassTemplateName(descriptor_) + "<" + classname_ + ">"; } else { vars["superclass"] = SuperClassName(descriptor_, options_); } printer->Print(vars, "class $dllexport$$classname$ : public $superclass$ " "/* @@protoc_insertion_point(class_definition:$full_name$) */ " "{\n"); printer->Annotate("classname", descriptor_); if (use_dependent_base_) { printer->Print(vars, " friend class $superclass$;\n"); } printer->Print(" public:\n"); printer->Indent(); printer->Print(vars, "$classname$();\n" "virtual ~$classname$();\n" "\n" "$classname$(const $classname$& from);\n" "\n" "inline $classname$& operator=(const $classname$& from) {\n" " CopyFrom(from);\n" " return *this;\n" "}\n" "\n"); if (PreserveUnknownFields(descriptor_)) { string type = UseUnknownFieldSet(descriptor_->file(), options_) ? "::google::protobuf::UnknownFieldSet" : "::std::string"; printer->Print( "inline const $type$& unknown_fields() const {\n" " return _internal_metadata_.unknown_fields();\n" "}\n" "\n" "inline $type$* mutable_unknown_fields() {\n" " return _internal_metadata_.mutable_unknown_fields();\n" "}\n" "\n", "type", type ); } // N.B.: We exclude GetArena() when arena support is disabled, falling back on // MessageLite's implementation which returns NULL rather than generating our // own method which returns NULL, in order to reduce code size. if (SupportsArenas(descriptor_)) { // virtual method version of GetArenaNoVirtual(), required for generic dispatch given a // MessageLite* (e.g., in RepeatedField::AddAllocated()). printer->Print( "inline ::google::protobuf::Arena* GetArena() const PROTOBUF_FINAL {\n" " return GetArenaNoVirtual();\n" "}\n" "inline void* GetMaybeArenaPointer() const PROTOBUF_FINAL {\n" " return MaybeArenaPtr();\n" "}\n"); } // Only generate this member if it's not disabled. if (HasDescriptorMethods(descriptor_->file(), options_) && !descriptor_->options().no_standard_descriptor_accessor()) { printer->Print(vars, "static const ::google::protobuf::Descriptor* descriptor();\n"); } printer->Print(vars, "static const $classname$& default_instance();\n" "\n"); // Generate enum values for every field in oneofs. One list is generated for // each oneof with an additional *_NOT_SET value. for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "enum $camel_oneof_name$Case {\n", "camel_oneof_name", UnderscoresToCamelCase(descriptor_->oneof_decl(i)->name(), true)); printer->Indent(); for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { printer->Print( "k$field_name$ = $field_number$,\n", "field_name", UnderscoresToCamelCase( descriptor_->oneof_decl(i)->field(j)->name(), true), "field_number", SimpleItoa(descriptor_->oneof_decl(i)->field(j)->number())); } printer->Print( "$cap_oneof_name$_NOT_SET = 0,\n", "cap_oneof_name", ToUpper(descriptor_->oneof_decl(i)->name())); printer->Outdent(); printer->Print( "};\n" "\n"); } // TODO(gerbens) make this private, while still granting other protos access. printer->Print( vars, "static inline const $classname$* internal_default_instance() {\n" " return reinterpret_cast(\n" " &_$classname$_default_instance_);\n" "}\n" "\n"); if (SupportsArenas(descriptor_)) { printer->Print(vars, "void UnsafeArenaSwap($classname$* other);\n"); } if (IsAnyMessage(descriptor_)) { printer->Print(vars, "// implements Any -----------------------------------------------\n" "\n" "void PackFrom(const ::google::protobuf::Message& message);\n" "void PackFrom(const ::google::protobuf::Message& message,\n" " const ::std::string& type_url_prefix);\n" "bool UnpackTo(::google::protobuf::Message* message) const;\n" "template bool Is() const {\n" " return _any_metadata_.Is();\n" "}\n" "\n"); } vars["new_final"] = " PROTOBUF_FINAL"; printer->Print(vars, "void Swap($classname$* other);\n" "\n" "// implements Message ----------------------------------------------\n" "\n" "inline $classname$* New() const$new_final$ { return New(NULL); }\n" "\n" "$classname$* New(::google::protobuf::Arena* arena) const$new_final$;\n"); // For instances that derive from Message (rather than MessageLite), some // methods are virtual and should be marked as final. string use_final = HasDescriptorMethods(descriptor_->file(), options_) ? " PROTOBUF_FINAL" : ""; if (HasGeneratedMethods(descriptor_->file(), options_)) { if (HasDescriptorMethods(descriptor_->file(), options_)) { printer->Print(vars, "void CopyFrom(const ::google::protobuf::Message& from) PROTOBUF_FINAL;\n" "void MergeFrom(const ::google::protobuf::Message& from) PROTOBUF_FINAL;\n"); } else { printer->Print(vars, "void CheckTypeAndMergeFrom(const ::google::protobuf::MessageLite& from)\n" " PROTOBUF_FINAL;\n"); } vars["clear_final"] = " PROTOBUF_FINAL"; vars["is_initialized_final"] = " PROTOBUF_FINAL"; vars["merge_partial_final"] = " PROTOBUF_FINAL"; printer->Print( vars, "void CopyFrom(const $classname$& from);\n" "void MergeFrom(const $classname$& from);\n" "void Clear()$clear_final$;\n" "bool IsInitialized() const$is_initialized_final$;\n" "\n" "size_t ByteSizeLong() const PROTOBUF_FINAL;\n" "bool MergePartialFromCodedStream(\n" " ::google::protobuf::io::CodedInputStream* input)$merge_partial_final$;\n" "void SerializeWithCachedSizes(\n" " ::google::protobuf::io::CodedOutputStream* output) const PROTOBUF_FINAL;\n"); // DiscardUnknownFields() is implemented in message.cc using reflections. We // need to implement this function in generated code for messages. if (!UseUnknownFieldSet(descriptor_->file(), options_)) { printer->Print( "void DiscardUnknownFields()$final$;\n", "final", use_final); } if (HasFastArraySerialization(descriptor_->file(), options_)) { printer->Print( "::google::protobuf::uint8* InternalSerializeWithCachedSizesToArray(\n" " bool deterministic, ::google::protobuf::uint8* target) const PROTOBUF_FINAL;\n" "::google::protobuf::uint8* SerializeWithCachedSizesToArray(::google::protobuf::uint8* output)\n" " const PROTOBUF_FINAL {\n" " return InternalSerializeWithCachedSizesToArray(\n" " ::google::protobuf::io::CodedOutputStream::" "IsDefaultSerializationDeterministic(), output);\n" "}\n"); } } printer->Print( "int GetCachedSize() const PROTOBUF_FINAL { return _cached_size_; }\n" "private:\n" "void SharedCtor();\n" "void SharedDtor();\n" "void SetCachedSize(int size) const$final$;\n" "void InternalSwap($classname$* other);\n", "classname", classname_, "final", use_final); if (SupportsArenas(descriptor_)) { printer->Print( "protected:\n" "explicit $classname$(::google::protobuf::Arena* arena);\n" "private:\n" "static void ArenaDtor(void* object);\n" "inline void RegisterArenaDtor(::google::protobuf::Arena* arena);\n", "classname", classname_); } if (SupportsArenas(descriptor_)) { printer->Print( "private:\n" "inline ::google::protobuf::Arena* GetArenaNoVirtual() const {\n" " return _internal_metadata_.arena();\n" "}\n" "inline void* MaybeArenaPtr() const {\n" " return _internal_metadata_.raw_arena_ptr();\n" "}\n"); } else { printer->Print( "private:\n" "inline ::google::protobuf::Arena* GetArenaNoVirtual() const {\n" " return NULL;\n" "}\n" "inline void* MaybeArenaPtr() const {\n" " return NULL;\n" "}\n"); } printer->Print( "public:\n" "\n"); if (HasDescriptorMethods(descriptor_->file(), options_)) { printer->Print( "::google::protobuf::Metadata GetMetadata() const PROTOBUF_FINAL;\n" "\n"); } else { printer->Print( "::std::string GetTypeName() const PROTOBUF_FINAL;\n" "\n"); } printer->Print( "// nested types ----------------------------------------------------\n" "\n"); // Import all nested message classes into this class's scope with typedefs. for (int i = 0; i < descriptor_->nested_type_count(); i++) { const Descriptor* nested_type = descriptor_->nested_type(i); if (!IsMapEntryMessage(nested_type)) { printer->Print("typedef $nested_full_name$ $nested_name$;\n", "nested_name", nested_type->name(), "nested_full_name", ClassName(nested_type, false)); } } if (descriptor_->nested_type_count() > 0) { printer->Print("\n"); } // Import all nested enums and their values into this class's scope with // typedefs and constants. for (int i = 0; i < descriptor_->enum_type_count(); i++) { enum_generators_[i]->GenerateSymbolImports(printer); printer->Print("\n"); } printer->Print( "// accessors -------------------------------------------------------\n" "\n"); // Generate accessor methods for all fields. GenerateFieldAccessorDeclarations(printer); // Declare extension identifiers. for (int i = 0; i < descriptor_->extension_count(); i++) { extension_generators_[i]->GenerateDeclaration(printer); } printer->Print( "// @@protoc_insertion_point(class_scope:$full_name$)\n", "full_name", descriptor_->full_name()); // Generate private members. printer->Outdent(); printer->Print(" private:\n"); printer->Indent(); for (int i = 0; i < descriptor_->field_count(); i++) { if (!descriptor_->field(i)->is_repeated()) { // set_has_***() generated in all proto1/2 code and in oneofs (only) for // messages without true field presence. if (HasFieldPresence(descriptor_->file()) || descriptor_->field(i)->containing_oneof()) { printer->Print("void set_has_$name$();\n", "name", FieldName(descriptor_->field(i))); } // clear_has_***() generated only for non-oneof fields // in proto1/2. if (!descriptor_->field(i)->containing_oneof() && HasFieldPresence(descriptor_->file())) { printer->Print("void clear_has_$name$();\n", "name", FieldName(descriptor_->field(i))); } } } printer->Print("\n"); // Generate oneof function declarations for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "inline bool has_$oneof_name$() const;\n" "void clear_$oneof_name$();\n" "inline void clear_has_$oneof_name$();\n\n", "oneof_name", descriptor_->oneof_decl(i)->name()); } if (HasGeneratedMethods(descriptor_->file(), options_) && !descriptor_->options().message_set_wire_format() && num_required_fields_ > 1) { printer->Print( "// helper for ByteSizeLong()\n" "size_t RequiredFieldsByteSizeFallback() const;\n\n"); } // Prepare decls for _cached_size_ and _has_bits_. Their position in the // output will be determined later. bool need_to_emit_cached_size = true; // TODO(kenton): Make _cached_size_ an atomic when C++ supports it. const string cached_size_decl = "mutable int _cached_size_;\n"; const size_t sizeof_has_bits = HasBitsSize(); const string has_bits_decl = sizeof_has_bits == 0 ? "" : "::google::protobuf::internal::HasBits<" + SimpleItoa(sizeof_has_bits / 4) + "> _has_bits_;\n"; // To minimize padding, data members are divided into three sections: // (1) members assumed to align to 8 bytes // (2) members corresponding to message fields, re-ordered to optimize // alignment. // (3) members assumed to align to 4 bytes. // Members assumed to align