// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #ifndef GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__ #define GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__ #include #include #include #include #include #include #include #include namespace google { namespace protobuf { namespace compiler { namespace cpp { // Commonly-used separator comments. Thick is a line of '=', thin is a line // of '-'. extern const char kThickSeparator[]; extern const char kThinSeparator[]; // Name space of the proto file. This namespace is such that the string // "::some_name" is the correct fully qualified namespace. // This means if the package is empty the namespace is "", and otherwise // the namespace is "::foo::bar::...::baz" without trailing semi-colons. string Namespace(const string& package); inline string Namespace(const FileDescriptor* d) { return Namespace(d->package()); } template string Namespace(const Desc* d) { return Namespace(d->file()); } // Returns true if it's safe to reset "field" to zero. bool CanInitializeByZeroing(const FieldDescriptor* field); string ClassName(const Descriptor* descriptor); string ClassName(const EnumDescriptor* enum_descriptor); template string QualifiedClassName(const Desc* d) { return Namespace(d) + "::" + ClassName(d); } // DEPRECATED just use ClassName or QualifiedClassName, a boolean is very // unreadable at the callsite. // Returns the non-nested type name for the given type. If "qualified" is // true, prefix the type with the full namespace. For example, if you had: // package foo.bar; // message Baz { message Qux {} } // Then the qualified ClassName for Qux would be: // ::foo::bar::Baz_Qux // While the non-qualified version would be: // Baz_Qux inline string ClassName(const Descriptor* descriptor, bool qualified) { return qualified ? QualifiedClassName(descriptor) : ClassName(descriptor); } inline string ClassName(const EnumDescriptor* descriptor, bool qualified) { return qualified ? QualifiedClassName(descriptor) : ClassName(descriptor); } // Fully qualified name of the default_instance of this message. string DefaultInstanceName(const Descriptor* descriptor); // Returns the name of a no-op function that we can call to introduce a linker // dependency on the given message type. This is used to implement implicit weak // fields. string ReferenceFunctionName(const Descriptor* descriptor); // Name of the base class: google::protobuf::Message or google::protobuf::MessageLite. string SuperClassName(const Descriptor* descriptor, const Options& options); // Get the (unqualified) name that should be used for this field in C++ code. // The name is coerced to lower-case to emulate proto1 behavior. People // should be using lowercase-with-underscores style for proto field names // anyway, so normally this just returns field->name(). string FieldName(const FieldDescriptor* field); // Get the sanitized name that should be used for the given enum in C++ code. string EnumValueName(const EnumValueDescriptor* enum_value); // Returns an estimate of the compiler's alignment for the field. This // can't guarantee to be correct because the generated code could be compiled on // different systems with different alignment rules. The estimates below assume // 64-bit pointers. int EstimateAlignmentSize(const FieldDescriptor* field); // Get the unqualified name that should be used for a field's field // number constant. string FieldConstantName(const FieldDescriptor *field); // Returns the scope where the field was defined (for extensions, this is // different from the message type to which the field applies). inline const Descriptor* FieldScope(const FieldDescriptor* field) { return field->is_extension() ? field->extension_scope() : field->containing_type(); } // Returns the fully-qualified type name field->message_type(). Usually this // is just ClassName(field->message_type(), true); string FieldMessageTypeName(const FieldDescriptor* field); // Strips ".proto" or ".protodevel" from the end of a filename. LIBPROTOC_EXPORT string StripProto(const string& filename); // Get the C++ type name for a primitive type (e.g. "double", "::google::protobuf::int32", etc.). // Note: non-built-in type names will be qualified, meaning they will start // with a ::. If you are using the type as a template parameter, you will // need to insure there is a space between the < and the ::, because the // ridiculous C++ standard defines "<:" to be a synonym for "[". const char* PrimitiveTypeName(FieldDescriptor::CppType type); // Get the declared type name in CamelCase format, as is used e.g. for the // methods of WireFormat. For example, TYPE_INT32 becomes "Int32". const char* DeclaredTypeMethodName(FieldDescriptor::Type type); // Return the code that evaluates to the number when compiled. string Int32ToString(int number); // Return the code