// Amalgamated source file /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Defs are upb's internal representation of the constructs that can appear * in a .proto file: * * - upb_msgdef: describes a "message" construct. * - upb_fielddef: describes a message field. * - upb_enumdef: describes an enum. * (TODO: definitions of services). * * Like upb_refcounted objects, defs are mutable only until frozen, and are * only thread-safe once frozen. * * This is a mixed C/C++ interface that offers a full API to both languages. * See the top-level README for more information. */ #ifndef UPB_DEF_H_ #define UPB_DEF_H_ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A refcounting scheme that supports circular refs. It accomplishes this by * partitioning the set of objects into groups such that no cycle spans groups; * we can then reference-count the group as a whole and ignore refs within the * group. When objects are mutable, these groups are computed very * conservatively; we group any objects that have ever had a link between them. * When objects are frozen, we compute strongly-connected components which * allows us to be precise and only group objects that are actually cyclic. * * This is a mixed C/C++ interface that offers a full API to both languages. * See the top-level README for more information. */ #ifndef UPB_REFCOUNTED_H_ #define UPB_REFCOUNTED_H_ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * This header is INTERNAL-ONLY! Its interfaces are not public or stable! * This file defines very fast int->upb_value (inttable) and string->upb_value * (strtable) hash tables. * * The table uses chained scatter with Brent's variation (inspired by the Lua * implementation of hash tables). The hash function for strings is Austin * Appleby's "MurmurHash." * * The inttable uses uintptr_t as its key, which guarantees it can be used to * store pointers or integers of at least 32 bits (upb isn't really useful on * systems where sizeof(void*) < 4). * * The table must be homogenous (all values of the same type). In debug * mode, we check this on insert and lookup. */ #ifndef UPB_TABLE_H_ #define UPB_TABLE_H_ #include #include #include /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * This file contains shared definitions that are widely used across upb. * * This is a mixed C/C++ interface that offers a full API to both languages. * See the top-level README for more information. */ #ifndef UPB_H_ #define UPB_H_ #include #include #include #include // inline if possible, emit standalone code if required. #ifdef __cplusplus #define UPB_INLINE inline #else #define UPB_INLINE static inline #endif #if __STDC_VERSION__ >= 199901L #define UPB_C99 #endif #if ((defined(__cplusplus) && __cplusplus >= 201103L) || \ defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11) #define UPB_CXX11 #endif #ifdef UPB_CXX11 #include #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \ class_name(const class_name&) = delete; \ void operator=(const class_name&) = delete; #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \ class_name() = delete; \ ~class_name() = delete; \ /* Friend Pointer so it can access base class. */ \ friend class Pointer; \ friend class Pointer; \ UPB_DISALLOW_COPY_AND_ASSIGN(class_name) #define UPB_ASSERT_STDLAYOUT(type) \ static_assert(std::is_standard_layout::value, \ #type " must be standard layout"); #else // !defined(UPB_CXX11) #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \ class_name(const class_name&); \ void operator=(const class_name&); #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \ class_name(); \ ~class_name(); \ /* Friend Pointer so it can access base class. */ \ friend class Pointer; \ friend class Pointer; \ UPB_DISALLOW_COPY_AND_ASSIGN(class_name) #define UPB_ASSERT_STDLAYOUT(type) #endif #ifdef __cplusplus #define UPB_PRIVATE_FOR_CPP private: #define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname; #define UPB_BEGIN_EXTERN_C extern "C" { #define UPB_END_EXTERN_C } #define UPB_DEFINE_STRUCT0(cname, members) members; #define UPB_DEFINE_STRUCT(cname, cbase, members) \ public: \ cbase* base() { return &base_; } \ const cbase* base() const { return &base_; } \ \ private: \ cbase base_; \ members; #define UPB_DEFINE_CLASS0(cppname, cppmethods, members) \ class cppname { \ cppmethods \ members \ }; \ UPB_ASSERT_STDLAYOUT(cppname); #define UPB_DEFINE_CLASS1(cppname, cppbase, cppmethods, members) \ UPB_DEFINE_CLASS0(cppname, cppmethods, members) \ namespace upb { \ template <> \ class Pointer : public PointerBase { \ public: \ explicit Pointer(cppname* ptr) : PointerBase(ptr) {} \ }; \ template <> \ class Pointer \ : public PointerBase { \ public: \ explicit Pointer(const cppname* ptr) : PointerBase(ptr) {} \ }; \ } #define UPB_DEFINE_CLASS2(cppname, cppbase, cppbase2, cppmethods, members) \ UPB_DEFINE_CLASS0(cppname, UPB_QUOTE(cppmethods), members) \ namespace upb { \ template <> \ class Pointer : public PointerBase2 { \ public: \ explicit Pointer(cppname* ptr) : PointerBase2(ptr) {} \ }; \ template <> \ class Pointer \ : public PointerBase2 { \ public: \ explicit Pointer(const cppname* ptr) : PointerBase2(ptr) {} \ }; \ } #else // !defined(__cplusplus) #define UPB_PRIVATE_FOR_CPP #define UPB_DECLARE_TYPE(cppname, cname) \ struct cname; \ typedef struct cname cname; #define UPB_BEGIN_EXTERN_C #define UPB_END_EXTERN_C #define UPB_DEFINE_STRUCT0(cname, members) \ struct cname { \ members; \ }; #define UPB_DEFINE_STRUCT(cname, cbase, members) \ struct cname { \ cbase base; \ members; \ }; #define UPB_DEFINE_CLASS0(cppname, cppmethods, members) members #define UPB_DEFINE_CLASS1(cppname, cppbase, cppmethods, members) members #define UPB_DEFINE_CLASS2(cppname, cppbase, cppbase2, cppmethods, members) \ members #endif // defined(__cplusplus) #ifdef __GNUC__ #define UPB_NORETURN __attribute__((__noreturn__)) #else #define UPB_NORETURN #endif #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y)) #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y)) #define UPB_UNUSED(var) (void)var // Code with commas confuses the preprocessor when passed as arguments, whether // C++ type names with commas (eg. Foo) or code blocks that declare // variables (ie. int foo, bar). #define UPB_QUOTE(...) __VA_ARGS__ // For asserting something about a variable when the variable is not used for // anything else. This prevents "unused variable" warnings when compiling in // debug mode. #define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate) // Generic function type. typedef void upb_func(); /* Casts **********************************************************************/ // Upcasts for C. For downcasts see the definitions of the subtypes. #define UPB_UPCAST(obj) (&(obj)->base) #define UPB_UPCAST2(obj) UPB_UPCAST(UPB_UPCAST(obj)) #ifdef __cplusplus // Downcasts for C++. We can't use C++ inheritance directly and maintain // compatibility with C. So our inheritance is undeclared in C++. // Specializations of these casting functions are defined for appropriate type // pairs, and perform the necessary checks. // // Example: // upb::Def* def = <...>; // upb::MessageDef* = upb::dyn_cast(def); namespace upb { // Casts to a direct subclass. The caller must know that cast is correct; an // incorrect cast will throw an assertion failure in debug mode. template To down_cast(From* f); // Casts to a direct subclass. If the class does not actually match the given // subtype, returns NULL. template To dyn_cast(From* f); // Pointer is a simple wrapper around a T*. It is only constructed for // upcast() below, and its sole purpose is to be implicitly convertable to T* or // pointers to base classes, just as a pointer would be in regular C++ if the // inheritance were directly expressed as C++ inheritance. template class Pointer; // Casts to any base class, or the type itself (ie. can be a no-op). template inline Pointer upcast(T *f) { return Pointer(f); } template class PointerBase { public: explicit PointerBase(T* ptr) : ptr_(ptr) {} operator T*() { return ptr_; } operator Base*() { return ptr_->base(); } private: T* ptr_; }; template class PointerBase2 : public PointerBase { public: explicit PointerBase2(T* ptr) : PointerBase(ptr) {} operator Base2*() { return Pointer(*this); } }; } #endif /* upb::reffed_ptr ************************************************************/ #ifdef __cplusplus #include // For std::swap(). namespace upb { // Provides RAII semantics for upb refcounted objects. Each reffed_ptr owns a // ref on whatever object it points to (if any). template class reffed_ptr { public: reffed_ptr() : ptr_(NULL) {} // If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. template reffed_ptr(U* val, const void* ref_donor = NULL) : ptr_(upb::upcast(val)) { if (ref_donor) { assert(ptr_); ptr_->DonateRef(ref_donor, this); } else if (ptr_) { ptr_->Ref(this); } } template reffed_ptr(const reffed_ptr& other) : ptr_(upb::upcast(other.get())) { if (ptr_) ptr_->Ref(this); } ~reffed_ptr() { if (ptr_) ptr_->Unref(this); } template reffed_ptr& operator=(const reffed_ptr& other) { reset(other.get()); return *this; } reffed_ptr& operator=(const reffed_ptr& other) { reset(other.get()); return *this; } // TODO(haberman): add C++11 move construction/assignment for greater // efficiency. void swap(reffed_ptr& other) { if (ptr_ == other.ptr_) { return; } if (ptr_) ptr_->DonateRef(this, &other); if (other.ptr_) other.ptr_->DonateRef(&other, this); std::swap(ptr_, other.ptr_); } T& operator*() const { assert(ptr_); return *ptr_; } T* operator->() const { assert(ptr_); return ptr_; } T* get() const { return ptr_; } // If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. template void reset(U* ptr = NULL, const void* ref_donor = NULL) { reffed_ptr(ptr, ref_donor).swap(*this); } template reffed_ptr down_cast() { return reffed_ptr(upb::down_cast(get())); } template reffed_ptr dyn_cast() { return reffed_ptr(upb::dyn_cast(get())); } // Plain release() is unsafe; if we were the only owner, it would leak the // object. Instead we provide this: T* ReleaseTo(const void* new_owner) { T* ret = NULL; ptr_->DonateRef(this, new_owner); std::swap(ret, ptr_); return ret; } private: T* ptr_; }; } // namespace upb #endif // __cplusplus /* upb::Status ****************************************************************/ #ifdef __cplusplus namespace upb { class ErrorSpace; class Status; } #endif UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace); UPB_DECLARE_TYPE(upb::Status, upb_status); // The maximum length of an error message before it will get truncated. #define UPB_STATUS_MAX_MESSAGE 128 // An error callback function is used to report errors from some component. // The function can return "true" to indicate that the component should try // to recover and proceed, but this is not always possible. typedef bool upb_errcb_t(void *closure, const upb_status* status); UPB_DEFINE_CLASS0(upb::ErrorSpace, , UPB_DEFINE_STRUCT0(upb_errorspace, const char *name; // Should the error message in the status object according to this code. void (*set_message)(upb_status* status, int code); )); // Object representing a success or failure status. // It owns no resources and allocates no memory, so it should work // even in OOM situations. UPB_DEFINE_CLASS0(upb::Status, public: Status(); // Returns true if there is no error. bool ok() const; // Optional error space and code, useful if the caller wants to // programmatically check the specific kind of error. ErrorSpace* error_space(); int code() const; const char *error_message() const; // The error message will be truncated if it is longer than // UPB_STATUS_MAX_MESSAGE-4. void SetErrorMessage(const char* msg); void SetFormattedErrorMessage(const char* fmt, ...); // If there is no error message already, this will use the ErrorSpace to // populate the error message for this code. The caller can still call // SetErrorMessage() to give a more specific message. void SetErrorCode(ErrorSpace* space, int code); // Resets the status to a successful state with no message. void Clear(); void CopyFrom(const Status& other); private: UPB_DISALLOW_COPY_AND_ASSIGN(Status); , UPB_DEFINE_STRUCT0(upb_status, bool ok_; // Specific status code defined by some error space (optional). int code_; upb_errorspace *error_space_; // Error message; NULL-terminated. char msg[UPB_STATUS_MAX_MESSAGE]; )); #define UPB_STATUS_INIT {true, 0, NULL, {0}} #ifdef __cplusplus extern "C" { #endif // The returned string is invalidated by any other call into the status. const char *upb_status_errmsg(const upb_status *status); bool upb_ok(const upb_status *status); upb_errorspace *upb_status_errspace(const upb_status *status); int upb_status_errcode(const upb_status *status); // Any of the functions that write to a status object allow status to be NULL, // to support use cases where the function's caller does not care about the // status message. void upb_status_clear(upb_status *status); void upb_status_seterrmsg(upb_status *status, const char *msg); void upb_status_seterrf(upb_status *status, const char *fmt, ...); void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args); void upb_status_seterrcode(upb_status *status, upb_errorspace *space, int code); void upb_status_copy(upb_status *to, const upb_status *from); #ifdef __cplusplus } // extern "C" namespace upb { // C++ Wrappers inline Status::Status() { Clear(); } inline bool Status::ok() const { return upb_ok(this); } inline const char* Status::error_message() const { return upb_status_errmsg(this); } inline void Status::SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); } inline void Status::SetFormattedErrorMessage(const char* fmt, ...) { va_list args; va_start(args, fmt); upb_status_vseterrf(this, fmt, args); va_end(args); } inline void Status::SetErrorCode(ErrorSpace* space, int code) { upb_status_seterrcode(this, space, code); } inline void Status::Clear() { upb_status_clear(this); } inline void Status::CopyFrom(const Status& other) { upb_status_copy(this, &other); } } // namespace upb #endif #endif /* UPB_H_ */ #ifdef __cplusplus extern "C" { #endif /* upb_value ******************************************************************/ // A tagged union (stored untagged inside the table) so that we can check that // clients calling table accessors are correctly typed without having to have // an explosion of accessors. typedef enum { UPB_CTYPE_INT32 = 1, UPB_CTYPE_INT64 = 2, UPB_CTYPE_UINT32 = 3, UPB_CTYPE_UINT64 = 4, UPB_CTYPE_BOOL = 5, UPB_CTYPE_CSTR = 6, UPB_CTYPE_PTR = 7, UPB_CTYPE_CONSTPTR = 8, UPB_CTYPE_FPTR = 9, } upb_ctype_t; typedef union { int32_t int32; int64_t int64; uint64_t uint64; uint32_t uint32; bool _bool; char *cstr; void *ptr; const void *constptr; upb_func *fptr; } _upb_value; typedef struct { _upb_value val; #ifndef NDEBUG // In debug mode we carry the value type around also so we can check accesses // to be sure the right member is being read. upb_ctype_t ctype; #endif } upb_value; #ifdef UPB_C99 #define UPB_VALUE_INIT(v, member) {.member = v} #endif #define UPB__VALUE_INIT_NONE UPB_VALUE_INIT(NULL, ptr) #ifdef NDEBUG #define SET_TYPE(dest, val) UPB_UNUSED(val) #define UPB_VALUE_INIT_NONE {UPB__VALUE_INIT_NONE} #else #define SET_TYPE(dest, val) dest = val // Non-existent type, all reads will fail. #define UPB_VALUE_INIT_NONE {UPB__VALUE_INIT_NONE, -1} #endif #define UPB_VALUE_INIT_INT32(v) UPB_VALUE_INIT(v, int32) #define UPB_VALUE_INIT_INT64(v) UPB_VALUE_INIT(v, int64) #define UPB_VALUE_INIT_UINT32(v) UPB_VALUE_INIT(v, uint32) #define UPB_VALUE_INIT_UINT64(v) UPB_VALUE_INIT(v, uint64) #define UPB_VALUE_INIT_BOOL(v) UPB_VALUE_INIT(v, _bool) #define UPB_VALUE_INIT_CSTR(v) UPB_VALUE_INIT(v, cstr) #define UPB_VALUE_INIT_PTR(v) UPB_VALUE_INIT(v, ptr) #define UPB_VALUE_INIT_CONSTPTR(v) UPB_VALUE_INIT(v, constptr) #define UPB_VALUE_INIT_FPTR(v) UPB_VALUE_INIT(v, fptr) // Like strdup(), which isn't always available since it's not ANSI C. char *upb_strdup(const char *s); UPB_INLINE void _upb_value_setval(upb_value *v, _upb_value val, upb_ctype_t ctype) { v->val = val; SET_TYPE(v->ctype, ctype); } UPB_INLINE upb_value _upb_value_val(_upb_value val, upb_ctype_t ctype) { upb_value ret; _upb_value_setval(&ret, val, ctype); return ret; } // For each value ctype, define the following set of functions: // // // Get/set an int32 from a upb_value. // int32_t upb_value_getint32(upb_value val); // void upb_value_setint32(upb_value *val, int32_t cval); // // // Construct a new upb_value from an int32. // upb_value upb_value_int32(int32_t val); #define FUNCS(name, membername, type_t, proto_type) \ UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \ val->val.uint64 = 0; \ SET_TYPE(val->ctype, proto_type); \ val->val.membername = cval; \ } \ UPB_INLINE upb_value upb_value_ ## name(type_t val) { \ upb_value ret; \ upb_value_set ## name(&ret, val); \ return ret; \ } \ UPB_INLINE type_t upb_value_get ## name(upb_value val) { \ assert(val.ctype == proto_type); \ return val.val.membername; \ } FUNCS(int32, int32, int32_t, UPB_CTYPE_INT32); FUNCS(int64, int64, int64_t, UPB_CTYPE_INT64); FUNCS(uint32, uint32, uint32_t, UPB_CTYPE_UINT32); FUNCS(uint64, uint64, uint64_t, UPB_CTYPE_UINT64); FUNCS(bool, _bool, bool, UPB_CTYPE_BOOL); FUNCS(cstr, cstr, char*, UPB_CTYPE_CSTR); FUNCS(ptr, ptr, void*, UPB_CTYPE_PTR); FUNCS(constptr, constptr, const void*, UPB_CTYPE_CONSTPTR); FUNCS(fptr, fptr, upb_func*, UPB_CTYPE_FPTR); #undef FUNCS /* upb_table ******************************************************************/ typedef union { uintptr_t num; const char *str; // We own, nullz. } upb_tabkey; #define UPB_TABKEY_NUM(n) {n} #ifdef UPB_C99 #define UPB_TABKEY_STR(s) {.str = s} #endif // TODO(haberman): C++ #define UPB_TABKEY_NONE {0} typedef struct _upb_tabent { upb_tabkey key; _upb_value val; // Internal chaining. This is const so we can create static initializers for // tables. We cast away const sometimes, but *only* when the containing // upb_table is known to be non-const. This requires a bit of care, but // the subtlety is confined to table.c. const struct _upb_tabent *next; } upb_tabent; typedef struct { size_t count; // Number of entries in the hash part. size_t mask; // Mask to turn hash value -> bucket. upb_ctype_t ctype; // Type of all values. uint8_t size_lg2; // Size of the hash table part is 2^size_lg2 entries. // Hash table entries. // Making this const isn't entirely accurate; what we really want is for it to // have the same const-ness as the table it's inside. But there's no way to // declare that in C. So we have to make it const so that we can statically // initialize const hash tables. Then we cast away const when we have to. const upb_tabent *entries; } upb_table; typedef struct { upb_table t; } upb_strtable; #define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \ {{count, mask, ctype, size_lg2, entries}} typedef struct { upb_table t; // For entries that don't fit in the array part. const _upb_value *array; // Array part of the table. See const note above. size_t array_size; // Array part size. size_t array_count; // Array part number of elements. } upb_inttable; #define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \ {{count, mask, ctype, size_lg2, ent}, a, asize, acount} #define UPB_EMPTY_INTTABLE_INIT(ctype) \ UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0) #define UPB_ARRAY_EMPTYVAL -1 #define UPB_ARRAY_EMPTYENT UPB_VALUE_INIT_INT64(UPB_ARRAY_EMPTYVAL) UPB_INLINE size_t upb_table_size(const upb_table *t) { if (t->size_lg2 == 0) return 0; else return 1 << t->size_lg2; } // Internal-only functions, in .h file only out of necessity. UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) { return e->key.num == 0; } // Used by some of the unit tests for generic hashing functionality. uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed); UPB_INLINE upb_tabkey upb_intkey(uintptr_t key) { upb_tabkey k; k.num = key; return k; } UPB_INLINE uint32_t upb_inthash(uintptr_t key) { return (uint32_t)key; } static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) { return t->entries + (hash & t->mask); } UPB_INLINE bool upb_arrhas(_upb_value v) { return v.uint64 != (uint64_t)UPB_ARRAY_EMPTYVAL; } // Initialize and uninitialize a table, respectively. If memory allocation // failed, false is returned that the table is uninitialized. bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype); bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype); void upb_inttable_uninit(upb_inttable *table); void upb_strtable_uninit(upb_strtable *table); // Returns the number of values in the table. size_t upb_inttable_count(const upb_inttable *t); UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) { return t->t.count; } // Inserts the given key into the hashtable with the given value. The key must // not already exist in the hash table. For string tables, the key must be // NULL-terminated, and the table will make an internal copy of the key. // Inttables must not insert a value of UINTPTR_MAX. // // If a table resize was required but memory allocation failed, false is // returned and the table is unchanged. bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val); bool upb_strtable_insert(upb_strtable *t, const char *key, upb_value val); // Looks up key in this table, returning "true" if the key was found. // If v is non-NULL, copies the value for this key into *v. bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v); bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, upb_value *v); // For NULL-terminated strings. UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key, upb_value *v) { return upb_strtable_lookup2(t, key, strlen(key), v); } // Removes an item from the table. Returns true if the remove was successful, // and stores the removed item in *val if non-NULL. bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val); bool upb_strtable_remove(upb_strtable *t, const char *key, upb_value *val); // Updates an existing entry in an inttable. If the entry does not exist, // returns false and does nothing. Unlike insert/remove, this does not // invalidate iterators. bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val); // Handy routines for treating an inttable like a stack. May not be mixed with // other insert/remove calls. bool upb_inttable_push(upb_inttable *t, upb_value val); upb_value upb_inttable_pop(upb_inttable *t); // Convenience routines for inttables with pointer keys. bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val); bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val); bool upb_inttable_lookupptr( const upb_inttable *t, const void *key, upb_value *val); // Optimizes the table for the current set of entries, for both memory use and // lookup time. Client should call this after all entries have been inserted; // inserting more entries is legal, but will likely require a table resize. void upb_inttable_compact(upb_inttable *t); // A special-case inlinable version of the lookup routine for 32-bit integers. UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key, upb_value *v) { *v = upb_value_int32(0); // Silence compiler warnings. if (key < t->array_size) { _upb_value arrval = t->array[key]; if (upb_arrhas(arrval)) { _upb_value_setval(v, arrval, t->t.ctype); return true; } else { return false; } } else { const upb_tabent *e; if (t->t.entries == NULL) return false; for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) { if ((uint32_t)e->key.num == key) { _upb_value_setval(v, e->val, t->t.ctype); return true; } if (e->next == NULL) return false; } } } // Exposed for testing only. bool upb_strtable_resize(upb_strtable *t, size_t size_lg2); /* Iterators ******************************************************************/ // Iterators for int and string tables. We are subject to some kind of unusual // design constraints: // // For high-level languages: // - we must be able to guarantee that we don't crash or corrupt memory even if // the program accesses an invalidated iterator. // // For C++11 range-based for: // - iterators must be copyable // - iterators must be comparable // - it must be possible to construct an "end" value. // // Iteration order is undefined. // // Modifying the table invalidates iterators. upb_{str,int}table_done() is // guaranteed to work even on an invalidated iterator, as long as the table it // is iterating over has not been freed. Calling next() or accessing data from // an invalidated iterator yields unspecified elements from the table, but it is // guaranteed not to crash and to return real table elements (except when done() // is true). /* upb_strtable_iter **********************************************************/ // upb_strtable_iter i; // upb_strtable_begin(&i, t); // for(; !upb_strtable_done(&i); upb_strtable_next(&i)) { // const char *key = upb_strtable_iter_key(&i); // const upb_value val = upb_strtable_iter_value(&i); // // ... // } typedef struct { const upb_strtable *t; size_t index; } upb_strtable_iter; void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t); void upb_strtable_next(upb_strtable_iter *i); bool upb_strtable_done(const upb_strtable_iter *i); const char *upb_strtable_iter_key(upb_strtable_iter *i); upb_value upb_strtable_iter_value(const upb_strtable_iter *i); void upb_strtable_iter_setdone(upb_strtable_iter *i); bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, const upb_strtable_iter *i2); /* upb_inttable_iter **********************************************************/ // upb_inttable_iter i; // upb_inttable_begin(&i, t); // for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { // uintptr_t key = upb_inttable_iter_key(&i); // upb_value val = upb_inttable_iter_value(&i); // // ... // } typedef struct { const upb_inttable *t; size_t index; bool array_part; } upb_inttable_iter; void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t); void upb_inttable_next(upb_inttable_iter *i); bool upb_inttable_done(const upb_inttable_iter *i); uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i); upb_value upb_inttable_iter_value(const upb_inttable_iter *i); void upb_inttable_iter_setdone(upb_inttable_iter *i); bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, const upb_inttable_iter *i2); #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_TABLE_H_ */ // Reference tracking will check ref()/unref() operations to make sure the // ref ownership is correct. Where possible it will also make tools like // Valgrind attribute ref leaks to the code that took the leaked ref, not // the code that originally created the object. // // Enabling this requires the application to define upb_lock()/upb_unlock() // functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE). #ifndef NDEBUG #define UPB_DEBUG_REFS #endif #ifdef __cplusplus namespace upb { class RefCounted; } #endif UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted); struct upb_refcounted_vtbl; UPB_DEFINE_CLASS0(upb::RefCounted, public: // Returns true if the given object is frozen. bool IsFrozen() const; // Increases the ref count, the new ref is owned by "owner" which must not // already own a ref (and should not itself be a refcounted object if the ref // could possibly be circular; see below). // Thread-safe iff "this" is frozen. void Ref(const void *owner) const; // Release a ref that was acquired from upb_refcounted_ref() and collects any // objects it can. void Unref(const void *owner) const; // Moves an existing ref from "from" to "to", without changing the overall // ref count. DonateRef(foo, NULL, owner) is the same as Ref(foo, owner), // but "to" may not be NULL. void DonateRef(const void *from, const void *to) const; // Verifies that a ref to the given object is currently held by the given // owner. Only effective in UPB_DEBUG_REFS builds. void CheckRef(const void *owner) const; private: UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted); , UPB_DEFINE_STRUCT0(upb_refcounted, // A single reference count shared by all objects in the group. uint32_t *group; // A singly-linked list of all objects in the group. upb_refcounted *next; // Table of function pointers for this type. const struct upb_refcounted_vtbl *vtbl; // Maintained only when mutable, this tracks the number of refs (but not // ref2's) to this object. *group should be the sum of all individual_count // in the group. uint32_t individual_count; bool is_frozen; #ifdef UPB_DEBUG_REFS upb_inttable *refs; // Maps owner -> trackedref for incoming refs. upb_inttable *ref2s; // Set of targets for outgoing ref2s. #endif )); UPB_BEGIN_EXTERN_C // { // It is better to use tracked refs when possible, for the extra debugging // capability. But if this is not possible (because you don't have easy access // to a stable pointer value that is associated with the ref), you can pass // UPB_UNTRACKED_REF instead. extern const void *UPB_UNTRACKED_REF; // Native C API. bool upb_refcounted_isfrozen(const upb_refcounted *r); void upb_refcounted_ref(const upb_refcounted *r, const void *owner); void upb_refcounted_unref(const upb_refcounted *r, const void *owner); void upb_refcounted_donateref( const upb_refcounted *r, const void *from, const void *to); void upb_refcounted_checkref(const upb_refcounted *r, const void *owner); // Internal-to-upb Interface /////////////////////////////////////////////////// typedef void upb_refcounted_visit(const upb_refcounted *r, const upb_refcounted *subobj, void *closure); struct upb_refcounted_vtbl { // Must visit all subobjects that are currently ref'd via upb_refcounted_ref2. // Must be longjmp()-safe. void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c); // Must free the object and release all references to other objects. void (*free)(upb_refcounted *r); }; // Initializes the refcounted with a single ref for the given owner. Returns // false if memory could not be allocated. bool upb_refcounted_init(upb_refcounted *r, const struct upb_refcounted_vtbl *vtbl, const void *owner); // Adds a ref from one refcounted object to another ("from" must not already // own a ref). These refs may be circular; cycles will be collected correctly // (if conservatively). These refs do not need to be freed in from's free() // function. void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from); // Removes a ref that was acquired from upb_refcounted_ref2(), and collects any // object it can. This is only necessary when "from" no longer points to "r", // and not from from's "free" function. void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from); #define upb_ref2(r, from) \ upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from) #define upb_unref2(r, from) \ upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from) // Freezes all mutable object reachable by ref2() refs from the given roots. // This will split refcounting groups into precise SCC groups, so that // refcounting of frozen objects can be more aggressive. If memory allocation // fails, or if more than 2**31 mutable objects are reachable from "roots", or // if the maximum depth of the graph exceeds "maxdepth", false is returned and // the objects are unchanged. // // After this operation succeeds, the objects are frozen/const, and may not be // used through non-const pointers. In particular, they may not be passed as // the second parameter of upb_refcounted_{ref,unref}2(). On the upside, all // operations on frozen refcounteds are threadsafe, and objects will be freed // at the precise moment that they become unreachable. // // Caller must own refs on each object in the "roots" list. bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s, int maxdepth); // Shared by all compiled-in refcounted objects. extern uint32_t static_refcount; UPB_END_EXTERN_C // } #ifdef UPB_DEBUG_REFS #define UPB_REFCOUNT_INIT(refs, ref2s) \ {&static_refcount, NULL, NULL, 0, true, refs, ref2s} #else #define UPB_REFCOUNT_INIT(refs, ref2s) {&static_refcount, NULL, NULL, 0, true} #endif #ifdef __cplusplus // C++ Wrappers. namespace upb { inline bool RefCounted::IsFrozen() const { return upb_refcounted_isfrozen(this); } inline void RefCounted::Ref(const void *owner) const { upb_refcounted_ref(this, owner); } inline void RefCounted::Unref(const void *owner) const { upb_refcounted_unref(this, owner); } inline void RefCounted::DonateRef(const void *from, const void *to) const { upb_refcounted_donateref(this, from, to); } inline void RefCounted::CheckRef(const void *owner) const { upb_refcounted_checkref(this, owner); } } // namespace upb #endif #endif // UPB_REFCOUNT_H_ #ifdef __cplusplus #include #include #include namespace upb { class Def; class EnumDef; class FieldDef; class MessageDef; } #endif UPB_DECLARE_TYPE(upb::Def, upb_def); UPB_DECLARE_TYPE(upb::EnumDef, upb_enumdef); UPB_DECLARE_TYPE(upb::FieldDef, upb_fielddef); UPB_DECLARE_TYPE(upb::MessageDef, upb_msgdef); // Maximum field number allowed for FieldDefs. This is an inherent limit of the // protobuf wire format. #define UPB_MAX_FIELDNUMBER ((1 << 29) - 1) // The maximum message depth that the type graph can have. This is a resource // limit for the C stack since we sometimes need to recursively traverse the // graph. Cycles are ok; the traversal will stop when it detects a cycle, but // we must hit the cycle before the maximum depth is reached. // // If having a single static limit is too inflexible, we can add another variant // of Def::Freeze that allows specifying this as a parameter. #define UPB_MAX_MESSAGE_DEPTH 64 /* upb::Def: base class for defs *********************************************/ // All the different kind of defs we support. These correspond 1:1 with // declarations in a .proto file. typedef enum { UPB_DEF_MSG, UPB_DEF_FIELD, UPB_DEF_ENUM, UPB_DEF_SERVICE, // Not yet implemented. UPB_DEF_ANY = -1, // Wildcard for upb_symtab_get*() } upb_deftype_t; // The base class of all defs. Its base is upb::RefCounted (use upb::upcast() // to convert). UPB_DEFINE_CLASS1(upb::Def, upb::RefCounted, public: typedef upb_deftype_t Type; Def* Dup(const void *owner) const; // Functionality from upb::RefCounted. bool IsFrozen() const; void Ref(const void* owner) const; void Unref(const void* owner) const; void DonateRef(const void* from, const void* to) const; void CheckRef(const void* owner) const; Type def_type() const; // "fullname" is the def's fully-qualified name (eg. foo.bar.Message). const char *full_name() const; // The def must be mutable. Caller retains ownership of fullname. Defs are // not required to have a name; if a def has no name when it is frozen, it // will remain an anonymous def. On failure, returns false and details in "s" // if non-NULL. bool set_full_name(const char* fullname, upb::Status* s); bool set_full_name(const std::string &fullname, upb::Status* s); // Freezes the given defs; this validates all constraints and marks the defs // as frozen (read-only). "defs" may not contain any fielddefs, but fields // of any msgdefs will be frozen. // // Symbolic references to sub-types and enum defaults must have already been // resolved. Any mutable defs reachable from any of "defs" must also be in // the list; more formally, "defs" must be a transitive closure of mutable // defs. // // After this operation succeeds, the finalized defs must only be accessed // through a const pointer! static bool Freeze(Def* const* defs, int n, Status* status); static bool Freeze(const std::vector& defs, Status* status); private: UPB_DISALLOW_POD_OPS(Def, upb::Def); , UPB_DEFINE_STRUCT(upb_def, upb_refcounted, const char *fullname; upb_deftype_t type : 8; // Used as a flag during the def's mutable stage. Must be false unless // it is currently being used by a function on the stack. This allows // us to easily determine which defs were passed into the function's // current invocation. bool came_from_user; )); #define UPB_DEF_INIT(name, type, refs, ref2s) \ { UPB_REFCOUNT_INIT(refs, ref2s), name, type, false } UPB_BEGIN_EXTERN_C // { // Native C API. upb_def *upb_def_dup(const upb_def *def, const void *owner); // From upb_refcounted. bool upb_def_isfrozen(const upb_def *def); void upb_def_ref(const upb_def *def, const void *owner); void upb_def_unref(const upb_def *def, const void *owner); void upb_def_donateref(const upb_def *def, const void *from, const void *to); void upb_def_checkref(const upb_def *def, const void *owner); upb_deftype_t upb_def_type(const upb_def *d); const char *upb_def_fullname(const upb_def *d); bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s); bool upb_def_freeze(upb_def *const *defs, int n, upb_status *s); UPB_END_EXTERN_C // } /* upb::Def casts *************************************************************/ #ifdef __cplusplus #define UPB_CPP_CASTS(cname, cpptype) \ namespace upb { \ template <> \ inline cpptype *down_cast(Def * def) { \ return upb_downcast_##cname##_mutable(def); \ } \ template <> \ inline cpptype *dyn_cast(Def * def) { \ return upb_dyncast_##cname##_mutable(def); \ } \ template <> \ inline const cpptype *down_cast( \ const Def *def) { \ return upb_downcast_##cname(def); \ } \ template <> \ inline const cpptype *dyn_cast(const Def *def) { \ return upb_dyncast_##cname(def); \ } \ template <> \ inline const cpptype *down_cast(Def * def) { \ return upb_downcast_##cname(def); \ } \ template <> \ inline const cpptype *dyn_cast(Def * def) { \ return upb_dyncast_##cname(def); \ } \ } // namespace upb #else #define UPB_CPP_CASTS(cname, cpptype) #endif // Dynamic casts, for determining if a def is of a particular type at runtime. // Downcasts, for when some wants to assert that a def is of a particular type. // These are only checked if we are building debug. #define UPB_DEF_CASTS(lower, upper, cpptype) \ UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) { \ if (upb_def_type(def) != UPB_DEF_##upper) return NULL; \ return (upb_##lower *)def; \ } \ UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \ assert(upb_def_type(def) == UPB_DEF_##upper); \ return (const upb_##lower *)def; \ } \ UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) { \ return (upb_##lower *)upb_dyncast_##lower(def); \ } \ UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) { \ return (upb_##lower *)upb_downcast_##lower(def); \ } \ UPB_CPP_CASTS(lower, cpptype) #define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members) \ UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, UPB_QUOTE(cppmethods), \ members) \ UPB_DEF_CASTS(lower, upper, cppname) /* upb::FieldDef **************************************************************/ // The types a field can have. Note that this list is not identical to the // types defined in descriptor.proto, which gives INT32 and SINT32 separate // types (we distinguish the two with the "integer encoding" enum below). typedef enum { UPB_TYPE_FLOAT = 1, UPB_TYPE_DOUBLE = 2, UPB_TYPE_BOOL = 3, UPB_TYPE_STRING = 4, UPB_TYPE_BYTES = 5, UPB_TYPE_MESSAGE = 6, UPB_TYPE_ENUM = 7, // Enum values are int32. UPB_TYPE_INT32 = 8, UPB_TYPE_UINT32 = 9, UPB_TYPE_INT64 = 10, UPB_TYPE_UINT64 = 11, } upb_fieldtype_t; // The repeated-ness of each field; this matches descriptor.proto. typedef enum { UPB_LABEL_OPTIONAL = 1, UPB_LABEL_REQUIRED = 2, UPB_LABEL_REPEATED = 3, } upb_label_t; // How integers should be encoded in serializations that offer multiple // integer encoding methods. typedef enum { UPB_INTFMT_VARIABLE = 1, UPB_INTFMT_FIXED = 2, UPB_INTFMT_ZIGZAG = 3, // Only for signed types (INT32/INT64). } upb_intfmt_t; // Descriptor types, as defined in descriptor.proto. typedef enum { UPB_DESCRIPTOR_TYPE_DOUBLE = 1, UPB_DESCRIPTOR_TYPE_FLOAT = 2, UPB_DESCRIPTOR_TYPE_INT64 = 3, UPB_DESCRIPTOR_TYPE_UINT64 = 4, UPB_DESCRIPTOR_TYPE_INT32 = 5, UPB_DESCRIPTOR_TYPE_FIXED64 = 6, UPB_DESCRIPTOR_TYPE_FIXED32 = 7, UPB_DESCRIPTOR_TYPE_BOOL = 8, UPB_DESCRIPTOR_TYPE_STRING = 9, UPB_DESCRIPTOR_TYPE_GROUP = 10, UPB_DESCRIPTOR_TYPE_MESSAGE = 11, UPB_DESCRIPTOR_TYPE_BYTES = 12, UPB_DESCRIPTOR_TYPE_UINT32 = 13, UPB_DESCRIPTOR_TYPE_ENUM = 14, UPB_DESCRIPTOR_TYPE_SFIXED32 = 15, UPB_DESCRIPTOR_TYPE_SFIXED64 = 16, UPB_DESCRIPTOR_TYPE_SINT32 = 17, UPB_DESCRIPTOR_TYPE_SINT64 = 18, } upb_descriptortype_t; // A upb_fielddef describes a single field in a message. It is most often // found as a part of a upb_msgdef, but can also stand alone to represent // an extension. // // Its base class is upb::Def (use upb::upcast() to convert). UPB_DEFINE_DEF(upb::FieldDef, fielddef, FIELD, public: typedef upb_fieldtype_t Type; typedef upb_label_t Label; typedef upb_intfmt_t IntegerFormat; typedef upb_descriptortype_t DescriptorType; // These return true if the given value is a valid member of the enumeration. static bool CheckType(int32_t val); static bool CheckLabel(int32_t val); static bool CheckDescriptorType(int32_t val); static bool CheckIntegerFormat(int32_t val); // These convert to the given enumeration; they require that the value is // valid. static Type ConvertType(int32_t val); static Label ConvertLabel(int32_t val); static DescriptorType ConvertDescriptorType(int32_t val); static IntegerFormat ConvertIntegerFormat(int32_t val); // Returns NULL if memory allocation failed. static reffed_ptr New(); // Duplicates the given field, returning NULL if memory allocation failed. // When a fielddef is duplicated, the subdef (if any) is made symbolic if it // wasn't already. If the subdef is set but has no name (which is possible // since msgdefs are not required to have a name) the new fielddef's subdef // will be unset. FieldDef* Dup(const void* owner) const; // Functionality from upb::RefCounted. bool IsFrozen() const; void Ref(const void* owner) const; void Unref(const void* owner) const; void DonateRef(const void* from, const void* to) const; void CheckRef(const void* owner) const; // Functionality from upb::Def. const char* full_name() const; bool type_is_set() const; // Whether set_[descriptor_]type() has been called. Type type() const; // Requires that type_is_set() == true. Label label() const; // Defaults to UPB_LABEL_OPTIONAL. const char* name() const; // NULL if uninitialized. uint32_t number() const; // Returns 0 if uninitialized. bool is_extension() const; // For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false, // indicates whether this field should have lazy parsing handlers that yield // the unparsed string for the submessage. // // TODO(haberman): I think we want to move this into a FieldOptions container // when we add support for custom options (the FieldOptions struct will // contain both regular FieldOptions like "lazy" *and* custom options). bool lazy() const; // For non-string, non-submessage fields, this indicates whether binary // protobufs are encoded in packed or non-packed format. // // TODO(haberman): see note above about putting options like this into a // FieldOptions container. bool packed() const; // An integer that can be used as an index into an array of fields for // whatever message this field belongs to. Guaranteed to be less than // f->containing_type()->field_count(). May only be accessed once the def has // been finalized. int index() const; // The MessageDef to which this field belongs. // // If this field has been added to a MessageDef, that message can be retrieved // directly (this is always the case for frozen FieldDefs). // // If the field has not yet been added to a MessageDef, you can set the name // of the containing type symbolically instead. This is mostly useful for // extensions, where the extension is declared separately from the message. const MessageDef* containing_type() const; const char* containing_type_name(); // The field's type according to the enum in descriptor.proto. This is not // the same as UPB_TYPE_*, because it distinguishes between (for example) // INT32 and SINT32, whereas our "type" enum does not. This return of // descriptor_type() is a function of type(), integer_format(), and // is_tag_delimited(). Likewise set_descriptor_type() sets all three // appropriately. DescriptorType descriptor_type() const; // Convenient field type tests. bool IsSubMessage() const; bool IsString() const; bool IsSequence() const; bool IsPrimitive() const; // How integers are encoded. Only meaningful for integer types. // Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. IntegerFormat integer_format() const; // Whether a submessage field is tag-delimited or not (if false, then // length-delimited). May only be set when type() == UPB_TYPE_MESSAGE. bool is_tag_delimited() const; // Returns the non-string default value for this fielddef, which may either // be something the client set explicitly or the "default default" (0 for // numbers, empty for strings). The field's type indicates the type of the // returned value, except for enum fields that are still mutable. // // Requires that the given function matches the field's current type. int64_t default_int64() const; int32_t default_int32() const; uint64_t default_uint64() const; uint32_t default_uint32() const; bool default_bool() const; float default_float() const; double default_double() const; // The resulting string is always NULL-terminated. If non-NULL, the length // will be stored in *len. const char *default_string(size_t* len) const; // For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either // string or int32, and both of these methods will always return true. // // For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated. // Enum defaults are unusual. They can be specified either as string or int32, // but to be valid the enum must have that value as a member. And if no // default is specified, the "default default" comes from the EnumDef. // // We allow reading the default as either an int32 or a string, but only if // we have a meaningful value to report. We have a meaningful value if it was // set explicitly, or if we could get the "default default" from the EnumDef. // Also if you explicitly set the name and we find the number in the EnumDef bool EnumHasStringDefault() const; bool EnumHasInt32Default() const; // Submessage and enum fields must reference a "subdef", which is the // upb::MessageDef or upb::EnumDef that defines their type. Note that when // the FieldDef is mutable it may not have a subdef *yet*, but this function // still returns true to indicate that the field's type requires a subdef. bool HasSubDef() const; // Returns the enum or submessage def for this field, if any. The field's // type must match (ie. you may only call enum_subdef() for fields where // type() == UPB_TYPE_ENUM). Returns NULL if the subdef has not been set or // is currently set symbolically. const EnumDef* enum_subdef() const; const MessageDef* message_subdef() const; // Returns the generic subdef for this field. Requires that HasSubDef() (ie. // only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). const Def* subdef() const; // Returns the symbolic name of the subdef. If the subdef is currently set // unresolved (ie. set symbolically) returns the symbolic name. If it has // been resolved to a specific subdef, returns the name from that subdef. const char* subdef_name() const; ////////////////////////////////////////////////////////////////////////////// // Setters (non-const methods), only valid for mutable FieldDefs! ////////////////////////////////////////////////////////////////////////////// bool set_full_name(const char* fullname, upb::Status* s); bool set_full_name(const std::string& fullname, upb::Status* s); // This may only be called if containing_type() == NULL (ie. the field has not // been added to a message yet). bool set_containing_type_name(const char *name, Status* status); bool set_containing_type_name(const std::string& name, Status* status); // Defaults to false. When we freeze, we ensure that this can only be true // for length-delimited message fields. Prior to freezing this can be true or // false with no restrictions. void set_lazy(bool lazy); // Defaults to true. Sets whether this field is encoded in packed format. void set_packed(bool packed); // "type" or "descriptor_type" MUST be set explicitly before the fielddef is // finalized. These setters require that the enum value is valid; if the // value did not come directly from an enum constant, the caller should // validate it first with the functions above (CheckFieldType(), etc). void set_type(Type type); void set_label(Label label); void set_descriptor_type(DescriptorType type); void set_is_extension(bool is_extension); // "number" and "name" must be set before the FieldDef is added to a // MessageDef, and may not be set after that. // // "name" is the same as full_name()/set_full_name(), but since fielddefs // most often use simple, non-qualified names, we provide this accessor // also. Generally only extensions will want to think of this name as // fully-qualified. bool set_number(uint32_t number, upb::Status* s); bool set_name(const char* name, upb::Status* s); bool set_name(const std::string& name, upb::Status* s); void set_integer_format(IntegerFormat format); bool set_tag_delimited(bool tag_delimited, upb::Status* s); // Sets default value for the field. The call must exactly match the type // of the field. Enum fields may use either setint32 or setstring to set // the default numerically or symbolically, respectively, but symbolic // defaults must be resolved before finalizing (see ResolveEnumDefault()). // // Changing the type of a field will reset its default. void set_default_int64(int64_t val); void set_default_int32(int32_t val); void set_default_uint64(uint64_t val); void set_default_uint32(uint32_t val); void set_default_bool(bool val); void set_default_float(float val); void set_default_double(double val); bool set_default_string(const void *str, size_t len, Status *s); bool set_default_string(const std::string &str, Status *s); void set_default_cstr(const char *str, Status *s); // Before a