to 8 bytes: if (descriptor_->extension_range_count() > 0) { printer->Print( "::google::protobuf::internal::ExtensionSet _extensions_;\n" "\n"); } if (UseUnknownFieldSet(descriptor_->file(), options_)) { printer->Print( "::google::protobuf::internal::InternalMetadataWithArena _internal_metadata_;\n"); } else { printer->Print( "::google::protobuf::internal::InternalMetadataWithArenaLite " "_internal_metadata_;\n"); } if (SupportsArenas(descriptor_)) { printer->Print( "friend class ::google::protobuf::Arena;\n" "typedef void InternalArenaConstructable_;\n" "typedef void DestructorSkippable_;\n"); } if (HasFieldPresence(descriptor_->file())) { // _has_bits_ is frequently accessed, so to reduce code size and improve // speed, it should be close to the start of the object. But, try not to // waste space:_has_bits_ by itself always makes sense if its size is a // multiple of 8, but, otherwise, maybe _has_bits_ and cached_size_ together // will work well. printer->Print(has_bits_decl.c_str()); if ((sizeof_has_bits % 8) != 0) { printer->Print(cached_size_decl.c_str()); need_to_emit_cached_size = false; } } // Field members: // Emit some private and static members for (int i = 0; i < optimized_order_.size(); ++i) { const FieldDescriptor* field = optimized_order_[i]; const FieldGenerator& generator = field_generators_.get(field); generator.GenerateStaticMembers(printer); generator.GeneratePrivateMembers(printer); } // For each oneof generate a union for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "union $camel_oneof_name$Union {\n" // explicit empty constructor is needed when union contains // ArenaStringPtr members for string fields. " $camel_oneof_name$Union() {}\n", "camel_oneof_name", UnderscoresToCamelCase(descriptor_->oneof_decl(i)->name(), true)); printer->Indent(); for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { field_generators_.get(descriptor_->oneof_decl(i)-> field(j)).GeneratePrivateMembers(printer); } printer->Outdent(); printer->Print( "} $oneof_name$_;\n", "oneof_name", descriptor_->oneof_decl(i)->name()); for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { field_generators_.get(descriptor_->oneof_decl(i)-> field(j)).GenerateStaticMembers(printer); } } // Members assumed to align to 4 bytes: if (need_to_emit_cached_size) { printer->Print(cached_size_decl.c_str()); need_to_emit_cached_size = false; } // Generate _oneof_case_. if (descriptor_->oneof_decl_count() > 0) { printer->Print(vars, "::google::protobuf::uint32 _oneof_case_[$oneof_decl_count$];\n" "\n"); } // Generate _any_metadata_ for the Any type. if (IsAnyMessage(descriptor_)) { printer->Print(vars, "::google::protobuf::internal::AnyMetadata _any_metadata_;\n"); } // The TableStruct struct needs access to the private parts, in order to // construct the offsets of all members. // Some InitDefault and Shutdown are defined as static member functions of // TableStruct such that they are also allowed to access private members. printer->Print( "friend struct $file_namespace$::TableStruct;\n", // Vars. "file_namespace", FileLevelNamespace(descriptor_->file()->name())); printer->Outdent(); printer->Print("};"); GOOGLE_DCHECK(!need_to_emit_cached_size); } void MessageGenerator:: GenerateDependentInlineMethods(io::Printer* printer) { if (IsMapEntryMessage(descriptor_)) return; for (int i = 0; i < descriptor_->field_count(); i++) { if (descriptor_->field(i)->options().weak()) { field_generators_.get(descriptor_->field(i)) .GenerateDependentInlineAccessorDefinitions(printer); } } GenerateDependentFieldAccessorDefinitions(printer); } void MessageGenerator:: GenerateInlineMethods(io::Printer* printer, bool is_inline) { if (IsMapEntryMessage(descriptor_)) return; GenerateFieldAccessorDefinitions(printer, is_inline); // Generate oneof_case() functions. for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { std::map vars; vars["class_name"] = classname_; vars["camel_oneof_name"] = UnderscoresToCamelCase( descriptor_->oneof_decl(i)->name(), true); vars["oneof_name"] = descriptor_->oneof_decl(i)->name(); vars["oneof_index"] = SimpleItoa(descriptor_->oneof_decl(i)->index()); vars["inline"] = is_inline ? "inline " : ""; printer->Print( vars, "$inline$" "$class_name$::$camel_oneof_name$Case $class_name$::" "$oneof_name$_case() const {\n" " return $class_name$::$camel_oneof_name$Case(" "_oneof_case_[$oneof_index$]);\n" "}\n"); } } void MessageGenerator:: GenerateExtraDefaultFields(io::Printer* printer) { // Generate oneof default instance for reflection usage. if (descriptor_->oneof_decl_count() > 0) { printer->Print("public:\n"); for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j); if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE || (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING && EffectiveStringCType(field) != FieldOptions::STRING)) { printer->Print("const "); } field_generators_.get(field).GeneratePrivateMembers(printer); } } } } void MessageGenerator::GenerateSchema(io::Printer* printer, int offset, int has_offset) { if (IsMapEntryMessage(descriptor_)) return; std::map vars; vars["classname"] = classname_; vars["offset"] = SimpleItoa(offset); vars["has_bits_offsets"] = HasFieldPresence(descriptor_->file()) ? SimpleItoa(offset + has_offset) : "-1"; printer->Print(vars, "{ $offset$, $has_bits_offsets$, sizeof($classname$)},\n"); } void MessageGenerator:: GenerateTypeRegistrations(io::Printer* printer) { // Register this message type with the message factory. if (IsMapEntryMessage(descriptor_)) { std::map vars; CollectMapInfo(descriptor_, &vars); vars["classname"] = classname_; vars["file_namespace"] = FileLevelNamespace(descriptor_->file()->name()); const FieldDescriptor* val = descriptor_->FindFieldByName("value"); if (descriptor_->file()->syntax() == FileDescriptor::SYNTAX_PROTO2 && val->type() == FieldDescriptor::TYPE_ENUM) { const EnumValueDescriptor* default_value = val->default_value_enum(); vars["default_enum_value"] = Int32ToString(default_value->number()); } else { vars["default_enum_value"] = "0"; } vars["index_in_metadata"] = SimpleItoa(index_in_metadata_); printer->Print( vars, "const ::google::protobuf::Descriptor* $classname$_descriptor = " "$file_namespace$::file_level_metadata[$index_in_metadata$].descriptor;" "\n" "::google::protobuf::MessageFactory::InternalRegisterGeneratedMessage(\n" " $classname$_descriptor,\n" " ::google::protobuf::internal::MapEntry<\n" " $key$,\n" " $val$,\n" " $key_wire_type$,\n" " $val_wire_type$,\n" " $default_enum_value$>::CreateDefaultInstance(\n" " $classname$_descriptor));\n"); } } void MessageGenerator:: GenerateDefaultInstanceAllocator(io::Printer* printer) { if (IsMapEntryMessage(descriptor_)) return; // Construct the default instances of all fields, as they will be used // when creating the default instance of the entire message. for (int i = 0; i < descriptor_->field_count(); i++) { field_generators_.get(descriptor_->field(i)) .GenerateDefaultInstanceAllocator(printer); } // Construct the default instance. We can't call InitAsDefaultInstance() yet // because we need to make sure all default instances that this one might // depend on are constructed first. printer->Print("_$classname$_default_instance_.DefaultConstruct();\n", "classname", classname_); } void MessageGenerator:: GenerateDefaultInstanceInitializer(io::Printer* printer) { if (IsMapEntryMessage(descriptor_)) return; // The default instance needs all of its embedded message pointers // cross-linked to other default instances. We can't do this initialization // in the constructor because some other default instances may not have been // constructed yet at that time. // TODO(kenton): Maybe all message fields (even for non-default messages) // should be initialized to point at default instances rather than NULL? for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); if (!field->is_repeated() && field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && (field->containing_oneof() == NULL || HasDescriptorMethods(descriptor_->file(), options_))) { string name; if (field->containing_oneof()) { name = "_" + classname_ + "_default_instance_."; } else { name = "_" + classname_ + "_default_instance_.get_mutable()->"; } name += FieldName(field); printer->Print( "$name$_ = const_cast< $type$*>(\n" " $type$::internal_default_instance());\n", // Vars. "name", name, "type", FieldMessageTypeName(field)); } else if (field->containing_oneof() && HasDescriptorMethods(descriptor_->file(), options_)) { field_generators_.get(descriptor_->field(i)) .GenerateConstructorCode(printer); } } } void MessageGenerator:: GenerateShutdownCode(io::Printer* printer) { if (IsMapEntryMessage(descriptor_)) return; printer->Print("_$classname$_default_instance_.Shutdown();\n", "classname", classname_); if (HasDescriptorMethods(descriptor_->file(), options_)) { printer->Print("delete file_level_metadata[$index$].reflection;\n", "index", SimpleItoa(index_in_metadata_)); } // Handle default instances of fields. for (int i = 0; i < descriptor_->field_count(); i++) { field_generators_.get(descriptor_->field(i)) .GenerateShutdownCode(printer); } } void MessageGenerator:: GenerateClassMethods(io::Printer* printer) { if (IsMapEntryMessage(descriptor_)) return; if (IsAnyMessage(descriptor_)) { printer->Print( "void $classname$::PackFrom(const ::google::protobuf::Message& message) {\n" " _any_metadata_.PackFrom(message);\n" "}\n" "\n" "void $classname$::PackFrom(const ::google::protobuf::Message& message,\n" " const ::std::string& type_url_prefix) {\n" " _any_metadata_.PackFrom(message, type_url_prefix);\n" "}\n" "\n" "bool $classname$::UnpackTo(::google::protobuf::Message* message) const {\n" " return _any_metadata_.UnpackTo(message);\n" "}\n" "\n", "classname", classname_); } // Generate non-inline field definitions. for (int i = 0; i < descriptor_->field_count(); i++) { field_generators_.get(descriptor_->field(i)) .GenerateNonInlineAccessorDefinitions(printer); } // Generate field number constants. printer->Print("#if !defined(_MSC_VER) || _MSC_VER >= 1900\n"); for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor *field = descriptor_->field(i); printer->Print( "const int $classname$::$constant_name$;\n", "classname", ClassName(FieldScope(field), false), "constant_name", FieldConstantName(field)); } printer->Print( "#endif // !defined(_MSC_VER) || _MSC_VER >= 1900\n" "\n"); GenerateStructors(printer); printer->Print("\n"); if (descriptor_->oneof_decl_count() > 0) { GenerateOneofClear(printer); printer->Print("\n"); } if (HasGeneratedMethods(descriptor_->file(), options_)) { GenerateClear(printer); printer->Print("\n"); GenerateMergeFromCodedStream(printer); printer->Print("\n"); GenerateSerializeWithCachedSizes(printer); printer->Print("\n"); if (HasFastArraySerialization(descriptor_->file(), options_)) { GenerateSerializeWithCachedSizesToArray(printer); printer->Print("\n"); } GenerateByteSize(printer); printer->Print("\n"); GenerateMergeFrom(printer); printer->Print("\n"); GenerateCopyFrom(printer); printer->Print("\n"); GenerateIsInitialized(printer); printer->Print("\n"); } GenerateSwap(printer); printer->Print("\n"); if (HasDescriptorMethods(descriptor_->file(), options_)) { printer->Print( "::google::protobuf::Metadata $classname$::GetMetadata() const {\n" " $file_namespace$::protobuf_AssignDescriptorsOnce();\n" " return $file_namespace$::file_level_metadata[$index$];\n" "}\n" "\n", "classname", classname_, "index", SimpleItoa(index_in_metadata_), "file_namespace", FileLevelNamespace(descriptor_->file()->name())); } else { printer->Print( "::std::string $classname$::GetTypeName() const {\n" " return \"$type_name$\";\n" "}\n" "\n", "classname", classname_, "type_name", descriptor_->full_name()); } } std::pair MessageGenerator::GenerateOffsets( io::Printer* printer) { if (IsMapEntryMessage(descriptor_)) return std::make_pair(0, 0); std::map variables; variables["classname"] = classname_; if (HasFieldPresence(descriptor_->file())) { printer->Print( variables, "GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, _has_bits_),\n"); } else { printer->Print("~0u, // no _has_bits_\n"); } printer->Print(variables, "GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, " "_internal_metadata_),\n"); if (descriptor_->extension_range_count() > 0) { printer->Print( variables, "GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, _extensions_),\n"); } else { printer->Print("~0u, // no _extensions_\n"); } if (descriptor_->oneof_decl_count() > 0) { printer->Print(variables, "GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, " "_oneof_case_[0]),\n"); } else { printer->Print("~0u, // no _oneof_case_\n"); } const int kNumGenericOffsets = 4; // the number of fixed offsets above const size_t offsets = kNumGenericOffsets + descriptor_->field_count() + descriptor_->oneof_decl_count(); size_t entries = offsets; for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); if (field->containing_oneof()) { printer->Print( "PROTO2_GENERATED_DEFAULT_ONEOF_FIELD_OFFSET(" "(&_$classname$_default_instance_), $name$_),\n", "classname", classname_, "name", FieldName(field)); } else { printer->Print( "GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, " "$name$_),\n", "classname", classname_, "name", FieldName(field)); } } for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { const OneofDescriptor* oneof = descriptor_->oneof_decl(i); printer->Print( "GOOGLE_PROTOBUF_GENERATED_MESSAGE_FIELD_OFFSET($classname$, $name$_),\n", "classname", classname_, "name", oneof->name()); } if (HasFieldPresence(descriptor_->file())) { entries += has_bit_indices_.size(); for (int i = 0; i < has_bit_indices_.size(); i++) { const string index = has_bit_indices_[i] >= 0 ? SimpleItoa(has_bit_indices_[i]) : "~0u"; printer->Print("$index$,\n", "index", index); } } return std::make_pair(entries, offsets); } void MessageGenerator:: GenerateSharedConstructorCode(io::Printer* printer) { printer->Print( "void $classname$::SharedCtor() {\n", "classname", classname_); printer->Indent(); bool need_to_clear_cached_size = true; // We reproduce the logic used for laying out _cached_sized_ in the class // definition, as to initialize it in-order. if (HasFieldPresence(descriptor_->file()) && (HasBitsSize() % 8) != 0) { printer->Print("_cached_size_ = 0;\n"); need_to_clear_cached_size = false; } // TODO(gerbens) Clean this hack, and why do i need a reference to a pointer?? for (int i = 0; i < descriptor_->nested_type_count(); i++) { if (HasDescriptorMethods(descriptor_->file(), options_) && IsMapEntryMessage(descriptor_->nested_type(i))) { printer->Print( "const ::google::protobuf::Descriptor*& $type$_descriptor = " "$file_namespace$::file_level_metadata[$index$].descriptor;\n", "type", ClassName(descriptor_->nested_type(i), false), "index", SimpleItoa(nested_generators_[i]->index_in_metadata_), "file_namespace", FileLevelNamespace(descriptor_->file()->name())); } } std::vector processed(optimized_order_.size(), false); GenerateConstructorBody(printer, processed, false); for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "clear_has_$oneof_name$();\n", "oneof_name", descriptor_->oneof_decl(i)->name()); } if (need_to_clear_cached_size) { printer->Print("_cached_size_ = 0;\n"); } printer->Outdent(); printer->Print("}\n\n"); } void MessageGenerator:: GenerateSharedDestructorCode(io::Printer* printer) { printer->Print( "void $classname$::SharedDtor() {\n", "classname", classname_); printer->Indent(); if (SupportsArenas(descriptor_)) { // Do nothing when the message is allocated in an arena. printer->Print( "::google::protobuf::Arena* arena = GetArenaNoVirtual();\n" "if (arena != NULL) {\n" " return;\n" "}\n" "\n"); } // Write the destructors for each field except oneof members. // optimized_order_ does not contain oneof fields. for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; field_generators_.get(field).GenerateDestructorCode(printer); } // Generate code to destruct oneofs. Clearing should do the work. for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "if (has_$oneof_name$()) {\n" " clear_$oneof_name$();\n" "}\n", "oneof_name", descriptor_->oneof_decl(i)->name()); } printer->Outdent(); printer->Print( "}\n" "\n"); } void MessageGenerator:: GenerateArenaDestructorCode(io::Printer* printer) { // Generate the ArenaDtor() method. Track whether any fields actually produced // code that needs to be called. printer->Print( "void $classname$::ArenaDtor(void* object) {\n", "classname", classname_); printer->Indent(); // This code is placed inside a static method, rather than an ordinary one, // since that simplifies Arena's destructor list (ordinary function pointers // rather than member function pointers). _this is the object being // destructed. printer->Print( "$classname$* _this = reinterpret_cast< $classname$* >(object);\n" // avoid an "unused variable" warning in case no fields have dtor code. "(void)_this;\n", "classname", classname_); bool need_registration = false; // Process non-oneof fields first. for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (field_generators_.get(field) .GenerateArenaDestructorCode(printer)) { need_registration = true; } } // Process oneof fields. // // Note: As of 10/5/2016, GenerateArenaDestructorCode does not emit anything // and returns false for oneof fields. for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { const OneofDescriptor* oneof = descriptor_->oneof_decl(i); for (int j = 0; j < oneof->field_count(); j++) { const FieldDescriptor* field = oneof->field(j); if (field_generators_.get(field) .GenerateArenaDestructorCode(printer)) { need_registration = true; } } } printer->Outdent(); printer->Print( "}\n"); if (need_registration) { printer->Print( "inline void $classname$::RegisterArenaDtor(::google::protobuf::Arena* arena) {\n" " if (arena != NULL) {\n" " arena->OwnCustomDestructor(this, &$classname$::ArenaDtor);\n" " }\n" "}\n", "classname", classname_); } else { printer->Print( "void $classname$::RegisterArenaDtor(::google::protobuf::Arena* arena) {\n" "}\n", "classname", classname_); } } void MessageGenerator::GenerateConstructorBody(io::Printer* printer, std::vector processed, bool copy_constructor) const { const FieldDescriptor* last_start = NULL; // RunMap maps from fields that start each run to the number of fields in that // run. This is optimized for the common case that there are very few runs in // a message and that most of the eligible fields appear together. typedef hash_map RunMap; RunMap runs; for (int i = 0; i < optimized_order_.size(); ++i) { const FieldDescriptor* field = optimized_order_[i]; if ((copy_constructor && IsPOD(field)) || (!copy_constructor && CanConstructByZeroing(field, options_))) { if (last_start == NULL) { last_start = field; } runs[last_start]++; } else { last_start = NULL; } } string pod_template; if (copy_constructor) { pod_template = "::memcpy(&$first$_, &from.$first$_,\n" " reinterpret_cast(&$last$_) -\n" " reinterpret_cast(&$first$_) + sizeof($last$_));\n"; } else { pod_template = "::memset(&$first$_, 0, reinterpret_cast(&$last$_) -\n" " reinterpret_cast(&$first$_) + sizeof($last$_));\n"; } for (int i = 0; i < optimized_order_.size(); ++i) { if (processed[i]) { continue; } const FieldDescriptor* field = optimized_order_[i]; RunMap::const_iterator it = runs.find(field); // We only apply the memset technique to runs of more than one field, as // assignment is better than memset for generated code clarity. if (it != runs.end() && it->second > 1) { // Use a memset, then skip run_length fields. const size_t run_length = it->second; const string first_field_name = FieldName(field); const string last_field_name = FieldName(optimized_order_[i + run_length - 1]); printer->Print(pod_template.c_str(), "first", first_field_name, "last", last_field_name); i += run_length - 1; // ++i at the top of the loop. } else { if (copy_constructor) { field_generators_.get(field).GenerateCopyConstructorCode(printer); } else { field_generators_.get(field).GenerateConstructorCode(printer); } } } } void MessageGenerator:: GenerateStructors(io::Printer* printer) { string superclass; if (use_dependent_base_) { superclass = DependentBaseClassTemplateName(descriptor_) + "<" + classname_ + ">"; } else { superclass = SuperClassName(descriptor_, options_); } string initializer_with_arena = superclass + "()"; if (descriptor_->extension_range_count() > 0) { initializer_with_arena += ",\n _extensions_(arena)"; } initializer_with_arena += ",\n _internal_metadata_(arena)"; // Initialize member variables with arena constructor. for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; bool has_arena_constructor = field->is_repeated(); if (has_arena_constructor) { initializer_with_arena += string(",\n ") + FieldName(field) + string("_(arena)"); } } if (IsAnyMessage(descriptor_)) { initializer_with_arena += ",\n _any_metadata_(&type_url_, &value_)"; } string initializer_null; initializer_null = ", _internal_metadata_(NULL)"; if (IsAnyMessage(descriptor_)) { initializer_null += ", _any_metadata_(&type_url_, &value_)"; } printer->Print( "$classname$::$classname$()\n" " : $superclass$()$initializer$ {\n" " if (GOOGLE_PREDICT_TRUE(this != internal_default_instance())) {\n" " $file_namespace$::InitDefaults();\n" " }\n" " SharedCtor();\n" " // @@protoc_insertion_point(constructor:$full_name$)\n" "}\n", "classname", classname_, "superclass", superclass, "full_name", descriptor_->full_name(), "initializer", initializer_null, "file_namespace", FileLevelNamespace(descriptor_->file()->name())); if (SupportsArenas(descriptor_)) { printer->Print( "$classname$::$classname$(::google::protobuf::Arena* arena)\n" " : $initializer$ {\n" // When arenas are used it's safe to assume we have finished // static init time (protos with arenas are unsafe during static init) "#ifdef GOOGLE_PROTOBUF_NO_STATIC_INITIALIZER\n" " $file_namespace$::InitDefaults();\n" "#endif // GOOGLE_PROTOBUF_NO_STATIC_INITIALIZER\n" " SharedCtor();\n" " RegisterArenaDtor(arena);\n" " // @@protoc_insertion_point(arena_constructor:$full_name$)\n" "}\n", "initializer", initializer_with_arena, "classname", classname_, "superclass", superclass, "full_name", descriptor_->full_name(), "file_namespace", FileLevelNamespace(descriptor_->file()->name())); } // Generate the copy constructor. printer->Print( "$classname$::$classname$(const $classname$& from)\n" " : $superclass$()", "classname", classname_, "superclass", superclass, "full_name", descriptor_->full_name()); printer->Indent(); printer->Indent(); printer->Indent(); printer->Print( ",\n_internal_metadata_(NULL)"); if (HasFieldPresence(descriptor_->file())) { printer->Print(",\n_has_bits_(from._has_bits_)"); } bool need_to_emit_cached_size = true; const string cached_size_decl = ",\n_cached_size_(0)"; // We reproduce the logic used for laying out _cached_sized_ in the class // definition, as to initialize it in-order. if (HasFieldPresence(descriptor_->file()) && (HasBitsSize() % 8) != 0) { printer->Print(cached_size_decl.c_str()); need_to_emit_cached_size = false; } std::vector processed(optimized_order_.size(), false); for (int i = 0; i < optimized_order_.size(); ++i) { const FieldDescriptor* field = optimized_order_[i]; if (!(field->is_repeated() && !(field->is_map())) ) { continue; } processed[i] = true; printer->Print(",\n$name$_(from.$name$_)", "name", FieldName(field)); } if (need_to_emit_cached_size) { printer->Print(cached_size_decl.c_str()); need_to_emit_cached_size = false; } if (IsAnyMessage(descriptor_)) { printer->Print(",\n_any_metadata_(&type_url_, &value_)"); } printer->Outdent(); printer->Outdent(); printer->Print(" {\n"); printer->Print( "_internal_metadata_.MergeFrom(from._internal_metadata_);\n"); if (descriptor_->extension_range_count() > 0) { printer->Print("_extensions_.MergeFrom(from._extensions_);\n"); } // TODO(gerbens) Clean this hack, and why do i need a reference to a pointer?? for (int i = 0; i < descriptor_->nested_type_count(); i++) { if (HasDescriptorMethods(descriptor_->file(), options_) && IsMapEntryMessage(descriptor_->nested_type(i))) { printer->Print( "const ::google::protobuf::Descriptor*& $type$_descriptor = " "$file_namespace$::file_level_metadata[$index$].descriptor;\n", "type", ClassName(descriptor_->nested_type(i), false), "index", SimpleItoa(nested_generators_[i]->index_in_metadata_), "file_namespace", FileLevelNamespace(descriptor_->file()->name())); } } GenerateConstructorBody(printer, processed, true); // Copy oneof fields. Oneof field requires oneof case check. for (int i = 0; i < descriptor_->oneof_decl_count(); ++i) { printer->Print( "clear_has_$oneofname$();\n" "switch (from.$oneofname$_case()) {\n", "oneofname", descriptor_->oneof_decl(i)->name()); printer->Indent(); for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j); printer->Print( "case k$field_name$: {\n", "field_name", UnderscoresToCamelCase(field->name(), true)); printer->Indent(); field_generators_.get(field).GenerateMergingCode(printer); printer->Print( "break;\n"); printer->Outdent(); printer->Print( "}\n"); } printer->Print( "case $cap_oneof_name$_NOT_SET: {\n" " break;\n" "}\n", "oneof_index", SimpleItoa(descriptor_->oneof_decl(i)->index()), "cap_oneof_name", ToUpper(descriptor_->oneof_decl(i)->name())); printer->Outdent(); printer->Print( "}\n"); } printer->Outdent(); printer->Print( " // @@protoc_insertion_point(copy_constructor:$full_name$)\n" "}\n" "\n", "full_name", descriptor_->full_name()); // Generate the shared constructor code. GenerateSharedConstructorCode(printer); // Generate the destructor. printer->Print( "$classname$::~$classname$() {\n" " // @@protoc_insertion_point(destructor:$full_name$)\n" " SharedDtor();\n" "}\n" "\n", "classname", classname_, "full_name", descriptor_->full_name()); // Generate the shared destructor code. GenerateSharedDestructorCode(printer); // Generate the arena-specific destructor code. if (SupportsArenas(descriptor_)) { GenerateArenaDestructorCode(printer); } // Generate SetCachedSize. printer->Print( "void $classname$::SetCachedSize(int size) const {\n" " GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();\n" " _cached_size_ = size;\n" " GOOGLE_SAFE_CONCURRENT_WRITES_END();\n" "}\n", "classname", classname_); // Only generate this member if it's not disabled. if (HasDescriptorMethods(descriptor_->file(), options_) && !descriptor_->options().no_standard_descriptor_accessor()) { printer->Print( "const ::google::protobuf::Descriptor* $classname$::descriptor() {\n" " $file_namespace$::protobuf_AssignDescriptorsOnce();\n" " return $file_namespace$::file_level_metadata[$index$].descriptor;\n" "}\n" "\n", "index", SimpleItoa(index_in_metadata_), "classname", classname_, "file_namespace", FileLevelNamespace(descriptor_->file()->name())); } printer->Print( "const $classname$& $classname$::default_instance() {\n" " $file_namespace$::InitDefaults();\n" " return *internal_default_instance();\n" "}\n\n", "classname", classname_, "file_namespace", FileLevelNamespace(descriptor_->file()->name())); if (SupportsArenas(descriptor_)) { printer->Print( "$classname$* $classname$::New(::google::protobuf::Arena* arena) const {\n" " return ::google::protobuf::Arena::CreateMessage<$classname$>(arena);\n" "}\n", "classname", classname_); } else { printer->Print( "$classname$* $classname$::New(::google::protobuf::Arena* arena) const {\n" " $classname$* n = new $classname$;\n" " if (arena != NULL) {\n" " arena->Own(n);\n" " }\n" " return n;\n" "}\n", "classname", classname_); } } // Return the number of bits set in n, a non-negative integer. static int popcnt(uint32 n) { int result = 0; while (n != 0) { result += (n & 1); n = n / 2; } return result; } void MessageGenerator:: GenerateClear(io::Printer* printer) { printer->Print( "void $classname$::Clear() {\n" "// @@protoc_insertion_point(message_clear_start:$full_name$)\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Indent(); // Step 1: Extensions if (descriptor_->extension_range_count() > 0) { printer->Print("_extensions_.Clear();\n"); } int last_i = -1; for (int i = 0; i < optimized_order_.size(); ) { // Detect infinite loops. GOOGLE_CHECK_NE(i, last_i); last_i = i; // Step 2: Repeated fields don't use _has_bits_; emit code to clear them // here. for (; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; const FieldGenerator& generator = field_generators_.get(field); if (!field->is_repeated()) { break; } if (use_dependent_base_ && IsFieldDependent(field)) { printer->Print("clear_$name$();\n", "name", FieldName(field)); } else { generator.GenerateMessageClearingCode(printer); } } // Step 3: Greedily seek runs of fields that can be cleared by // memset-to-0. int last_chunk = -1; int last_chunk_start = -1; int last_chunk_end = -1; uint32 last_chunk_mask = 0; int memset_run_start = -1; int memset_run_end = -1; for (; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (!CanInitializeByZeroing(field)) { break; } // "index" defines where in the _has_bits_ the field appears. // "i" is our loop counter within optimized_order_. int index = HasFieldPresence(descriptor_->file()) ? has_bit_indices_[field->index()] : 0; int chunk = index / 8; if (last_chunk == -1) { last_chunk = chunk; last_chunk_start = i; } else if (chunk != last_chunk) { // Emit the fields for this chunk so far. break; } if (memset_run_start == -1) { memset_run_start = i; } memset_run_end = i; last_chunk_end = i; last_chunk_mask |= static_cast(1) << (index % 32); } // Step 4: Non-repeated, non-zero initializable fields. for (; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (field->is_repeated() || CanInitializeByZeroing(field)) { break; } // "index" defines where in the _has_bits_ the field appears. // "i" is our loop counter within optimized_order_. int index = HasFieldPresence(descriptor_->file()) ? has_bit_indices_[field->index()] : 0; int chunk = index / 8; if (last_chunk == -1) { last_chunk = chunk; last_chunk_start = i; } else if (chunk != last_chunk) { // Emit the fields for this chunk so far. break; } last_chunk_end = i; last_chunk_mask |= static_cast(1) << (index % 32); } if (last_chunk != -1) { GOOGLE_DCHECK_NE(-1, last_chunk_start); GOOGLE_DCHECK_NE(-1, last_chunk_end); GOOGLE_DCHECK_NE(0, last_chunk_mask); const int count = popcnt(last_chunk_mask); const bool have_outer_if = HasFieldPresence(descriptor_->file()) && (last_chunk_start != last_chunk_end); if (have_outer_if) { // Check (up to) 8 has_bits at a time if we have more than one field in // this chunk. Due to field layout ordering, we may check // _has_bits_[last_chunk * 8 / 32] multiple times. GOOGLE_DCHECK_LE(2, count); GOOGLE_DCHECK_GE(8, count); printer->Print( "if (_has_bits_[$index$ / 32] & $mask$u) {\n", "index", SimpleItoa(last_chunk * 8), "mask", SimpleItoa(last_chunk_mask)); printer->Indent(); } if (memset_run_start != -1) { if (memset_run_start == memset_run_end) { // For clarity, do not memset a single field. const FieldGenerator& generator = field_generators_.get(optimized_order_[memset_run_start]); generator.GenerateMessageClearingCode(printer); } else { const string first_field_name = FieldName(optimized_order_[memset_run_start]); const string last_field_name = FieldName(optimized_order_[memset_run_end]); printer->Print( "::memset(&$first$_, 0, reinterpret_cast(&$last$_) -\n" " reinterpret_cast(&$first$_) + sizeof($last$_));\n", "first", first_field_name, "last", last_field_name); } // Advance last_chunk_start to skip over the fields we zeroed/memset. last_chunk_start = memset_run_end + 1; } // Go back and emit clears for each of the fields we processed. for (int j = last_chunk_start; j <= last_chunk_end; j++) { const FieldDescriptor* field = optimized_order_[j]; const string fieldname = FieldName(field); const FieldGenerator& generator = field_generators_.get(field); // It's faster to just overwrite primitive types, but we should only // clear strings and messages if they were set. // // TODO(kenton): Let