that evaluates to the number when compiled. string Int64ToString(int64 number); // Get code that evaluates to the field's default value. string DefaultValue(const FieldDescriptor* field); // Convert a file name into a valid identifier. string FilenameIdentifier(const string& filename); // For each .proto file generates a unique namespace. In this namespace global // definitions are put to prevent collisions. string FileLevelNamespace(const string& filename); inline string FileLevelNamespace(const FileDescriptor* file) { return FileLevelNamespace(file->name()); } inline string FileLevelNamespace(const Descriptor* d) { return FileLevelNamespace(d->file()); } // Return the qualified C++ name for a file level symbol. string QualifiedFileLevelSymbol(const string& package, const string& name); // Escape C++ trigraphs by escaping question marks to \? string EscapeTrigraphs(const string& to_escape); // Escaped function name to eliminate naming conflict. string SafeFunctionName(const Descriptor* descriptor, const FieldDescriptor* field, const string& prefix); // Returns true if unknown fields are always preserved after parsing. inline bool AlwaysPreserveUnknownFields(const FileDescriptor* file) { return file->syntax() != FileDescriptor::SYNTAX_PROTO3; } // Returns true if unknown fields are preserved after parsing. inline bool AlwaysPreserveUnknownFields(const Descriptor* message) { return AlwaysPreserveUnknownFields(message->file()); } // Returns true if generated messages have public unknown fields accessors inline bool PublicUnknownFieldsAccessors(const Descriptor* message) { return message->file()->syntax() != FileDescriptor::SYNTAX_PROTO3; } // Returns the optimize mode for , respecting . ::google::protobuf::FileOptions_OptimizeMode GetOptimizeFor( const FileDescriptor* file, const Options& options); // Determines whether unknown fields will be stored in an UnknownFieldSet or // a string. inline bool UseUnknownFieldSet(const FileDescriptor* file, const Options& options) { return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME; } // Does the file have any map fields, necessitating the file to include // map_field_inl.h and map.h. bool HasMapFields(const FileDescriptor* file); // Does this file have any enum type definitions? bool HasEnumDefinitions(const FileDescriptor* file); // Does this file have generated parsing, serialization, and other // standard methods for which reflection-based fallback implementations exist? inline bool HasGeneratedMethods(const FileDescriptor* file, const Options& options) { return GetOptimizeFor(file, options) != FileOptions::CODE_SIZE; } // Do message classes in this file have descriptor and reflection methods? inline bool HasDescriptorMethods(const FileDescriptor* file, const Options& options) { return GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME; } // Should we generate generic services for this file? inline bool HasGenericServices(const FileDescriptor* file, const Options& options) { return file->service_count() > 0 && GetOptimizeFor(file, options) != FileOptions::LITE_RUNTIME && file->options().cc_generic_services(); } // Should we generate a separate, super-optimized code path for serializing to // flat arrays? We don't do this in Lite mode because we'd rather reduce code // size. inline bool HasFastArraySerialization(const FileDescriptor* file, const Options& options) { return GetOptimizeFor(file, options) == FileOptions::SPEED; } inline bool IsMapEntryMessage(const Descriptor* descriptor) { return descriptor->options().map_entry(); } // Returns true if the field's CPPTYPE is string or message. bool IsStringOrMessage(const FieldDescriptor* field); // For a string field, returns the effective ctype. If the actual ctype is // not supported, returns the default of STRING. FieldOptions::CType EffectiveStringCType(const FieldDescriptor* field); string UnderscoresToCamelCase(const string& input, bool cap_next_letter); inline bool HasFieldPresence(const FileDescriptor* file) { return file->syntax() != FileDescriptor::SYNTAX_PROTO3; } // Returns true if 'enum' semantics are such that unknown values are preserved // in the enum field itself, rather than going to the UnknownFieldSet. inline bool HasPreservingUnknownEnumSemantics(const FileDescriptor* file) { return file->syntax() == FileDescriptor::SYNTAX_PROTO3; } inline bool SupportsArenas(const FileDescriptor* file) { return file->options().cc_enable_arenas(); } inline bool SupportsArenas(const Descriptor* desc) { return SupportsArenas(desc->file()); } inline bool SupportsArenas(const FieldDescriptor* field) { return SupportsArenas(field->file()); } inline bool IsCrossFileMessage(const FieldDescriptor* field) { return field->type() == FieldDescriptor::TYPE_MESSAGE && field->message_type()->file() != field->file(); } inline string MessageCreateFunction(const