fielddef is frozen, its subdef may be set either directly (with a // upb::Def*) or symbolically. Symbolic refs must be resolved before the // containing msgdef can be frozen (see upb_resolve() above). upb always // guarantees that any def reachable from a live def will also be kept alive. // // Both methods require that upb_hassubdef(f) (so the type must be set prior // to calling these methods). Returns false if this is not the case, or if // the given subdef is not of the correct type. The subdef is reset if the // field's type is changed. The subdef can be set to NULL to clear it. bool set_subdef(const Def* subdef, Status* s); bool set_enum_subdef(const EnumDef* subdef, Status* s); bool set_message_subdef(const MessageDef* subdef, Status* s); bool set_subdef_name(const char* name, Status* s); bool set_subdef_name(const std::string &name, Status* s); private: UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef); , UPB_DEFINE_STRUCT(upb_fielddef, upb_def, union { int64_t sint; uint64_t uint; double dbl; float flt; void *bytes; } defaultval; union { const upb_msgdef *def; // If !msg_is_symbolic. char *name; // If msg_is_symbolic. } msg; union { const upb_def *def; // If !subdef_is_symbolic. char *name; // If subdef_is_symbolic. } sub; // The msgdef or enumdef for this field, if upb_hassubdef(f). bool subdef_is_symbolic; bool msg_is_symbolic; bool default_is_string; bool type_is_set_; // False until type is explicitly set. bool is_extension_; bool lazy_; bool packed_; upb_intfmt_t intfmt; bool tagdelim; upb_fieldtype_t type_; upb_label_t label_; uint32_t number_; uint32_t selector_base; // Used to index into a upb::Handlers table. uint32_t index_; )); #define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy, \ packed, name, num, msgdef, subdef, selector_base, \ index, defaultval, refs, ref2s) \ { \ UPB_DEF_INIT(name, UPB_DEF_FIELD, refs, ref2s), defaultval, {msgdef}, \ {subdef}, false, false, \ type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \ lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \ } UPB_BEGIN_EXTERN_C // { // Native C API. upb_fielddef *upb_fielddef_new(const void *owner); upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner); // From upb_refcounted. bool upb_fielddef_isfrozen(const upb_fielddef *f); void upb_fielddef_ref(const upb_fielddef *f, const void *owner); void upb_fielddef_unref(const upb_fielddef *f, const void *owner); void upb_fielddef_donateref(const upb_fielddef *f, const void *from, const void *to); void upb_fielddef_checkref(const upb_fielddef *f, const void *owner); // From upb_def. const char *upb_fielddef_fullname(const upb_fielddef *f); bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname, upb_status *s); bool upb_fielddef_typeisset(const upb_fielddef *f); upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f); upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f); upb_label_t upb_fielddef_label(const upb_fielddef *f); uint32_t upb_fielddef_number(const upb_fielddef *f); const char *upb_fielddef_name(const upb_fielddef *f); bool upb_fielddef_isextension(const upb_fielddef *f); bool upb_fielddef_lazy(const upb_fielddef *f); bool upb_fielddef_packed(const upb_fielddef *f); const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f); upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f); const char *upb_fielddef_containingtypename(upb_fielddef *f); upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f); uint32_t upb_fielddef_index(const upb_fielddef *f); bool upb_fielddef_istagdelim(const upb_fielddef *f); bool upb_fielddef_issubmsg(const upb_fielddef *f); bool upb_fielddef_isstring(const upb_fielddef *f); bool upb_fielddef_isseq(const upb_fielddef *f); bool upb_fielddef_isprimitive(const upb_fielddef *f); int64_t upb_fielddef_defaultint64(const upb_fielddef *f); int32_t upb_fielddef_defaultint32(const upb_fielddef *f); uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f); uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f); bool upb_fielddef_defaultbool(const upb_fielddef *f); float upb_fielddef_defaultfloat(const upb_fielddef *f); double upb_fielddef_defaultdouble(const upb_fielddef *f); const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len); bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f); bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f); bool upb_fielddef_hassubdef(const upb_fielddef *f); const upb_def *upb_fielddef_subdef(const upb_fielddef *f); const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f); const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f); const char *upb_fielddef_subdefname(const upb_fielddef *f); void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type); void upb_fielddef_setdescriptortype(upb_fielddef *f, int type); void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label); bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s); bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s); bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name, upb_status *s); void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension); void upb_fielddef_setlazy(upb_fielddef *f, bool lazy); void upb_fielddef_setpacked(upb_fielddef *f, bool packed); void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt); void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim); void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val); void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val); void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val); void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val); void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val); void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val); void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val); bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len, upb_status *s); void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str, upb_status *s); bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef, upb_status *s); bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef, upb_status *s); bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef, upb_status *s); bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name, upb_status *s); bool upb_fielddef_checklabel(int32_t label); bool upb_fielddef_checktype(int32_t type); bool upb_fielddef_checkdescriptortype(int32_t type); bool upb_fielddef_checkintfmt(int32_t fmt); UPB_END_EXTERN_C // } /* upb::MessageDef ************************************************************/ typedef upb_inttable_iter upb_msg_iter; // Structure that describes a single .proto message type. // // Its base class is upb::Def (use upb::upcast() to convert). UPB_DEFINE_DEF(upb::MessageDef, msgdef, MSG, UPB_QUOTE( public: // Returns NULL if memory allocation failed. static reffed_ptr New(); // Functionality from upb::RefCounted. bool IsFrozen() const; void Ref(const void* owner) const; void Unref(const void* owner) const; void DonateRef(const void* from, const void* to) const; void CheckRef(const void* owner) const; // Functionality from upb::Def. const char* full_name() const; bool set_full_name(const char* fullname, Status* s); bool set_full_name(const std::string& fullname, Status* s); // Call to freeze this MessageDef. // WARNING: this will fail if this message has any unfrozen submessages! // Messages with cycles must be frozen as a batch using upb::Def::Freeze(). bool Freeze(Status* s); // The number of fields that belong to the MessageDef. int field_count() const; // Adds a field (upb_fielddef object) to a msgdef. Requires that the msgdef // and the fielddefs are mutable. The fielddef's name and number must be // set, and the message may not already contain any field with this name or // number, and this fielddef may not be part of another message. In error // cases false is returned and the msgdef is unchanged. bool AddField(FieldDef* f, Status* s); bool AddField(const reffed_ptr& f, Status* s); // These return NULL if the field is not found. FieldDef* FindFieldByNumber(uint32_t number); FieldDef* FindFieldByName(const char *name, size_t len); const FieldDef* FindFieldByNumber(uint32_t number) const; const FieldDef* FindFieldByName(const char* name, size_t len) const; FieldDef* FindFieldByName(const char *name) { return FindFieldByName(name, strlen(name)); } const FieldDef* FindFieldByName(const char *name) const { return FindFieldByName(name, strlen(name)); } template FieldDef* FindFieldByName(const T& str) { return FindFieldByName(str.c_str(), str.size()); } template const FieldDef* FindFieldByName(const T& str) const { return FindFieldByName(str.c_str(), str.size()); } // Returns a new msgdef that is a copy of the given msgdef (and a copy of all // the fields) but with any references to submessages broken and replaced // with just the name of the submessage. Returns NULL if memory allocation // failed. // // TODO(haberman): which is more useful, keeping fields resolved or // unresolving them? If there's no obvious answer, Should this functionality // just be moved into symtab.c? MessageDef* Dup(const void* owner) const; // Iteration over fields. The order is undefined. class iterator : public std::iterator { public: explicit iterator(MessageDef* md); static iterator end(MessageDef* md); void operator++(); FieldDef* operator*() const; bool operator!=(const iterator& other) const; bool operator==(const iterator& other) const; private: upb_msg_iter iter_; }; class const_iterator : public std::iterator { public: explicit const_iterator(const MessageDef* md); static const_iterator end(const MessageDef* md); void operator++(); const FieldDef* operator*() const; bool operator!=(const const_iterator& other) const; bool operator==(const const_iterator& other) const; private: upb_msg_iter iter_; }; iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const; private: UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef); ), UPB_DEFINE_STRUCT(upb_msgdef, upb_def, size_t selector_count; uint32_t submsg_field_count; // Tables for looking up fields by number and name. upb_inttable itof; // int to field upb_strtable ntof; // name to field // TODO(haberman): proper extension ranges (there can be multiple). )); #define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \ refs, ref2s) \ { \ UPB_DEF_INIT(name, UPB_DEF_MSG, refs, ref2s), selector_count, \ submsg_field_count, itof, ntof \ } UPB_BEGIN_EXTERN_C // { // Returns NULL if memory allocation failed. upb_msgdef *upb_msgdef_new(const void *owner); // From upb_refcounted. bool upb_msgdef_isfrozen(const upb_msgdef *m); void upb_msgdef_ref(const upb_msgdef *m, const void *owner); void upb_msgdef_unref(const upb_msgdef *m, const void *owner); void upb_msgdef_donateref(const upb_msgdef *m, const void *from, const void *to); void upb_msgdef_checkref(const upb_msgdef *m, const void *owner); bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status); // From upb_def. const char *upb_msgdef_fullname(const upb_msgdef *m); bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s); upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner); bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor, upb_status *s); // Field lookup in a couple of different variations: // - itof = int to field // - ntof = name to field // - ntofz = name to field, null-terminated string. const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i); const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, size_t len); int upb_msgdef_numfields(const upb_msgdef *m); UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m, const char *name) { return upb_msgdef_ntof(m, name, strlen(name)); } UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) { return (upb_fielddef*)upb_msgdef_itof(m, i); } UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m, const char *name, size_t len) { return (upb_fielddef *)upb_msgdef_ntof(m, name, len); } // upb_msg_iter i; // for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { // upb_fielddef *f = upb_msg_iter_field(&i); // // ... // } // // For C we don't have separate iterators for const and non-const. // It is the caller's responsibility to cast the upb_fielddef* to // const if the upb_msgdef* is const. void upb_msg_begin(upb_msg_iter *iter, const upb_msgdef *m); void upb_msg_next(upb_msg_iter *iter); bool upb_msg_done(const upb_msg_iter *iter); upb_fielddef *upb_msg_iter_field(const upb_msg_iter *iter); void upb_msg_iter_setdone(upb_msg_iter *iter); UPB_END_EXTERN_C // } /* upb::EnumDef ***************************************************************/ typedef upb_strtable_iter upb_enum_iter; // Class that represents an enum. Its base class is upb::Def (convert with // upb::upcast()). UPB_DEFINE_DEF(upb::EnumDef, enumdef, ENUM, public: // Returns NULL if memory allocation failed. static reffed_ptr New(); // Functionality from upb::RefCounted. bool IsFrozen() const; void Ref(const void* owner) const; void Unref(const void* owner) const; void DonateRef(const void* from, const void* to) const; void CheckRef(const void* owner) const; // Functionality from upb::Def. const char* full_name() const; bool set_full_name(const char* fullname, Status* s); bool set_full_name(const std::string& fullname, Status* s); // Call to freeze this EnumDef. bool Freeze(Status* s); // The value that is used as the default when no field default is specified. // If not set explicitly, the first value that was added will be used. // The default value must be a member of the enum. // Requires that value_count() > 0. int32_t default_value() const; // Sets the default value. If this value is not valid, returns false and an // error message in status. bool set_default_value(int32_t val, Status* status); // Returns the number of values currently defined in the enum. Note that // multiple names can refer to the same number, so this may be greater than // the total number of unique numbers. int value_count() const; // Adds a single name/number pair to the enum. Fails if this name has // already been used by another value. bool AddValue(const char* name, int32_t num, Status* status); bool AddValue(const std::string& name, int32_t num, Status* status); // Lookups from name to integer, returning true if found. bool FindValueByName(const char* name, int32_t* num) const; // Finds the name corresponding to the given number, or NULL if none was // found. If more than one name corresponds to this number, returns the // first one that was added. const char* FindValueByNumber(int32_t num) const; // Returns a new EnumDef with all the same values. The new EnumDef will be // owned by the given owner. EnumDef* Dup(const void* owner) const; // Iteration over name/value pairs. The order is undefined. // Adding an enum val invalidates any iterators. // // TODO: make compatible with range-for, with elements as pairs? class Iterator { public: explicit Iterator(const EnumDef*); int32_t number(); const char *name(); bool Done(); void Next(); private: upb_enum_iter iter_; }; private: UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef); , UPB_DEFINE_STRUCT(upb_enumdef, upb_def, upb_strtable ntoi; upb_inttable iton; int32_t defaultval; )); #define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \ { UPB_DEF_INIT(name, UPB_DEF_ENUM, refs, ref2s), ntoi, iton, defaultval } UPB_BEGIN_EXTERN_C // { // Native C API. upb_enumdef *upb_enumdef_new(const void *owner); upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner); // From upb_refcounted. void upb_enumdef_unref(const upb_enumdef *e, const void *owner); bool upb_enumdef_isfrozen(const upb_enumdef *e); void upb_enumdef_ref(const upb_enumdef *e, const void *owner); void upb_enumdef_donateref(const upb_enumdef *m, const void *from, const void *to); void upb_enumdef_checkref(const upb_enumdef *e, const void *owner); bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status); // From upb_def. const char *upb_enumdef_fullname(const upb_enumdef *e); bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname, upb_status *s); int32_t upb_enumdef_default(const upb_enumdef *e); bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s); int upb_enumdef_numvals(const upb_enumdef *e); bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num, upb_status *status); // Enum lookups: // - ntoi: look up a name with specified length. // - ntoiz: look up a name provided as a null-terminated string. // - iton: look up an integer, returning the name as a null-terminated string. bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len, int32_t *num); UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e, const char *name, int32_t *num) { return upb_enumdef_ntoi(e, name, strlen(name), num); } const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num); // upb_enum_iter i; // for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { // // ... // } void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e); void upb_enum_next(upb_enum_iter *iter); bool upb_enum_done(upb_enum_iter *iter); const char *upb_enum_iter_name(upb_enum_iter *iter); int32_t upb_enum_iter_number(upb_enum_iter *iter); UPB_END_EXTERN_C // } #ifdef __cplusplus UPB_INLINE const char* upb_safecstr(const std::string& str) { assert(str.size() == std::strlen(str.c_str())); return str.c_str(); } // Inline C++ wrappers. namespace upb { inline Def* Def::Dup(const void* owner) const { return upb_def_dup(this, owner); } inline bool Def::IsFrozen() const { return upb_def_isfrozen(this); } inline void Def::Ref(const void* owner) const { upb_def_ref(this, owner); } inline void Def::Unref(const void* owner) const { upb_def_unref(this, owner); } inline void Def::DonateRef(const void* from, const void* to) const { upb_def_donateref(this, from, to); } inline void Def::CheckRef(const void* owner) const { upb_def_checkref(this, owner); } inline Def::Type Def::def_type() const { return upb_def_type(this); } inline const char* Def::full_name() const { return upb_def_fullname(this); } inline bool Def::set_full_name(const char* fullname, Status* s) { return upb_def_setfullname(this, fullname, s); } inline bool Def::set_full_name(const std::string& fullname, Status* s) { return upb_def_setfullname(this, upb_safecstr(fullname), s); } inline bool Def::Freeze(Def* const* defs, int n, Status* status) { return upb_def_freeze(defs, n, status); } inline bool Def::Freeze(const std::vector& defs, Status* status) { return upb_def_freeze((Def* const*)&defs[0], defs.size(), status); } inline bool FieldDef::CheckType(int32_t val) { return upb_fielddef_checktype(val); } inline bool FieldDef::CheckLabel(int32_t val) { return upb_fielddef_checklabel(val); } inline bool FieldDef::CheckDescriptorType(int32_t val) { return upb_fielddef_checkdescriptortype(val); } inline bool FieldDef::CheckIntegerFormat(int32_t val) { return upb_fielddef_checkintfmt(val); } inline FieldDef::Type FieldDef::ConvertType(int32_t val) { assert(CheckType(val)); return static_cast(val); } inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) { assert(CheckLabel(val)); return static_cast(val); } inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) { assert(CheckDescriptorType(val)); return static_cast(val); } inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) { assert(CheckIntegerFormat(val)); return static_cast(val); } inline reffed_ptr FieldDef::New() { upb_fielddef *f = upb_fielddef_new(&f); return reffed_ptr(f, &f); } inline FieldDef* FieldDef::Dup(const void* owner) const { return upb_fielddef_dup(this, owner); } inline bool FieldDef::IsFrozen() const { return upb_fielddef_isfrozen(this); } inline void FieldDef::Ref(const void* owner) const { upb_fielddef_ref(this, owner); } inline void FieldDef::Unref(const void* owner) const { upb_fielddef_unref(this, owner); } inline void FieldDef::DonateRef(const void* from, const void* to) const { upb_fielddef_donateref(this, from, to); } inline void FieldDef::CheckRef(const void* owner) const { upb_fielddef_checkref(this, owner); } inline const char* FieldDef::full_name() const { return upb_fielddef_fullname(this); } inline bool FieldDef::set_full_name(const char* fullname, Status* s) { return upb_fielddef_setfullname(this, fullname, s); } inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) { return upb_fielddef_setfullname(this, upb_safecstr(fullname), s); } inline bool FieldDef::type_is_set() const { return upb_fielddef_typeisset(this); } inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); } inline FieldDef::DescriptorType FieldDef::descriptor_type() const { return upb_fielddef_descriptortype(this); } inline FieldDef::Label FieldDef::label() const { return upb_fielddef_label(this); } inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); } inline const char* FieldDef::name() const { return upb_fielddef_name(this); } inline bool FieldDef::is_extension() const { return upb_fielddef_isextension(this); } inline bool FieldDef::lazy() const { return upb_fielddef_lazy(this); } inline void FieldDef::set_lazy(bool lazy) { upb_fielddef_setlazy(this, lazy); } inline bool FieldDef::packed() const { return upb_fielddef_packed(this); } inline void FieldDef::set_packed(bool packed) { upb_fielddef_setpacked(this, packed); } inline const MessageDef* FieldDef::containing_type() const { return upb_fielddef_containingtype(this); } inline const char* FieldDef::containing_type_name() { return upb_fielddef_containingtypename(this); } inline bool FieldDef::set_number(uint32_t number, Status* s) { return upb_fielddef_setnumber(this, number, s); } inline bool FieldDef::set_name(const char *name, Status* s) { return upb_fielddef_setname(this, name, s); } inline bool FieldDef::set_name(const std::string& name, Status* s) { return upb_fielddef_setname(this, upb_safecstr(name), s); } inline bool FieldDef::set_containing_type_name(const char *name, Status* s) { return upb_fielddef_setcontainingtypename(this, name, s); } inline bool FieldDef::set_containing_type_name(const std::string &name, Status *s) { return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s); } inline void FieldDef::set_type(upb_fieldtype_t type) { upb_fielddef_settype(this, type); } inline void FieldDef::set_is_extension(bool is_extension) { upb_fielddef_setisextension(this, is_extension); } inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) { upb_fielddef_setdescriptortype(this, type); } inline void FieldDef::set_label(upb_label_t label) { upb_fielddef_setlabel(this, label); } inline bool FieldDef::IsSubMessage() const { return upb_fielddef_issubmsg(this); } inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); } inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); } inline int64_t FieldDef::default_int64() const { return upb_fielddef_defaultint64(this); } inline int32_t FieldDef::default_int32() const { return upb_fielddef_defaultint32(this); } inline uint64_t FieldDef::default_uint64() const { return upb_fielddef_defaultuint64(this); } inline uint32_t FieldDef::default_uint32() const { return upb_fielddef_defaultuint32(this); } inline bool FieldDef::default_bool() const { return upb_fielddef_defaultbool(this); } inline float FieldDef::default_float() const { return upb_fielddef_defaultfloat(this); } inline double FieldDef::default_double() const { return upb_fielddef_defaultdouble(this); } inline const char* FieldDef::default_string(size_t* len) const { return upb_fielddef_defaultstr(this, len); } inline void FieldDef::set_default_int64(int64_t value) { upb_fielddef_setdefaultint64(this, value); } inline void FieldDef::set_default_int32(int32_t value) { upb_fielddef_setdefaultint32(this, value); } inline void FieldDef::set_default_uint64(uint64_t value) { upb_fielddef_setdefaultuint64(this, value); } inline void FieldDef::set_default_uint32(uint32_t value) { upb_fielddef_setdefaultuint32(this, value); } inline void FieldDef::set_default_bool(bool value) { upb_fielddef_setdefaultbool(this, value); } inline void FieldDef::set_default_float(float value) { upb_fielddef_setdefaultfloat(this, value); } inline void FieldDef::set_default_double(double value) { upb_fielddef_setdefaultdouble(this, value); } inline bool FieldDef::set_default_string(const void *str, size_t len, Status *s) { return upb_fielddef_setdefaultstr(this, str, len, s); } inline bool FieldDef::set_default_string(const std::string& str, Status* s) { return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s); } inline void FieldDef::set_default_cstr(const char* str, Status* s) { return upb_fielddef_setdefaultcstr(this, str, s); } inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); } inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); } inline const MessageDef *FieldDef::message_subdef() const { return upb_fielddef_msgsubdef(this); } inline const EnumDef *FieldDef::enum_subdef() const { return upb_fielddef_enumsubdef(this); } inline const char* FieldDef::subdef_name() const { return upb_fielddef_subdefname(this); } inline bool FieldDef::set_subdef(const Def* subdef, Status* s) { return upb_fielddef_setsubdef(this, subdef, s); } inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) { return upb_fielddef_setenumsubdef(this, subdef, s); } inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) { return upb_fielddef_setmsgsubdef(this, subdef, s); } inline bool FieldDef::set_subdef_name(const char* name, Status* s) { return upb_fielddef_setsubdefname(this, name, s); } inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) { return upb_fielddef_setsubdefname(this, upb_safecstr(name), s); } inline reffed_ptr MessageDef::New() { upb_msgdef *m = upb_msgdef_new(&m); return reffed_ptr(m, &m); } inline bool MessageDef::IsFrozen() const { return upb_msgdef_isfrozen(this); } inline void MessageDef::Ref(const void* owner) const { return upb_msgdef_ref(this, owner); } inline void MessageDef::Unref(const void* owner) const { return upb_msgdef_unref(this, owner); } inline void MessageDef::DonateRef(const void* from, const void* to) const { return upb_msgdef_donateref(this, from, to); } inline void MessageDef::CheckRef(const void* owner) const { return upb_msgdef_checkref(this, owner); } inline const char *MessageDef::full_name() const { return upb_msgdef_fullname(this); } inline bool MessageDef::set_full_name(const char* fullname, Status* s) { return upb_msgdef_setfullname(this, fullname, s); } inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) { return upb_msgdef_setfullname(this, upb_safecstr(fullname), s); } inline bool MessageDef::Freeze(Status* status) { return upb_msgdef_freeze(this, status); } inline int MessageDef::field_count() const { return upb_msgdef_numfields(this); } inline bool MessageDef::AddField(upb_fielddef* f, Status* s) { return upb_msgdef_addfield(this, f, NULL, s); } inline bool MessageDef::AddField(const reffed_ptr& f, Status* s) { return upb_msgdef_addfield(this, f.get(), NULL, s); } inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) { return upb_msgdef_itof_mutable(this, number); } inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) { return upb_msgdef_ntof_mutable(this, name, len); } inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const { return upb_msgdef_itof(this, number); } inline const FieldDef *MessageDef::FindFieldByName(const char *name, size_t len) const { return upb_msgdef_ntof(this, name, len); } inline MessageDef* MessageDef::Dup(const void *owner) const { return upb_msgdef_dup(this, owner); } inline MessageDef::iterator MessageDef::begin() { return iterator(this); } inline MessageDef::iterator MessageDef::end() { return iterator::end(this); } inline MessageDef::const_iterator MessageDef::begin() const { return const_iterator(this); } inline MessageDef::const_iterator MessageDef::end() const { return const_iterator::end(this); } inline MessageDef::iterator::iterator(MessageDef* md) { upb_msg_begin(&iter_, md); } inline MessageDef::iterator MessageDef::iterator::end(MessageDef* md) { MessageDef::iterator iter(md); upb_msg_iter_setdone(&iter.iter_); return iter; } inline FieldDef* MessageDef::iterator::operator*() const { return upb_msg_iter_field(&iter_); } inline void MessageDef::iterator::operator++() { return upb_msg_next(&iter_); } inline bool MessageDef::iterator::operator==(const iterator &other) const { return upb_inttable_iter_isequal(&iter_, &other.iter_); } inline bool MessageDef::iterator::operator!=(const iterator &other) const { return !(*this == other); } inline MessageDef::const_iterator::const_iterator(const MessageDef* md) { upb_msg_begin(&iter_, md); } inline MessageDef::const_iterator MessageDef::const_iterator::end( const MessageDef *md) { MessageDef::const_iterator iter(md); upb_msg_iter_setdone(&iter.iter_); return iter; } inline const FieldDef* MessageDef::const_iterator::operator*() const { return upb_msg_iter_field(&iter_); } inline void MessageDef::const_iterator::operator++() { return upb_msg_next(&iter_); } inline bool MessageDef::const_iterator::operator==( const const_iterator &other) const { return upb_inttable_iter_isequal(&iter_, &other.iter_); } inline bool MessageDef::const_iterator::operator!=( const const_iterator &other) const { return !(*this == other); } inline reffed_ptr EnumDef::New() { upb_enumdef *e = upb_enumdef_new(&e); return reffed_ptr(e, &e); } inline bool EnumDef::IsFrozen() const { return upb_enumdef_isfrozen(this); } inline void EnumDef::Ref(const void* owner) const { return upb_enumdef_ref(this, owner); } inline void EnumDef::Unref(const void* owner) const { return upb_enumdef_unref(this, owner); } inline void EnumDef::DonateRef(const void* from, const void* to) const { return upb_enumdef_donateref(this, from, to); } inline void EnumDef::CheckRef(const void* owner) const { return upb_enumdef_checkref(this, owner); } inline const char* EnumDef::full_name() const { return upb_enumdef_fullname(this); } inline bool EnumDef::set_full_name(const char* fullname, Status* s) { return upb_enumdef_setfullname(this, fullname, s); } inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) { return upb_enumdef_setfullname(this, upb_safecstr(fullname), s); } inline bool EnumDef::Freeze(Status* status) { return upb_enumdef_freeze(this, status); } inline int32_t EnumDef::default_value() const { return upb_enumdef_default(this); } inline bool EnumDef::set_default_value(int32_t val, Status* status) { return upb_enumdef_setdefault(this, val, status); } inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); } inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) { return upb_enumdef_addval(this, name, num, status); } inline bool EnumDef::AddValue(const std::string& name, int32_t num, Status* status) { return upb_enumdef_addval(this, upb_safecstr(name), num, status); } inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const { return upb_enumdef_ntoiz(this, name, num); } inline const char* EnumDef::FindValueByNumber(int32_t num) const { return upb_enumdef_iton(this, num); } inline EnumDef* EnumDef::Dup(const void* owner) const { return upb_enumdef_dup(this, owner); } inline EnumDef::Iterator::Iterator(const EnumDef* e) { upb_enum_begin(&iter_, e); } inline int32_t EnumDef::Iterator::number() { return upb_enum_iter_number(&iter_); } inline const char* EnumDef::Iterator::name() { return upb_enum_iter_name(&iter_); } inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); } inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); } } // namespace upb #endif #undef UPB_DEFINE_DEF #undef UPB_DEF_CASTS #undef UPB_CPP_CASTS #endif /* UPB_DEF_H_ */ // This file contains accessors for a set of compiled-in defs. // Note that unlike Google's protobuf, it does *not* define // generated classes or any other kind of data structure for // actually storing protobufs. It only contains *defs* which // let you reflect over a protobuf *schema*. // // This file was generated by upbc (the upb compiler). // Do not edit -- your changes will be discarded when the file is // regenerated. #ifndef GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_ #define GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A symtab (symbol table) stores a name->def map of upb_defs. Clients could * always create such tables themselves, but upb_symtab has logic for resolving * symbolic references, and in particular, for keeping a whole set of consistent * defs when replacing some subset of those defs. This logic is nontrivial. * * This is a mixed C/C++ interface that offers a full API to both languages. * See the top-level README for more information. */ #ifndef UPB_SYMTAB_H_ #define UPB_SYMTAB_H_ #ifdef __cplusplus #include namespace upb { class SymbolTable; } #endif UPB_DECLARE_TYPE(upb::SymbolTable, upb_symtab); typedef struct { UPB_PRIVATE_FOR_CPP upb_strtable_iter iter; upb_deftype_t type; } upb_symtab_iter; // Non-const methods in upb::SymbolTable are NOT thread-safe. UPB_DEFINE_CLASS1(upb::SymbolTable, upb::RefCounted, public: // Returns a new symbol table with a single ref owned by "owner." // Returns NULL if memory allocation failed. static reffed_ptr New(); // Functionality from upb::RefCounted. bool IsFrozen() const; void Ref(const void* owner) const; void Unref(const void* owner) const; void DonateRef(const void *from, const void *to) const; void CheckRef(const void *owner) const; // For all lookup