the CppFieldGenerator decide this somehow. bool should_check_bit = field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE || field->cpp_type() == FieldDescriptor::CPPTYPE_STRING; bool have_enclosing_if = false; if (should_check_bit && // If no field presence, then always clear strings/messages as well. HasFieldPresence(descriptor_->file())) { printer->Print("if (has_$name$()) {\n", "name", fieldname); printer->Indent(); have_enclosing_if = true; } generator.GenerateMessageClearingCode(printer); if (have_enclosing_if) { printer->Outdent(); printer->Print("}\n"); } } if (have_outer_if) { printer->Outdent(); printer->Print("}\n"); } } } // Step 4: Unions. for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "clear_$oneof_name$();\n", "oneof_name", descriptor_->oneof_decl(i)->name()); } if (HasFieldPresence(descriptor_->file())) { // Step 5: Everything else. printer->Print("_has_bits_.Clear();\n"); } if (PreserveUnknownFields(descriptor_)) { printer->Print("_internal_metadata_.Clear();\n"); } printer->Outdent(); printer->Print("}\n"); } void MessageGenerator:: GenerateOneofClear(io::Printer* printer) { // Generated function clears the active field and union case (e.g. foo_case_). for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { std::map oneof_vars; oneof_vars["classname"] = classname_; oneof_vars["oneofname"] = descriptor_->oneof_decl(i)->name(); oneof_vars["full_name"] = descriptor_->full_name(); string message_class; printer->Print(oneof_vars, "void $classname$::clear_$oneofname$() {\n" "// @@protoc_insertion_point(one_of_clear_start:" "$full_name$)\n"); printer->Indent(); printer->Print(oneof_vars, "switch ($oneofname$_case()) {\n"); printer->Indent(); for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j); printer->Print( "case k$field_name$: {\n", "field_name", UnderscoresToCamelCase(field->name(), true)); printer->Indent(); // We clear only allocated objects in oneofs if (!IsStringOrMessage(field)) { printer->Print( "// No need to clear\n"); } else { field_generators_.get(field).GenerateClearingCode(printer); } printer->Print( "break;\n"); printer->Outdent(); printer->Print( "}\n"); } printer->Print( "case $cap_oneof_name$_NOT_SET: {\n" " break;\n" "}\n", "cap_oneof_name", ToUpper(descriptor_->oneof_decl(i)->name())); printer->Outdent(); printer->Print( "}\n" "_oneof_case_[$oneof_index$] = $cap_oneof_name$_NOT_SET;\n", "oneof_index", SimpleItoa(i), "cap_oneof_name", ToUpper(descriptor_->oneof_decl(i)->name())); printer->Outdent(); printer->Print( "}\n" "\n"); } } void MessageGenerator:: GenerateSwap(io::Printer* printer) { if (SupportsArenas(descriptor_)) { // Generate the Swap member function. This is a lightweight wrapper around // UnsafeArenaSwap() / MergeFrom() with temporaries, depending on the memory // ownership situation: swapping across arenas or between an arena and a // heap requires copying. printer->Print( "void $classname$::Swap($classname$* other) {\n" " if (other == this) return;\n" " if (GetArenaNoVirtual() == other->GetArenaNoVirtual()) {\n" " InternalSwap(other);\n" " } else {\n" " $classname$* temp = New(GetArenaNoVirtual());\n" " temp->MergeFrom(*other);\n" " other->CopyFrom(*this);\n" " InternalSwap(temp);\n" " if (GetArenaNoVirtual() == NULL) {\n" " delete temp;\n" " }\n" " }\n" "}\n" "void $classname$::UnsafeArenaSwap($classname$* other) {\n" " if (other == this) return;\n" " GOOGLE_DCHECK(GetArenaNoVirtual() == other->GetArenaNoVirtual());\n" " InternalSwap(other);\n" "}\n", "classname", classname_); } else { printer->Print( "void $classname$::Swap($classname$* other) {\n" " if (other == this) return;\n" " InternalSwap(other);\n" "}\n", "classname", classname_); } // Generate the UnsafeArenaSwap member function. printer->Print("void $classname$::InternalSwap($classname$* other) {\n", "classname", classname_); printer->Indent(); if (HasGeneratedMethods(descriptor_->file(), options_)) { for (int i = 0; i < optimized_order_.size(); i++) { // optimized_order_ does not contain oneof fields, but the field // generators for these fields do not emit swapping code on their own. const FieldDescriptor* field = optimized_order_[i]; field_generators_.get(field).GenerateSwappingCode(printer); } for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "std::swap($oneof_name$_, other->$oneof_name$_);\n" "std::swap(_oneof_case_[$i$], other->_oneof_case_[$i$]);\n", "oneof_name", descriptor_->oneof_decl(i)->name(), "i", SimpleItoa(i)); } if (HasFieldPresence(descriptor_->file())) { for (int i = 0; i < HasBitsSize() / 4; ++i) { printer->Print("std::swap(_has_bits_[$i$], other->_has_bits_[$i$]);\n", "i", SimpleItoa(i)); } } if (PreserveUnknownFields(descriptor_)) { printer->Print("_internal_metadata_.Swap(&other->_internal_metadata_);\n"); } printer->Print("std::swap(_cached_size_, other->_cached_size_);\n"); if (descriptor_->extension_range_count() > 0) { printer->Print("_extensions_.Swap(&other->_extensions_);\n"); } } else { printer->Print("GetReflection()->Swap(this, other);"); } printer->Outdent(); printer->Print("}\n"); } void MessageGenerator:: GenerateMergeFrom(io::Printer* printer) { if (HasDescriptorMethods(descriptor_->file(), options_)) { // Generate the generalized MergeFrom (aka that which takes in the Message // base class as a parameter). printer->Print( "void $classname$::MergeFrom(const ::google::protobuf::Message& from) {\n" "// @@protoc_insertion_point(generalized_merge_from_start:" "$full_name$)\n" " GOOGLE_DCHECK_NE(&from, this);\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Indent(); // Cast the message to the proper type. If we find that the message is // *not* of the proper type, we can still call Merge via the reflection // system, as the GOOGLE_CHECK above ensured that we have the same descriptor // for each message. printer->Print( "const $classname$* source =\n" " ::google::protobuf::internal::DynamicCastToGenerated(\n" " &from);\n" "if (source == NULL) {\n" "// @@protoc_insertion_point(generalized_merge_from_cast_fail:" "$full_name$)\n" " ::google::protobuf::internal::ReflectionOps::Merge(from, this);\n" "} else {\n" "// @@protoc_insertion_point(generalized_merge_from_cast_success:" "$full_name$)\n" " MergeFrom(*source);\n" "}\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Outdent(); printer->Print("}\n\n"); } else { // Generate CheckTypeAndMergeFrom(). printer->Print( "void $classname$::CheckTypeAndMergeFrom(\n" " const ::google::protobuf::MessageLite& from) {\n" " MergeFrom(*::google::protobuf::down_cast(&from));\n" "}\n" "\n", "classname", classname_); } // Generate the class-specific MergeFrom, which avoids the GOOGLE_CHECK and cast. printer->Print( "void $classname$::MergeFrom(const $classname$& from) {\n" "// @@protoc_insertion_point(class_specific_merge_from_start:" "$full_name$)\n" " GOOGLE_DCHECK_NE(&from, this);\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Indent(); if (descriptor_->extension_range_count() > 0) { printer->Print("_extensions_.MergeFrom(from._extensions_);\n"); } printer->Print( "_internal_metadata_.MergeFrom(from._internal_metadata_);\n"); int last_i = -1; for (int i = 0; i < optimized_order_.size(); ) { // Detect infinite loops. GOOGLE_CHECK_NE(i, last_i); last_i = i; // Merge Repeated fields. These fields do not require a // check as we can simply iterate over them. for (; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (!field->is_repeated()) { break; } const FieldGenerator& generator = field_generators_.get(field); generator.GenerateMergingCode(printer); } // Merge Optional and Required fields (after a _has_bit check). int last_chunk = -1; int last_chunk_start = -1; int last_chunk_end = -1; uint32 last_chunk_mask = 0; for (; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (field->is_repeated()) { break; } // "index" defines where in the _has_bits_ the field appears. // "i" is our loop counter within optimized_order_. int index = HasFieldPresence(descriptor_->file()) ? has_bit_indices_[field->index()] : 0; int chunk = index / 8; if (last_chunk == -1) { last_chunk = chunk; last_chunk_start = i; } else if (chunk != last_chunk) { // Emit the fields for this chunk so far. break; } last_chunk_end = i; last_chunk_mask |= static_cast(1) << (index % 32); } if (last_chunk != -1) { GOOGLE_DCHECK_NE(-1, last_chunk_start); GOOGLE_DCHECK_NE(-1, last_chunk_end); GOOGLE_DCHECK_NE(0, last_chunk_mask); const int count = popcnt(last_chunk_mask); const bool have_outer_if = HasFieldPresence(descriptor_->file()) && (last_chunk_start != last_chunk_end); if (have_outer_if) { // Check (up to) 8 has_bits at a time if we have more than one field in // this chunk. Due to field layout ordering, we may check // _has_bits_[last_chunk * 8 / 32] multiple times. GOOGLE_DCHECK_LE(2, count); GOOGLE_DCHECK_GE(8, count); printer->Print( "if (from._has_bits_[$index$ / 32] & $mask$u) {\n", "index", SimpleItoa(last_chunk * 8), "mask", SimpleItoa(last_chunk_mask)); printer->Indent(); } // Go back and emit clears for each of the fields we processed. for (int j = last_chunk_start; j <= last_chunk_end; j++) { const FieldDescriptor* field = optimized_order_[j]; const FieldGenerator& generator = field_generators_.get(field); bool have_enclosing_if = false; if (HasFieldPresence(descriptor_->file())) { printer->Print( "if (from.has_$name$()) {\n", "name", FieldName(field)); printer->Indent(); have_enclosing_if = true; } else { // Merge semantics without true field presence: primitive fields are // merged only if non-zero (numeric) or non-empty (string). have_enclosing_if = EmitFieldNonDefaultCondition( printer, "from.", field); } generator.GenerateMergingCode(printer); if (have_enclosing_if) { printer->Outdent(); printer->Print("}\n"); } } if (have_outer_if) { printer->Outdent(); printer->Print("}\n"); } } } // Merge oneof fields. Oneof field requires oneof case check. for (int i = 0; i < descriptor_->oneof_decl_count(); ++i) { printer->Print( "switch (from.