Descriptor* d) { return SupportsArenas(d) ? "CreateMessage" : "Create"; } inline string MakeDefaultName(const FieldDescriptor* field) { return "_i_give_permission_to_break_this_code_default_" + FieldName(field) + "_"; } bool IsAnyMessage(const FileDescriptor* descriptor); bool IsAnyMessage(const Descriptor* descriptor); bool IsWellKnownMessage(const FileDescriptor* descriptor); void GenerateUtf8CheckCodeForString(const FieldDescriptor* field, const Options& options, bool for_parse, const std::map& variables, const char* parameters, io::Printer* printer); void GenerateUtf8CheckCodeForCord(const FieldDescriptor* field, const Options& options, bool for_parse, const std::map& variables, const char* parameters, io::Printer* printer); inline ::google::protobuf::FileOptions_OptimizeMode GetOptimizeFor( const FileDescriptor* file, const Options& options) { return options.enforce_lite ? FileOptions::LITE_RUNTIME : file->options().optimize_for(); } // This orders the messages in a .pb.cc as it's outputted by file.cc void FlattenMessagesInFile(const FileDescriptor* file, std::vector* result); inline std::vector FlattenMessagesInFile( const FileDescriptor* file) { std::vector result; FlattenMessagesInFile(file, &result); return result; } bool HasWeakFields(const Descriptor* desc); bool HasWeakFields(const FileDescriptor* desc); // Returns true if the "required" restriction check should be ignored for the // given field. inline static bool ShouldIgnoreRequiredFieldCheck(const FieldDescriptor* field, const Options& options) { return false; } class LIBPROTOC_EXPORT NamespaceOpener { public: explicit NamespaceOpener(io::Printer* printer) : printer_(printer) {} NamespaceOpener(const string& name, io::Printer* printer) : printer_(printer) { ChangeTo(name); } ~NamespaceOpener() { ChangeTo(""); } void ChangeTo(const string& name) { std::vector new_stack_ = Split(name, "::", true); int len = std::min(name_stack_.size(), new_stack_.size()); int common_idx = 0; while (common_idx < len) { if (name_stack_[common_idx] != new_stack_[common_idx]) break; common_idx++; } for (int i = name_stack_.size() - 1; i >= common_idx; i--) { printer_->Print("} // namespace $ns$\n", "ns", name_stack_[i]); } name_stack_.swap(new_stack_); for (int i = common_idx; i < name_stack_.size(); i++) { printer_->Print("namespace $ns$ {\n", "ns", name_stack_[i]); } } private: io::Printer* printer_; std::vector name_stack_; }; // Description of each strongly connected component. Note that the order // of both the descriptors in this SCC and the order of children is // deterministic. struct SCC { std::vector descriptors; std::vector children; const Descriptor* GetRepresentative() const { return descriptors[0]; } }; struct MessageAnalysis { bool is_recursive; bool contains_cord; bool contains_extension; bool contains_required; }; // This class is used in FileGenerator, to ensure linear instead of // quadratic performance, if we do this per message we would get O(V*(V+E)). // Logically this is just only used in message.cc, but in the header for // FileGenerator to help share it. class LIBPROTOC_EXPORT SCCAnalyzer { public: explicit SCCAnalyzer(const Options& options) : options_(options), index_(0) {} ~SCCAnalyzer() { for (int i = 0; i < garbage_bin_.size(); i++) delete garbage_bin_[i]; } const SCC* GetSCC(const Descriptor* descriptor) { if (cache_.count(descriptor)) return cache_[descriptor].scc; return DFS(descriptor).scc; } MessageAnalysis GetSCCAnalysis(const SCC* scc); bool HasRequiredFields(const Descriptor* descriptor) { MessageAnalysis result = GetSCCAnalysis(GetSCC(descriptor)); return result.contains_required || result.contains_extension; } private: struct NodeData { const SCC* scc; // if null it means its still on the stack int index; int lowlink; }; Options options_; std::map cache_; std::map analysis_cache_; std::vector stack_; int index_; std::vector garbage_bin_; SCC* CreateSCC() { garbage_bin_.push_back(new SCC()); return garbage_bin_.back(); } // Tarjan's Strongly Connected Components algo NodeData DFS(const Descriptor* descriptor); // Add the SCC's that are children of this SCC to its children. void AddChildren(SCC* scc); }; void ListAllFields(const Descriptor* d, std::vector* fields); void ListAllFields(const FileDescriptor* d, std::vector* fields); void ListAllTypesForServices(const FileDescriptor* fd, std::vector* types); // Indicates whether we should use implicit weak fields for this file. bool UsingImplicitWeakFields(const FileDescriptor* file, const Options& options); // Indicates whether to treat this field as implicitly weak. bool IsImplicitWeakField(const FieldDescriptor* field, const Options& options, SCCAnalyzer* scc_analyzer); } // namespace cpp } // namespace compiler } // namespace protobuf } // namespace google #endif // GOOGLE_PROTOBUF_COMPILER_CPP_HELPERS_H__