functions, the returned pointer is not owned by the // caller; it may be invalidated by any non-const call or unref of the // SymbolTable! To protect against this, take a ref if desired. // Freezes the symbol table: prevents further modification of it. // After the Freeze() operation is successful, the SymbolTable must only be // accessed via a const pointer. // // Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not // a necessary step in using a SymbolTable. If you have no need for it to be // immutable, there is no need to freeze it ever. However sometimes it is // useful, and SymbolTables that are statically compiled into the binary are // always frozen by nature. void Freeze(); // Resolves the given symbol using the rules described in descriptor.proto, // namely: // // If the name starts with a '.', it is fully-qualified. Otherwise, // C++-like scoping rules are used to find the type (i.e. first the nested // types within this message are searched, then within the parent, on up // to the root namespace). // // If not found, returns NULL. const Def* Resolve(const char* base, const char* sym) const; // Finds an entry in the symbol table with this exact name. If not found, // returns NULL. const Def* Lookup(const char *sym) const; const MessageDef* LookupMessage(const char *sym) const; const EnumDef* LookupEnum(const char *sym) const; // TODO: introduce a C++ iterator, but make it nice and templated so that if // you ask for an iterator of MessageDef the iterated elements are strongly // typed as MessageDef*. // Adds the given mutable defs to the symtab, resolving all symbols // (including enum default values) and finalizing the defs. Only one def per // name may be in the list, but defs can replace existing defs in the symtab. // All defs must have a name -- anonymous defs are not allowed. Anonymous // defs can still be frozen by calling upb_def_freeze() directly. // // Any existing defs that can reach defs that are being replaced will // themselves be replaced also, so that the resulting set of defs is fully // consistent. // // This logic implemented in this method is a convenience; ultimately it // calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and // upb_freeze(), any of which the client could call themself. However, since // the logic for doing so is nontrivial, we provide it here. // // The entire operation either succeeds or fails. If the operation fails, // the symtab is unchanged, false is returned, and status indicates the // error. The caller passes a ref on all defs to the symtab (even if the // operation fails). // // TODO(haberman): currently failure will leave the symtab unchanged, but may // leave the defs themselves partially resolved. Does this matter? If so we // could do a prepass that ensures that all symbols are resolvable and bail // if not, so we don't mutate anything until we know the operation will // succeed. // // TODO(haberman): since the defs must be mutable, refining a frozen def // requires making mutable copies of the entire tree. This is wasteful if // only a few messages are changing. We may want to add a way of adding a // tree of frozen defs to the symtab (perhaps an alternate constructor where // you pass the root of the tree?) bool Add(Def*const* defs, int n, void* ref_donor, upb_status* status); bool Add(const std::vector& defs, void *owner, Status* status) { return Add((Def*const*)&defs[0], defs.size(), owner, status); } private: UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable); , UPB_DEFINE_STRUCT(upb_symtab, upb_refcounted, upb_strtable symtab; )); #define UPB_SYMTAB_INIT(symtab, refs, ref2s) \ { UPB_REFCOUNT_INIT(refs, ref2s), symtab } UPB_BEGIN_EXTERN_C // { // Native C API. // From upb_refcounted. bool upb_symtab_isfrozen(const upb_symtab *s); void upb_symtab_ref(const upb_symtab *s, const void *owner); void upb_symtab_unref(const upb_symtab *s, const void *owner); void upb_symtab_donateref( const upb_symtab *s, const void *from, const void *to); void upb_symtab_checkref(const upb_symtab *s, const void *owner); upb_symtab *upb_symtab_new(const void *owner); void upb_symtab_freeze(upb_symtab *s); const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, const char *sym); const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym); const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym); const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym); bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor, upb_status *status); // upb_symtab_iter i; // for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i); // upb_symtab_next(&i)) { // const upb_def *def = upb_symtab_iter_def(&i); // // ... // } // // For C we don't have separate iterators for const and non-const. // It is the caller's responsibility to cast the upb_fielddef* to // const if the upb_msgdef* is const. void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s, upb_deftype_t type); void upb_symtab_next(upb_symtab_iter *iter); bool upb_symtab_done(const upb_symtab_iter *iter); const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter); UPB_END_EXTERN_C // } #ifdef __cplusplus // C++ inline wrappers. namespace upb { inline reffed_ptr SymbolTable::New() { upb_symtab *s = upb_symtab_new(&s); return reffed_ptr(s, &s); } inline bool SymbolTable::IsFrozen() const { return upb_symtab_isfrozen(this); } inline void SymbolTable::Ref(const void *owner) const { upb_symtab_ref(this, owner); } inline void SymbolTable::Unref(const void *owner) const { upb_symtab_unref(this, owner); } inline void SymbolTable::DonateRef(const void *from, const void *to) const { upb_symtab_donateref(this, from, to); } inline void SymbolTable::CheckRef(const void *owner) const { upb_symtab_checkref(this, owner); } inline void SymbolTable::Freeze() { return upb_symtab_freeze(this); } inline const Def *SymbolTable::Resolve(const char *base, const char *sym) const { return upb_symtab_resolve(this, base, sym); } inline const Def* SymbolTable::Lookup(const char *sym) const { return upb_symtab_lookup(this, sym); } inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const { return upb_symtab_lookupmsg(this, sym); } inline bool SymbolTable::Add( Def*const* defs, int n, void* ref_donor, upb_status* status) { return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status); } } // namespace upb #endif #endif /* UPB_SYMTAB_H_ */ #ifdef __cplusplus extern "C" { #endif // Enums typedef enum { GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_OPTIONAL = 1, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REQUIRED = 2, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REPEATED = 3, } google_protobuf_FieldDescriptorProto_Label; typedef enum { GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_DOUBLE = 1, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FLOAT = 2, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT64 = 3, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT64 = 4, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 = 5, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED64 = 6, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED32 = 7, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BOOL = 8, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_STRING = 9, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_GROUP = 10, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_MESSAGE = 11, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BYTES = 12, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT32 = 13, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_ENUM = 14, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED32 = 15, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED64 = 16, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT32 = 17, GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT64 = 18, } google_protobuf_FieldDescriptorProto_Type; typedef enum { GOOGLE_PROTOBUF_FIELDOPTIONS_STRING = 0, GOOGLE_PROTOBUF_FIELDOPTIONS_CORD = 1, GOOGLE_PROTOBUF_FIELDOPTIONS_STRING_PIECE = 2, } google_protobuf_FieldOptions_CType; typedef enum { GOOGLE_PROTOBUF_FILEOPTIONS_SPEED = 1, GOOGLE_PROTOBUF_FILEOPTIONS_CODE_SIZE = 2, GOOGLE_PROTOBUF_FILEOPTIONS_LITE_RUNTIME = 3, } google_protobuf_FileOptions_OptimizeMode; // Selectors // google.protobuf.DescriptorProto #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSUBMSG 3 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 4 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSUBMSG 5 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSUBMSG 6 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_STARTSUBMSG 7 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSEQ 8 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSEQ 9 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSUBMSG 10 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSEQ 11 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSEQ 12 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSUBMSG 13 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 14 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 15 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 16 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSEQ 17 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSEQ 18 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSUBMSG 19 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSEQ 20 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSEQ 21 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSUBMSG 22 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_ENDSUBMSG 23 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STRING 24 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STARTSTR 25 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_ENDSTR 26 // google.protobuf.DescriptorProto.ExtensionRange #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_START_INT32 2 #define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_END_INT32 3 // google.protobuf.EnumDescriptorProto #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSEQ 4 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSEQ 5 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSUBMSG 6 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STRING 8 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STARTSTR 9 #define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_ENDSTR 10 // google.protobuf.EnumOptions #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5 #define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_ALLOW_ALIAS_BOOL 6 // google.protobuf.EnumValueDescriptorProto #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STRING 4 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STARTSTR 5 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_ENDSTR 6 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NUMBER_INT32 7 // google.protobuf.EnumValueOptions #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5 // google.protobuf.FieldDescriptorProto #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STRING 4 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STARTSTR 5 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_ENDSTR 6 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STRING 7 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STARTSTR 8 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_ENDSTR 9 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NUMBER_INT32 10 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_INT32 11 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 12 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STRING 13 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STARTSTR 14 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_ENDSTR 15 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STRING 16 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STARTSTR 17 #define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_ENDSTR 18 // google.protobuf.FieldOptions #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_CTYPE_INT32 6 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_PACKED_BOOL 7 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_DEPRECATED_BOOL 8 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_LAZY_BOOL 9 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STRING 10 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STARTSTR 11 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_ENDSTR 12 #define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_WEAK_BOOL 13 // google.protobuf.FileDescriptorProto #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 3 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSUBMSG 4 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSUBMSG 5 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 6 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_STARTSUBMSG 7 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSEQ 8 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSEQ 9 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSUBMSG 10 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 11 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 12 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 13 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSEQ 14 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSEQ 15 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSUBMSG 16 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSEQ 17 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSEQ 18 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSUBMSG 19 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 20 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_ENDSUBMSG 21 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STRING 22 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STARTSTR 23 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_ENDSTR 24 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STRING 25 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STARTSTR 26 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_ENDSTR 27 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSEQ 28 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSEQ 29 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STRING 30 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSTR 31 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSTR 32 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_STARTSEQ 33 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_ENDSEQ 34 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_INT32 35 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_STARTSEQ 36 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_ENDSEQ 37 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_INT32 38 // google.protobuf.FileDescriptorSet #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSUBMSG 5 // google.protobuf.FileOptions #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STRING 6 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STARTSTR 7 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_ENDSTR 8 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STRING 9 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STARTSTR 10 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_ENDSTR 11 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_OPTIMIZE_FOR_INT32 12 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_MULTIPLE_FILES_BOOL 13 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STRING 14 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STARTSTR 15 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_ENDSTR 16 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_CC_GENERIC_SERVICES_BOOL 17 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERIC_SERVICES_BOOL 18 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_PY_GENERIC_SERVICES_BOOL 19 #define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERATE_EQUALS_AND_HASH_BOOL 20 // google.protobuf.MessageOptions #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_MESSAGE_SET_WIRE_FORMAT_BOOL 6 #define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_NO_STANDARD_DESCRIPTOR_ACCESSOR_BOOL 7 // google.protobuf.MethodDescriptorProto #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STRING 4 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STARTSTR 5 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_ENDSTR 6 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STRING 7 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STARTSTR 8 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_ENDSTR 