$oneofname$_case()) {\n", "oneofname", descriptor_->oneof_decl(i)->name()); printer->Indent(); for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j); printer->Print( "case k$field_name$: {\n", "field_name", UnderscoresToCamelCase(field->name(), true)); printer->Indent(); field_generators_.get(field).GenerateMergingCode(printer); printer->Print( "break;\n"); printer->Outdent(); printer->Print( "}\n"); } printer->Print( "case $cap_oneof_name$_NOT_SET: {\n" " break;\n" "}\n", "cap_oneof_name", ToUpper(descriptor_->oneof_decl(i)->name())); printer->Outdent(); printer->Print( "}\n"); } printer->Outdent(); printer->Print("}\n"); } void MessageGenerator:: GenerateCopyFrom(io::Printer* printer) { if (HasDescriptorMethods(descriptor_->file(), options_)) { // Generate the generalized CopyFrom (aka that which takes in the Message // base class as a parameter). printer->Print( "void $classname$::CopyFrom(const ::google::protobuf::Message& from) {\n" "// @@protoc_insertion_point(generalized_copy_from_start:" "$full_name$)\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Indent(); printer->Print( "if (&from == this) return;\n" "Clear();\n" "MergeFrom(from);\n"); printer->Outdent(); printer->Print("}\n\n"); } // Generate the class-specific CopyFrom. printer->Print( "void $classname$::CopyFrom(const $classname$& from) {\n" "// @@protoc_insertion_point(class_specific_copy_from_start:" "$full_name$)\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Indent(); printer->Print( "if (&from == this) return;\n" "Clear();\n" "MergeFrom(from);\n"); printer->Outdent(); printer->Print("}\n"); } void MessageGenerator:: GenerateMergeFromCodedStream(io::Printer* printer) { if (descriptor_->options().message_set_wire_format()) { // Special-case MessageSet. printer->Print( "bool $classname$::MergePartialFromCodedStream(\n" " ::google::protobuf::io::CodedInputStream* input) {\n", "classname", classname_); printer->Print( " return _extensions_.ParseMessageSet(input, " "internal_default_instance(),\n" " mutable_unknown_fields());\n", // Vars. "classname", classname_); printer->Print( "}\n"); return; } printer->Print( "bool $classname$::MergePartialFromCodedStream(\n" " ::google::protobuf::io::CodedInputStream* input) {\n" "#define DO_(EXPRESSION) if (!GOOGLE_PREDICT_TRUE(EXPRESSION)) goto failure\n" " ::google::protobuf::uint32 tag;\n", "classname", classname_); if (PreserveUnknownFields(descriptor_) && !UseUnknownFieldSet(descriptor_->file(), options_)) { // Use LazyStringOutputString to avoid initializing unknown fields string // unless it is actually needed. For the same reason, disable eager refresh // on the CodedOutputStream. printer->Print( " ::google::protobuf::io::LazyStringOutputStream unknown_fields_string(\n" " ::google::protobuf::NewPermanentCallback(&_internal_metadata_,\n" " &::google::protobuf::internal::InternalMetadataWithArenaLite::mutable_unknown_fields));\n" " ::google::protobuf::io::CodedOutputStream unknown_fields_stream(\n" " &unknown_fields_string, false);\n", "classname", classname_); } printer->Print( " // @@protoc_insertion_point(parse_start:$full_name$)\n", "full_name", descriptor_->full_name()); printer->Indent(); printer->Print("for (;;) {\n"); printer->Indent(); std::vector ordered_fields = SortFieldsByNumber(descriptor_); uint32 maxtag = descriptor_->field_count() == 0 ? 0 : WireFormat::MakeTag(ordered_fields[descriptor_->field_count() - 1]); const int kCutoff0 = 127; // fits in 1-byte varint const int kCutoff1 = (127 << 7) + 127; // fits in 2-byte varint // We need to capture the last tag when parsing if this is a Group type, as // our caller will verify (via CodedInputStream::LastTagWas) that the correct // closing tag was received. bool capture_last_tag = false; const Descriptor* parent = descriptor_->containing_type(); if (parent) { for (int i = 0; i < parent->field_count(); i++) { const FieldDescriptor* field = parent->field(i); if (field->type() == FieldDescriptor::TYPE_GROUP && field->message_type() == descriptor_) { capture_last_tag = true; break; } } } for (int i = 0; i < descriptor_->file()->extension_count(); i++) { const FieldDescriptor* field = descriptor_->file()->extension(i); if (field->type() == FieldDescriptor::TYPE_GROUP && field->message_type() == descriptor_) { capture_last_tag = true; break; } } printer->Print("::std::pair< ::google::protobuf::uint32, bool> p = " "input->ReadTagWithCutoff$lasttag$($max$u);\n" "tag = p.first;\n" "if (!p.second) goto handle_unusual;\n", "max", SimpleItoa(maxtag <= kCutoff0 ? kCutoff0 : (maxtag <= kCutoff1 ? kCutoff1 : maxtag)), "lasttag", !capture_last_tag ? "NoLastTag" : ""); if (descriptor_->field_count() > 0) { // We don't even want to print the switch() if we have no fields because // MSVC dislikes switch() statements that contain only a default value. // Note: If we just switched on the tag rather than the field number, we // could avoid the need for the if() to check the wire type at the beginning // of each case. However, this is actually a bit slower in practice as it // creates a jump table that is 8x larger and sparser, and meanwhile the // if()s are highly predictable. // // Historically, we inserted checks to peek at the next tag on the wire and // jump directly to the next case statement. While this avoids the jump // table that the switch uses, it greatly increases code size (20-60%) and // inserts branches that may fail (especially for real world protos that // interleave--in field number order--hot and cold fields). Loadtests // confirmed that removing this optimization is performance neutral. printer->Print("switch (::google::protobuf::internal::WireFormatLite::" "GetTagFieldNumber(tag)) {\n"); printer->Indent(); // Find repeated messages and groups now, to simplify what follows. hash_set fields_with_parse_loop; for (int i = 0; i < ordered_fields.size(); i++) { const FieldDescriptor* field = ordered_fields[i]; if (field->is_repeated() && (field->type() == FieldDescriptor::TYPE_MESSAGE || field->type() == FieldDescriptor::TYPE_GROUP)) { fields_with_parse_loop.insert(i); } } for (int i = 0; i < ordered_fields.size(); i++) { const FieldDescriptor* field = ordered_fields[i]; const bool loops = fields_with_parse_loop.count(i) > 0; PrintFieldComment(printer, field); printer->Print( "case $number$: {\n", "number", SimpleItoa(field->number())); printer->Indent(); const FieldGenerator& field_generator = field_generators_.get(field); // Emit code to parse the common, expected case. printer->Print("if (static_cast< ::google::protobuf::uint8>(tag) ==\n" " static_cast< ::google::protobuf::uint8>($commontag$u)) {\n", "commontag", SimpleItoa(WireFormat::MakeTag(field))); if (loops) { printer->Print(" DO_(input->IncrementRecursionDepth());\n"); } printer->Indent(); if (field->is_packed()) { field_generator.GenerateMergeFromCodedStreamWithPacking(printer); } else { field_generator.GenerateMergeFromCodedStream(printer); } printer->Outdent(); // Emit code to parse unexpectedly packed or unpacked values. if (field->is_packed()) { internal::WireFormatLite::WireType wiretype = WireFormat::WireTypeForFieldType(field->type()); printer->Print("} else if (static_cast< ::google::protobuf::uint8>(tag) ==\n" " static_cast< ::google::protobuf::uint8>($uncommontag$u)) {\n", "uncommontag", SimpleItoa( internal::WireFormatLite::MakeTag( field->number(), wiretype))); printer->Indent(); field_generator.GenerateMergeFromCodedStream(printer); printer->Outdent(); } else if (field->is_packable() && !field->is_packed()) { internal::WireFormatLite::WireType wiretype = internal::WireFormatLite::WIRETYPE_LENGTH_DELIMITED; printer->Print("} else if (static_cast< ::google::protobuf::uint8>(tag) ==\n" " static_cast< ::google::protobuf::uint8>($uncommontag$u)) {\n", "uncommontag", SimpleItoa( internal::WireFormatLite::MakeTag( field->number(), wiretype))); printer->Indent(); field_generator.GenerateMergeFromCodedStreamWithPacking(printer); printer->Outdent(); } printer->Print( "} else {\n" " goto handle_unusual;\n" "}\n"); // For repeated messages/groups, we need to decrement recursion depth. if (loops) { printer->Print( "input->UnsafeDecrementRecursionDepth();\n"); } printer->Print( "break;\n"); printer->Outdent(); printer->Print("}\n\n"); } printer->Print("default: {\n"); printer->Indent(); } printer->Outdent(); printer->Print("handle_unusual:\n"); printer->Indent(); // If tag is 0 or an end-group tag then this must be the end of the message. printer->Print( "if (tag == 0 ||\n" " ::google::protobuf::internal::WireFormatLite::GetTagWireType(tag) ==\n" " ::google::protobuf::internal::WireFormatLite::WIRETYPE_END_GROUP) {\n" " goto success;\n" "}\n"); // Handle extension ranges. if (descriptor_->extension_range_count() > 0) { printer->Print( "if ("); for (int i = 0; i < descriptor_->extension_range_count(); i++) { const Descriptor::ExtensionRange* range = descriptor_->extension_range(i); if (i > 0) printer->Print(" ||\n "); uint32 start_tag = WireFormatLite::MakeTag( range->start, static_cast(0)); uint32 end_tag = WireFormatLite::MakeTag( range->end, static_cast(0)); if (range->end > FieldDescriptor::kMaxNumber) { printer->Print( "($start$u <= tag)", "start", SimpleItoa(start_tag)); } else { printer->Print( "($start$u <= tag && tag < $end$u)", "start", SimpleItoa(start_tag), "end", SimpleItoa(end_tag)); } } printer->Print(") {\n"); if (PreserveUnknownFields(descriptor_)) { if (UseUnknownFieldSet(descriptor_->file(), options_)) { printer->Print( " DO_(_extensions_.ParseField(tag, input, " "internal_default_instance(),\n" " mutable_unknown_fields()));\n"); } else { printer->Print( " DO_(_extensions_.ParseField(tag, input, " "internal_default_instance(),\n" " &unknown_fields_stream));\n"); } } else { printer->Print( // With static initializers. " DO_(_extensions_.ParseField(tag, input, " "internal_default_instance());\n"); } printer->Print( " continue;\n" "}\n"); } // We really don't recognize this tag. Skip it. if (PreserveUnknownFields(descriptor_)) { if (UseUnknownFieldSet(descriptor_->file(), options_)) { printer->Print( "DO_(::google::protobuf::internal::WireFormat::SkipField(\n" " input, tag, mutable_unknown_fields()));\n"); } else { printer->Print( "DO_(::google::protobuf::internal::WireFormatLite::SkipField(\n" " input, tag, &unknown_fields_stream));\n"); } } else { printer->Print( "DO_(::google::protobuf::internal::WireFormatLite::SkipField(input, tag));\n"); } if (descriptor_->field_count() > 0) { printer->Print("break;\n"); printer->Outdent(); printer->Print("}\n"); // default: printer->Outdent(); printer->Print("}\n"); // switch } printer->Outdent(); printer->Outdent(); printer->Print( " }\n" // for (;;) "success:\n" " // @@protoc_insertion_point(parse_success:$full_name$)\n" " return true;\n" "failure:\n" " // @@protoc_insertion_point(parse_failure:$full_name$)\n" " return false;\n" "#undef DO_\n" "}\n", "full_name", descriptor_->full_name()); } void MessageGenerator::GenerateSerializeOneofFields( io::Printer* printer, const std::vector& fields, bool to_array) { GOOGLE_CHECK(!fields.empty()); if (fields.size() == 1) { GenerateSerializeOneField(printer, fields[0], to_array); return; } // We have multiple mutually exclusive choices. Emit a switch statement. const OneofDescriptor* oneof = fields[0]->containing_oneof(); printer->Print( "switch ($oneofname$_case()) {\n", "oneofname", oneof->name()); printer->Indent(); for (int i = 0; i < fields.size(); i++) { const FieldDescriptor* field = fields[i]; printer->Print( "case k$field_name$:\n", "field_name", UnderscoresToCamelCase(field->name(), true)); printer->Indent(); if (to_array) { field_generators_.get(field).GenerateSerializeWithCachedSizesToArray( printer); } else { field_generators_.get(field).GenerateSerializeWithCachedSizes(printer); } printer->Print( "break;\n"); printer->Outdent(); } printer->Outdent(); // Doing nothing is an option. printer->Print( " default: ;\n" "}\n"); } void MessageGenerator::GenerateSerializeOneField( io::Printer* printer, const FieldDescriptor* field, bool to_array) { PrintFieldComment(printer, field); bool have_enclosing_if = false; if (!field->is_repeated() && HasFieldPresence(descriptor_->file())) { printer->Print( "if (has_$name$()) {\n", "name", FieldName(field)); printer->Indent(); have_enclosing_if = true; } else if (!HasFieldPresence(descriptor_->file())) { have_enclosing_if = EmitFieldNonDefaultCondition(printer, "this->", field); } if (to_array) { field_generators_.get(field).GenerateSerializeWithCachedSizesToArray( printer); } else { field_generators_.get(field).GenerateSerializeWithCachedSizes(printer); } if (have_enclosing_if) { printer->Outdent(); printer->Print("}\n"); } printer->Print("\n"); } void MessageGenerator::GenerateSerializeOneExtensionRange( io::Printer* printer, const Descriptor::ExtensionRange* range, bool to_array) { std::map vars; vars["start"] = SimpleItoa(range->start); vars["end"] = SimpleItoa(range->end); printer->Print(vars, "// Extension range [$start$, $end$)\n"); if (to_array) { printer->Print(vars, "target = _extensions_.InternalSerializeWithCachedSizesToArray(\n" " $start$, $end$, deterministic, target);\n\n"); } else { printer->Print(vars, "_extensions_.SerializeWithCachedSizes(\n" " $start$, $end$, output);\n\n"); } } void MessageGenerator:: GenerateSerializeWithCachedSizes(io::Printer* printer) { if (descriptor_->options().message_set_wire_format()) { // Special-case MessageSet. printer->Print( "void $classname$::SerializeWithCachedSizes(\n" " ::google::protobuf::io::CodedOutputStream* output) const {\n" " _extensions_.SerializeMessageSetWithCachedSizes(output);\n", "classname", classname_); GOOGLE_CHECK(UseUnknownFieldSet(descriptor_->file(), options_)); printer->Print( " ::google::protobuf::internal::WireFormat::SerializeUnknownMessageSetItems(\n" " unknown_fields(), output);\n"); printer->Print( "}\n"); return; } printer->Print( "void $classname$::SerializeWithCachedSizes(\n" " ::google::protobuf::io::CodedOutputStream* output) const {\n", "classname", classname_); printer->Indent(); printer->Print( "// @@protoc_insertion_point(serialize_start:$full_name$)\n", "full_name", descriptor_->full_name()); GenerateSerializeWithCachedSizesBody(printer, false); printer->Print( "// @@protoc_insertion_point(serialize_end:$full_name$)\n", "full_name", descriptor_->full_name()); printer->Outdent(); printer->Print( "}\n"); } void MessageGenerator:: GenerateSerializeWithCachedSizesToArray(io::Printer* printer) { if (descriptor_->options().message_set_wire_format()) { // Special-case MessageSet. printer->Print( "::google::protobuf::uint8* $classname$::InternalSerializeWithCachedSizesToArray(\n" " bool deterministic, ::google::protobuf::uint8* target) const {\n" " target = _extensions_." "InternalSerializeMessageSetWithCachedSizesToArray(\n" " deterministic, target);\n", "classname", classname_); GOOGLE_CHECK(UseUnknownFieldSet(descriptor_->file(), options_)); printer->Print( " target = ::google::protobuf::internal::WireFormat::\n" " SerializeUnknownMessageSetItemsToArray(\n" " unknown_fields(), target);\n"); printer->Print( " return target;\n" "}\n"); return; } printer->Print( "::google::protobuf::uint8* $classname$::InternalSerializeWithCachedSizesToArray(\n" " bool deterministic, ::google::protobuf::uint8* target) const {\n", "classname", classname_); printer->Indent(); printer->Print("(void)deterministic; // Unused\n"); printer->Print( "// @@protoc_insertion_point(serialize_to_array_start:$full_name$)\n", "full_name", descriptor_->full_name()); GenerateSerializeWithCachedSizesBody(printer, true); printer->Print( "// @@protoc_insertion_point(serialize_to_array_end:$full_name$)\n", "full_name", descriptor_->full_name()); printer->Outdent(); printer->Print( " return target;\n" "}\n"); } void MessageGenerator:: GenerateSerializeWithCachedSizesBody(io::Printer* printer, bool to_array) { // If there are multiple fields in a row from the same oneof then we // coalesce them and emit a switch statement. This is more efficient // because it lets the C++ compiler know this is a "at most one can happen" // situation. If we emitted "if (has_x()) ...; if (has_y()) ..." the C++ // compiler's emitted code might check has_y() even when has_x() is true. class LazySerializerEmitter { public: LazySerializerEmitter(MessageGenerator* mg, io::Printer* printer, bool to_array) : mg_(mg), printer_(printer), to_array_(to_array), eager_(!HasFieldPresence(mg->descriptor_->file())) {} ~LazySerializerEmitter() { Flush(); } // If conditions allow, try to accumulate a run of fields from the same // oneof, and handle them at the next Flush(). void Emit(const FieldDescriptor* field) { if (eager_ || MustFlush(field)) { Flush(); } if (field->containing_oneof() == NULL) { mg_->GenerateSerializeOneField(printer_, field, to_array_); } else { v_.push_back(field); } } void Flush() { if (!v_.empty()) { mg_->GenerateSerializeOneofFields(printer_, v_, to_array_); v_.clear(); } } private: // If we have multiple fields in v_ then they all must be from the same // oneof. Would adding field to v_ break that invariant? bool MustFlush(const FieldDescriptor* field) { return !v_.empty() && v_[0]->containing_oneof() != field->containing_oneof(); } MessageGenerator* mg_; io::Printer* printer_; const bool to_array_; const bool eager_; std::vector v_; }; std::vector ordered_fields = SortFieldsByNumber(descriptor_); std::vector sorted_extensions; for (int i = 0; i < descriptor_->extension_range_count(); ++i) { sorted_extensions.push_back(descriptor_->extension_range(i)); } std::sort(sorted_extensions.begin(), sorted_extensions.end(), ExtensionRangeSorter()); // Merge the fields and the extension ranges, both sorted by field number. { LazySerializerEmitter e(this, printer, to_array); int i, j; for (i = 0, j = 0; i < ordered_fields.size() || j < sorted_extensions.size();) { if (i == descriptor_->field_count()) { e.Flush(); GenerateSerializeOneExtensionRange(printer, sorted_extensions[j++], to_array); } else if (j == sorted_extensions.size()) { e.Emit(ordered_fields[i++]); } else if (ordered_fields[i]->number() < sorted_extensions[j]->start) { e.Emit(ordered_fields[i++]); } else { e.Flush(); GenerateSerializeOneExtensionRange(printer, sorted_extensions[j++], to_array); } } } if (PreserveUnknownFields(descriptor_)) { if (UseUnknownFieldSet(descriptor_->file(), options_)) { printer->Print("if (_internal_metadata_.have_unknown_fields()) {\n"); printer->Indent(); if (to_array) { printer->Print( "target = " "::google::protobuf::internal::WireFormat::SerializeUnknownFieldsToArray(\n" " unknown_fields(), target);\n"); } else { printer->Print( "::google::protobuf::internal::WireFormat::SerializeUnknownFields(\n" " unknown_fields(), output);\n"); } printer->Outdent(); printer->Print( "}\n"); } else { printer->Print( "output->WriteRaw(unknown_fields().data(),\n" " static_cast(unknown_fields().size()));\n"); } } } std::vector MessageGenerator::RequiredFieldsBitMask() const { const int array_size = HasBitsSize(); std::vector masks(array_size, 0); for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); if (!field->is_required()) { continue; } const int has_bit_index = has_bit_indices_[field->index()]; masks[has_bit_index / 32] |= static_cast(1) << (has_bit_index % 32); } return masks; } // Create an expression that evaluates to // "for all i, (_has_bits_[i] & masks[i]) == masks[i]" // masks is allowed to be shorter than _has_bits_, but at least one element of // masks must be non-zero. static string ConditionalToCheckBitmasks(const std::vector& masks) { std::vector parts; for (int i = 0; i < masks.size(); i++) { if (masks[i] == 0) continue; string m = StrCat("0x", strings::Hex(masks[i], strings::ZERO_PAD_8)); // Each xor evaluates to 0 if the expected bits are present. parts.push_back(StrCat("((_has_bits_[", i, "] & ", m, ") ^ ", m, ")")); } GOOGLE_CHECK(!parts.empty()); // If we have multiple parts, each expected to be 0, then bitwise-or them. string result = parts.size() == 1 ? parts[0] : StrCat("(", Join(parts, "\n | "), ")"); return result + " == 0"; } void MessageGenerator:: GenerateByteSize(io::Printer* printer) { if (descriptor_->options().message_set_wire_format()) { // Special-case MessageSet. printer->Print( "size_t $classname$::ByteSizeLong() const {\n" "// @@protoc_insertion_point(message_set_byte_size_start:$full_name$)\n" " size_t total_size = _extensions_.MessageSetByteSize();\n", "classname", classname_, "full_name", descriptor_->full_name()); GOOGLE_CHECK(UseUnknownFieldSet(descriptor_->file(), options_)); printer->Print( "if (_internal_metadata_.have_unknown_fields()) {\n" " total_size += ::google::protobuf::internal::WireFormat::\n" " ComputeUnknownMessageSetItemsSize(unknown_fields());\n" "}\n"); printer->Print( " int cached_size = ::google::protobuf::internal::ToCachedSize(total_size);\n" " GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();\n" " _cached_size_ = cached_size;\n" " GOOGLE_SAFE_CONCURRENT_WRITES_END();\n" " return total_size;\n" "}\n"); return; } if (num_required_fields_ > 1 && HasFieldPresence(descriptor_->file())) { // Emit a function (rarely used, we hope) that handles the required fields // by checking for each one individually. printer->Print( "size_t $classname$::RequiredFieldsByteSizeFallback() const {\n" "// @@protoc_insertion_point(required_fields_byte_size_fallback_start:" "$full_name$)\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Indent(); printer->Print("size_t total_size = 0;\n"); for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (field->is_required()) { printer->Print("\n" "if (has_$name$()) {\n", "name", FieldName(field)); printer->Indent(); PrintFieldComment(printer, field); field_generators_.get(field).GenerateByteSize(printer); printer->Outdent(); printer->Print("}\n"); } } printer->Print("\n" "return total_size;\n"); printer->Outdent(); printer->Print("}\n"); } printer->Print( "size_t $classname$::ByteSizeLong() const {\n" "// @@protoc_insertion_point(message_byte_size_start:$full_name$)\n", "classname", classname_, "full_name", descriptor_->full_name()); printer->Indent(); printer->Print( "size_t total_size = 0;\n" "\n"); if (descriptor_->extension_range_count() > 0) { printer->Print( "total_size += _extensions_.ByteSize();\n" "\n"); } if (PreserveUnknownFields(descriptor_)) { if (UseUnknownFieldSet(descriptor_->file(), options_)) { printer->Print( "if (_internal_metadata_.have_unknown_fields()) {\n" " total_size +=\n" " ::google::protobuf::internal::WireFormat::ComputeUnknownFieldsSize(\n" " unknown_fields());\n" "}\n"); } else { printer->Print( "total_size += unknown_fields().size();\n" "\n"); } } // Handle required fields (if any). We expect all of them to be // present, so emit one conditional that checks for that. If they are all // present then the fast path executes; otherwise the slow path executes. if (num_required_fields_ > 1 && HasFieldPresence(descriptor_->file())) { // The fast path works if all required fields are present. const std::vector masks_for_has_bits = RequiredFieldsBitMask(); printer->Print((string("if (") + ConditionalToCheckBitmasks(masks_for_has_bits) + ") { // All required fields are present.