9 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STRING 10 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STARTSTR 11 #define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_ENDSTR 12 // google.protobuf.MethodOptions #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5 // google.protobuf.ServiceDescriptorProto #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSEQ 4 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSEQ 5 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSUBMSG 6 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STRING 8 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STARTSTR 9 #define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_ENDSTR 10 // google.protobuf.ServiceOptions #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5 // google.protobuf.SourceCodeInfo #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSUBMSG 5 // google.protobuf.SourceCodeInfo.Location #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_STARTSEQ 2 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_ENDSEQ 3 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_INT32 4 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_STARTSEQ 5 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_ENDSEQ 6 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_INT32 7 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STRING 8 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STARTSTR 9 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_ENDSTR 10 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STRING 11 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STARTSTR 12 #define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_ENDSTR 13 // google.protobuf.UninterpretedOption #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSUBMSG 2 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSEQ 3 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSEQ 4 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSUBMSG 5 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STRING 6 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STARTSTR 7 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_ENDSTR 8 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_POSITIVE_INT_VALUE_UINT64 9 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NEGATIVE_INT_VALUE_INT64 10 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_DOUBLE_VALUE_DOUBLE 11 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STRING 12 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STARTSTR 13 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_ENDSTR 14 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STRING 15 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STARTSTR 16 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_ENDSTR 17 // google.protobuf.UninterpretedOption.NamePart #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STRING 2 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STARTSTR 3 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_ENDSTR 4 #define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_IS_EXTENSION_BOOL 5 const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner); // MessageDefs UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto.ExtensionRange"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumDescriptorProto"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumOptions(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumOptions"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueDescriptorProto"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueOptions"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldDescriptorProto"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldOptions(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldOptions"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorProto"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorSet"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileOptions(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileOptions"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MessageOptions(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MessageOptions"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodDescriptorProto"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodOptions(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodOptions"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceDescriptorProto"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceOptions(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceOptions"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo.Location"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOption"); assert(m); return m; } UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart(const upb_symtab *s) { const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOption.NamePart"); assert(m); return m; } // EnumDefs UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label(const upb_symtab *s) { const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescriptorProto.Label"); assert(e); return e; } UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type(const upb_symtab *s) { const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescriptorProto.Type"); assert(e); return e; } UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType(const upb_symtab *s) { const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldOptions.CType"); assert(e); return e; } UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode(const upb_symtab *s) { const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FileOptions.OptimizeMode"); assert(e); return e; } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_end(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto_ExtensionRange(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_start(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto_ExtensionRange(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_enum_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension_range(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_field(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_nested_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 7); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_allow_alias(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumOptions(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumOptions(s), 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_number(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueOptions(s), 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_default_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 7); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_extendee(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_label(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_number(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_ctype(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_deprecated(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_experimental_map_key(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 9); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_lazy(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_packed(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_weak(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_enum_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 7); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_message_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_public_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_service(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_source_code_info(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 9); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_weak_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 11); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_file(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorSet(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_cc_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 16); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_go_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 11); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generate_equals_and_hash(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 20); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 17); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_multiple_files(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_outer_classname(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_optimize_for(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 9); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_py_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 18); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_message_set_wire_format(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_no_standard_descriptor_accessor(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_input_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_output_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodOptions(s), 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_method(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceOptions(s), 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_leading_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_path(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_span(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_trailing_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_location(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_is_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption_NamePart(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_name_part(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption_NamePart(s), 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_aggregate_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_double_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_identifier_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_negative_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_positive_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_string_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 7); } #ifdef __cplusplus }; // extern "C" #endif #ifdef __cplusplus namespace upbdefs { namespace google { namespace protobuf { namespace descriptor { inline upb::reffed_ptr SymbolTable() { const upb::SymbolTable* s = upbdefs_google_protobuf_descriptor(&s); return upb::reffed_ptr(s, &s); } } // namespace descriptor } // namespace protobuf } // namespace google #define RETURN_REFFED(type, func) \ const type* obj = func(upbdefs::google::protobuf::descriptor::SymbolTable().get()); \ return upb::reffed_ptr(obj); namespace google { namespace protobuf { namespace DescriptorProto { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_DescriptorProto) } inline upb::reffed_ptr enum_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_enum_type) } inline upb::reffed_ptr extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_extension) } inline upb::reffed_ptr extension_range() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_extension_range) } inline upb::reffed_ptr field() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_field) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_name) } inline upb::reffed_ptr nested_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_nested_type) } inline upb::reffed_ptr options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_options) } } // namespace DescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace DescriptorProto { namespace ExtensionRange { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange) } inline upb::reffed_ptr end() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_end) } inline upb::reffed_ptr start() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_start) } } // namespace ExtensionRange } // namespace DescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace EnumDescriptorProto { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumDescriptorProto) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_name) } inline upb::reffed_ptr options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_options) } inline upb::reffed_ptr value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_value) } } // namespace EnumDescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace EnumOptions { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumOptions) } inline upb::reffed_ptr allow_alias() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumOptions_allow_alias) } inline upb::reffed_ptr uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumOptions_uninterpreted_option) } } // namespace EnumOptions } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace EnumValueDescriptorProto { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumValueDescriptorProto) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_name) } inline upb::reffed_ptr number() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_number) } inline upb::reffed_ptr options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_options) } } // namespace EnumValueDescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace EnumValueOptions { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumValueOptions) } inline upb::reffed_ptr uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueOptions_uninterpreted_option) } } // namespace EnumValueOptions } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace FieldDescriptorProto { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FieldDescriptorProto) } inline upb::reffed_ptr default_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_default_value) } inline upb::reffed_ptr extendee() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_extendee) } inline upb::reffed_ptr label() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_label) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_name) } inline upb::reffed_ptr number() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_number) } inline upb::reffed_ptr options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_options) } inline upb::reffed_ptr type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_type) } inline upb::reffed_ptr type_name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_type_name) } inline upb::reffed_ptr Label() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Label) } inline upb::reffed_ptr Type() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Type) } } // namespace FieldDescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace FieldOptions { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FieldOptions) } inline upb::reffed_ptr ctype() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_ctype) } inline upb::reffed_ptr deprecated() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_deprecated) } inline upb::reffed_ptr experimental_map_key() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_experimental_map_key) } inline upb::reffed_ptr lazy() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_lazy) } inline upb::reffed_ptr packed() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_packed) } inline upb::reffed_ptr uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_uninterpreted_option) } inline upb::reffed_ptr weak() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_weak) } inline upb::reffed_ptr CType() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldOptions_CType) } } // namespace FieldOptions } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace FileDescriptorProto { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileDescriptorProto) } inline upb::reffed_ptr dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_dependency) } inline upb::reffed_ptr enum_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_enum_type) } inline upb::reffed_ptr extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_extension) } inline upb::reffed_ptr message_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_message_type) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_name) } inline upb::reffed_ptr options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_options) } inline upb::reffed_ptr package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_package) } inline upb::reffed_ptr public_dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_public_dependency) } inline upb::reffed_ptr service() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_service) } inline upb::reffed_ptr