\n").c_str()); printer->Indent(); // Oneof fields cannot be required, so optimized_order_ contains all of the // fields that we need to potentially emit. for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (!field->is_required()) continue; PrintFieldComment(printer, field); field_generators_.get(field).GenerateByteSize(printer); printer->Print("\n"); } printer->Outdent(); printer->Print("} else {\n" // the slow path " total_size += RequiredFieldsByteSizeFallback();\n" "}\n"); } else { // num_required_fields_ <= 1: no need to be tricky for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (!field->is_required()) continue; PrintFieldComment(printer, field); printer->Print("if (has_$name$()) {\n", "name", FieldName(field)); printer->Indent(); field_generators_.get(field).GenerateByteSize(printer); printer->Outdent(); printer->Print("}\n"); } } int last_i = -1; for (int i = 0; i < optimized_order_.size(); ) { // Detect infinite loops. GOOGLE_CHECK_NE(i, last_i); last_i = i; // Skip required fields. for (; i < optimized_order_.size() && optimized_order_[i]->is_required(); i++) { } // Handle repeated fields. for (; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (!field->is_repeated()) { break; } PrintFieldComment(printer, field); const FieldGenerator& generator = field_generators_.get(field); generator.GenerateByteSize(printer); printer->Print("\n"); } // Handle optional (non-repeated/oneof) fields. // // These are handled in chunks of 8. The first chunk is // the non-requireds-non-repeateds-non-unions-non-extensions in // descriptor_->field(0), descriptor_->field(1), ... descriptor_->field(7), // and the second chunk is the same for // descriptor_->field(8), descriptor_->field(9), ... // descriptor_->field(15), // etc. int last_chunk = -1; int last_chunk_start = -1; int last_chunk_end = -1; uint32 last_chunk_mask = 0; for (; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; if (field->is_repeated() || field->is_required()) { break; } // "index" defines where in the _has_bits_ the field appears. // "i" is our loop counter within optimized_order_. int index = HasFieldPresence(descriptor_->file()) ? has_bit_indices_[field->index()] : 0; int chunk = index / 8; if (last_chunk == -1) { last_chunk = chunk; last_chunk_start = i; } else if (chunk != last_chunk) { // Emit the fields for this chunk so far. break; } last_chunk_end = i; last_chunk_mask |= static_cast(1) << (index % 32); } if (last_chunk != -1) { GOOGLE_DCHECK_NE(-1, last_chunk_start); GOOGLE_DCHECK_NE(-1, last_chunk_end); GOOGLE_DCHECK_NE(0, last_chunk_mask); const int count = popcnt(last_chunk_mask); const bool have_outer_if = HasFieldPresence(descriptor_->file()) && (last_chunk_start != last_chunk_end); if (have_outer_if) { // Check (up to) 8 has_bits at a time if we have more than one field in // this chunk. Due to field layout ordering, we may check // _has_bits_[last_chunk * 8 / 32] multiple times. GOOGLE_DCHECK_LE(2, count); GOOGLE_DCHECK_GE(8, count); printer->Print( "if (_has_bits_[$index$ / 32] & $mask$u) {\n", "index", SimpleItoa(last_chunk * 8), "mask", SimpleItoa(last_chunk_mask)); printer->Indent(); } // Go back and emit checks for each of the fields we processed. for (int j = last_chunk_start; j <= last_chunk_end; j++) { const FieldDescriptor* field = optimized_order_[j]; const FieldGenerator& generator = field_generators_.get(field); PrintFieldComment(printer, field); bool have_enclosing_if = false; if (HasFieldPresence(descriptor_->file())) { printer->Print( "if (has_$name$()) {\n", "name", FieldName(field)); printer->Indent(); have_enclosing_if = true; } else { // Without field presence: field is serialized only if it has a // non-default value. have_enclosing_if = EmitFieldNonDefaultCondition( printer, "this->", field); } generator.GenerateByteSize(printer); if (have_enclosing_if) { printer->Outdent(); printer->Print( "}\n" "\n"); } } if (have_outer_if) { printer->Outdent(); printer->Print("}\n"); } } } // Fields inside a oneof don't use _has_bits_ so we count them in a separate // pass. for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { printer->Print( "switch ($oneofname$_case()) {\n", "oneofname", descriptor_->oneof_decl(i)->name()); printer->Indent(); for (int j = 0; j < descriptor_->oneof_decl(i)->field_count(); j++) { const FieldDescriptor* field = descriptor_->oneof_decl(i)->field(j); PrintFieldComment(printer, field); printer->Print( "case k$field_name$: {\n", "field_name", UnderscoresToCamelCase(field->name(), true)); printer->Indent(); field_generators_.get(field).GenerateByteSize(printer); printer->Print( "break;\n"); printer->Outdent(); printer->Print( "}\n"); } printer->Print( "case $cap_oneof_name$_NOT_SET: {\n" " break;\n" "}\n", "cap_oneof_name", ToUpper(descriptor_->oneof_decl(i)->name())); printer->Outdent(); printer->Print( "}\n"); } // We update _cached_size_ even though this is a const method. In theory, // this is not thread-compatible, because concurrent writes have undefined // results. In practice, since any concurrent writes will be writing the // exact same value, it works on all common processors. In a future version // of C++, _cached_size_ should be made into an atomic. printer->Print( "int cached_size = ::google::protobuf::internal::ToCachedSize(total_size);\n" "GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();\n" "_cached_size_ = cached_size;\n" "GOOGLE_SAFE_CONCURRENT_WRITES_END();\n" "return total_size;\n"); printer->Outdent(); printer->Print("}\n"); } void MessageGenerator:: GenerateIsInitialized(io::Printer* printer) { printer->Print( "bool $classname$::IsInitialized() const {\n", "classname", classname_); printer->Indent(); if (descriptor_->extension_range_count() > 0) { printer->Print( "if (!_extensions_.IsInitialized()) {\n" " return false;\n" "}\n\n"); } if (HasFieldPresence(descriptor_->file())) { // Check that all required fields in this message are set. We can do this // most efficiently by checking 32 "has bits" at a time. const std::vector masks = RequiredFieldsBitMask(); for (int i = 0; i < masks.size(); i++) { uint32 mask = masks[i]; if (mask == 0) { continue; } // TODO(ckennelly): Consider doing something similar to ByteSizeLong(), // where we check all of the required fields in a single branch (assuming // that we aren't going to benefit from early termination). printer->Print( "if ((_has_bits_[$i$] & 0x$mask$) != 0x$mask$) return false;\n", "i", SimpleItoa(i), "mask", StrCat(strings::Hex(mask, strings::ZERO_PAD_8))); } } // Now check that all non-oneof embedded messages are initialized. for (int i = 0; i < optimized_order_.size(); i++) { const FieldDescriptor* field = optimized_order_[i]; // TODO(ckennelly): Push this down into a generator? if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !ShouldIgnoreRequiredFieldCheck(field, options_) && HasRequiredFields(field->message_type(), options_)) { if (field->is_repeated()) { printer->Print( "if (!::google::protobuf::internal::AllAreInitialized(this->$name$()))" " return false;\n", "name", FieldName(field)); } else { GOOGLE_CHECK(field->options().weak() || !field->containing_oneof()); // For weak fields, use the data member (::google::protobuf::Message*) instead // of the getter to avoid a link dependency on the weak message type // which is only forward declared. printer->Print( "if (has_$name$()) {\n" " if (!this->$name$_->IsInitialized()) return false;\n" "}\n", "name", FieldName(field)); } } } // Go through the oneof fields, emitting a switch if any might have required // fields. for (int i = 0; i < descriptor_->oneof_decl_count(); i++) { const OneofDescriptor* oneof = descriptor_->oneof_decl(i); bool has_required_fields = false; for (int j = 0; j < oneof->field_count(); j++) { const FieldDescriptor* field = oneof->field(j); if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !ShouldIgnoreRequiredFieldCheck(field, options_) && HasRequiredFields(field->message_type(), options_)) { has_required_fields = true; break; } } if (!has_required_fields) { continue; } printer->Print( "switch ($oneofname$_case()) {\n", "oneofname", oneof->name()); printer->Indent(); for (int j = 0; j < oneof->field_count(); j++) { const FieldDescriptor* field = oneof->field(j); printer->Print( "case k$field_name$: {\n", "field_name", UnderscoresToCamelCase(field->name(), true)); printer->Indent(); if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE && !ShouldIgnoreRequiredFieldCheck(field, options_) && HasRequiredFields(field->message_type(), options_)) { GOOGLE_CHECK(!(field->options().weak() || !field->containing_oneof())); if (field->options().weak()) { // For weak fields, use the data member (::google::protobuf::Message*) instead // of the getter to avoid a link dependency on the weak message type // which is only forward declared. printer->Print( "if (has_$name$()) {\n" " if (!this->$name$_->IsInitialized()) return false;\n" "}\n", "name", FieldName(field)); } else { printer->Print( "if (has_$name$()) {\n" " if (!this->$name$().IsInitialized()) return false;\n" "}\n", "name", FieldName(field)); } } printer->Print( "break;\n"); printer->Outdent(); printer->Print( "}\n"); } printer->Print( "case $cap_oneof_name$_NOT_SET: {\n" " break;\n" "}\n", "cap_oneof_name", ToUpper(oneof->name())); printer->Outdent(); printer->Print( "}\n"); } printer->Outdent(); printer->Print( " return true;\n" "}\n"); } } // namespace cpp } // namespace compiler } // namespace protobuf } // namespace google