source_code_info() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_source_code_info) } inline upb::reffed_ptr weak_dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_weak_dependency) } } // namespace FileDescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace FileDescriptorSet { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileDescriptorSet) } inline upb::reffed_ptr file() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorSet_file) } } // namespace FileDescriptorSet } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace FileOptions { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileOptions) } inline upb::reffed_ptr cc_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_cc_generic_services) } inline upb::reffed_ptr go_package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_go_package) } inline upb::reffed_ptr java_generate_equals_and_hash() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generate_equals_and_hash) } inline upb::reffed_ptr java_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generic_services) } inline upb::reffed_ptr java_multiple_files() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_multiple_files) } inline upb::reffed_ptr java_outer_classname() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_outer_classname) } inline upb::reffed_ptr java_package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_package) } inline upb::reffed_ptr optimize_for() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_optimize_for) } inline upb::reffed_ptr py_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_py_generic_services) } inline upb::reffed_ptr uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_uninterpreted_option) } inline upb::reffed_ptr OptimizeMode() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FileOptions_OptimizeMode) } } // namespace FileOptions } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace MessageOptions { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MessageOptions) } inline upb::reffed_ptr message_set_wire_format() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_message_set_wire_format) } inline upb::reffed_ptr no_standard_descriptor_accessor() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_no_standard_descriptor_accessor) } inline upb::reffed_ptr uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_uninterpreted_option) } } // namespace MessageOptions } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace MethodDescriptorProto { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MethodDescriptorProto) } inline upb::reffed_ptr input_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_input_type) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_name) } inline upb::reffed_ptr options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_options) } inline upb::reffed_ptr output_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_output_type) } } // namespace MethodDescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace MethodOptions { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MethodOptions) } inline upb::reffed_ptr uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodOptions_uninterpreted_option) } } // namespace MethodOptions } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace ServiceDescriptorProto { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_ServiceDescriptorProto) } inline upb::reffed_ptr method() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_method) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_name) } inline upb::reffed_ptr options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_options) } } // namespace ServiceDescriptorProto } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace ServiceOptions { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_ServiceOptions) } inline upb::reffed_ptr uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceOptions_uninterpreted_option) } } // namespace ServiceOptions } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace SourceCodeInfo { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_SourceCodeInfo) } inline upb::reffed_ptr location() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_location) } } // namespace SourceCodeInfo } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace SourceCodeInfo { namespace Location { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_SourceCodeInfo_Location) } inline upb::reffed_ptr leading_comments() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_leading_comments) } inline upb::reffed_ptr path() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_path) } inline upb::reffed_ptr span() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_span) } inline upb::reffed_ptr trailing_comments() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_trailing_comments) } } // namespace Location } // namespace SourceCodeInfo } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace UninterpretedOption { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_UninterpretedOption) } inline upb::reffed_ptr aggregate_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_aggregate_value) } inline upb::reffed_ptr double_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_double_value) } inline upb::reffed_ptr identifier_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_identifier_value) } inline upb::reffed_ptr name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_name) } inline upb::reffed_ptr negative_int_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_negative_int_value) } inline upb::reffed_ptr positive_int_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_positive_int_value) } inline upb::reffed_ptr string_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_string_value) } } // namespace UninterpretedOption } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace UninterpretedOption { namespace NamePart { inline upb::reffed_ptr MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_UninterpretedOption_NamePart) } inline upb::reffed_ptr is_extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_is_extension) } inline upb::reffed_ptr name_part() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_name_part) } } // namespace NamePart } // namespace UninterpretedOption } // namespace protobuf } // namespace google } // namespace upbdefs #undef RETURN_REFFED #endif // __cplusplus #endif // GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2010-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A upb_handlers is like a virtual table for a upb_msgdef. Each field of the * message can have associated functions that will be called when we are * parsing or visiting a stream of data. This is similar to how handlers work * in SAX (the Simple API for XML). * * The handlers have no idea where the data is coming from, so a single set of * handlers could be used with two completely different data sources (for * example, a parser and a visitor over in-memory objects). This decoupling is * the most important feature of upb, because it allows parsers and serializers * to be highly reusable. * * This is a mixed C/C++ interface that offers a full API to both languages. * See the top-level README for more information. */ #ifndef UPB_HANDLERS_H #define UPB_HANDLERS_H #ifdef __cplusplus namespace upb { class BufferHandle; class BytesHandler; class HandlerAttributes; class Handlers; template class Handler; template struct CanonicalType; } // namespace upb #endif UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle); UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler); UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr); UPB_DECLARE_TYPE(upb::Handlers, upb_handlers); // The maximum depth that the handler graph can have. This is a resource limit // for the C stack since we sometimes need to recursively traverse the graph. // Cycles are ok; the traversal will stop when it detects a cycle, but we must // hit the cycle before the maximum depth is reached. // // If having a single static limit is too inflexible, we can add another variant // of Handlers::Freeze that allows specifying this as a parameter. #define UPB_MAX_HANDLER_DEPTH 64 // All the different types of handlers that can be registered. // Only needed for the advanced functions in upb::Handlers. typedef enum { UPB_HANDLER_INT32, UPB_HANDLER_INT64, UPB_HANDLER_UINT32, UPB_HANDLER_UINT64, UPB_HANDLER_FLOAT, UPB_HANDLER_DOUBLE, UPB_HANDLER_BOOL, UPB_HANDLER_STARTSTR, UPB_HANDLER_STRING, UPB_HANDLER_ENDSTR, UPB_HANDLER_STARTSUBMSG, UPB_HANDLER_ENDSUBMSG, UPB_HANDLER_STARTSEQ, UPB_HANDLER_ENDSEQ, } upb_handlertype_t; #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1) #define UPB_BREAK NULL // A convenient definition for when no closure is needed. extern char _upb_noclosure; #define UPB_NO_CLOSURE &_upb_noclosure // A selector refers to a specific field handler in the Handlers object // (for example: the STARTSUBMSG handler for field "field15"). typedef int32_t upb_selector_t; UPB_BEGIN_EXTERN_C // Forward-declares for C inline accessors. We need to declare these here // so we can "friend" them in the class declarations in C++. UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s); UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr); UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h, upb_selector_t s); UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h); UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, const void *type); UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, size_t ofs); UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h); UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h); UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h); UPB_END_EXTERN_C // Static selectors for upb::Handlers. #define UPB_STARTMSG_SELECTOR 0 #define UPB_ENDMSG_SELECTOR 1 #define UPB_STATIC_SELECTOR_COUNT 2 // Static selectors for upb::BytesHandler. #define UPB_STARTSTR_SELECTOR 0 #define UPB_STRING_SELECTOR 1 #define UPB_ENDSTR_SELECTOR 2 typedef void upb_handlerfree(void *d); // A set of attributes that accompanies a handler's function pointer. UPB_DEFINE_CLASS0(upb::HandlerAttributes, public: HandlerAttributes(); ~HandlerAttributes(); // Sets the handler data that will be passed as the second parameter of the // handler. To free this pointer when the handlers are freed, call // Handlers::AddCleanup(). bool SetHandlerData(const void *handler_data); const void* handler_data() const; // Use this to specify the type of the closure. This will be checked against // all other closure types for handler that use the same closure. // Registration will fail if this does not match all other non-NULL closure // types. bool SetClosureType(const void *closure_type); const void* closure_type() const; // Use this to specify the type of the returned closure. Only used for // Start*{String,SubMessage,Sequence} handlers. This must match the closure // type of any handlers that use it (for example, the StringBuf handler must // match the closure returned from StartString). bool SetReturnClosureType(const void *return_closure_type); const void* return_closure_type() const; // Set to indicate that the handler always returns "ok" (either "true" or a // non-NULL closure). This is a hint that can allow code generators to // generate more efficient code. bool SetAlwaysOk(bool always_ok); bool always_ok() const; private: friend UPB_INLINE const void * ::upb_handlerattr_handlerdata( const upb_handlerattr *attr); , UPB_DEFINE_STRUCT0(upb_handlerattr, const void *handler_data_; const void *closure_type_; const void *return_closure_type_; bool alwaysok_; )); #define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false} typedef struct { upb_func *func; // It is wasteful to include the entire attributes here: // // * Some of the information is redundant (like storing the closure type // separately for each handler that must match). // * Some of the info is only needed prior to freeze() (like closure types). // * alignment padding wastes a lot of space for alwaysok_. // // If/when the size and locality of handlers is an issue, we can optimize this // not to store the entire attr like this. We do not expose the table's // layout to allow this optimization in the future. upb_handlerattr attr; } upb_handlers_tabent; // Extra information about a buffer that is passed to a StringBuf handler. // TODO(haberman): allow the handle to be pinned so that it will outlive // the handler invocation. UPB_DEFINE_CLASS0(upb::BufferHandle, public: BufferHandle(); ~BufferHandle(); // The beginning of the buffer. This may be different than the pointer // passed to a StringBuf handler because the handler may receive data // that is from the middle or end of a larger buffer. const char* buffer() const; // The offset within the attached object where this buffer begins. Only // meaningful if there is an attached object. size_t object_offset() const; // Note that object_offset is the offset of "buf" within the attached object. void SetBuffer(const char* buf, size_t object_offset); // The BufferHandle can have an "attached object", which can be used to // tunnel through a pointer to the buffer's underlying representation. template void SetAttachedObject(const T* obj); // Returns NULL if the attached object is not of this type. template const T* GetAttachedObject() const; private: friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h); friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, const void *type); friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, size_t ofs); friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h); friend UPB_INLINE const void* ::upb_bufhandle_objtype( const upb_bufhandle *h); friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h); , UPB_DEFINE_STRUCT0(upb_bufhandle, const char *buf_; const void *obj_; const void *objtype_; size_t objofs_; )); // A upb::Handlers object represents the set of handlers associated with a // message in the graph of messages. You can think of it as a big virtual // table with functions corresponding to all the events that can fire while // parsing or visiting a message of a specific type. // // Any handlers that are not set behave as if they had successfully consumed // the value. Any unset Start* handlers will propagate their closure to the // inner frame. // // The easiest way to create the *Handler objects needed by the Set* methods is // with the UpbBind() and UpbMakeHandler() macros; see below. UPB_DEFINE_CLASS1(upb::Handlers, upb::RefCounted, public: typedef upb_selector_t Selector; typedef upb_handlertype_t Type; typedef Handler StartFieldHandler; typedef Handler EndFieldHandler; typedef Handler StartMessageHandler; typedef Handler EndMessageHandler; typedef Handler StartStringHandler; typedef Handler StringHandler; template struct ValueHandler { typedef Handler H; }; typedef ValueHandler::H Int32Handler; typedef ValueHandler::H Int64Handler; typedef ValueHandler::H UInt32Handler; typedef ValueHandler::H UInt64Handler; typedef ValueHandler::H FloatHandler; typedef ValueHandler::H DoubleHandler; typedef ValueHandler::H BoolHandler; // Any function pointer can be converted to this and converted back to its // correct type. typedef void GenericFunction(); typedef void HandlersCallback(const void *closure, upb_handlers *h); // Returns a new handlers object for the given frozen msgdef. // Returns NULL if memory allocation failed. static reffed_ptr New(const MessageDef *m); // Convenience function for registering a graph of handlers that mirrors the // graph of msgdefs for some message. For "m" and all its children a new set // of handlers will be created and the given callback will be invoked, // allowing the client to register handlers for this message. Note that any // subhandlers set by the callback will be overwritten. static reffed_ptr NewFrozen(const MessageDef *m, HandlersCallback *callback, const void *closure); // Functionality from upb::RefCounted. bool IsFrozen() const; void Ref(const void* owner) const; void Unref(const void* owner) const; void DonateRef(const void *from, const void *to) const; void CheckRef(const void *owner) const; // All handler registration functions return bool to indicate success or // failure; details about failures are stored in this status object. If a // failure does occur, it must be cleared before the Handlers are frozen, // otherwise the freeze() operation will fail. The functions may *only* be // used while the Handlers are mutable. const Status* status(); void ClearError(); // Call to freeze these Handlers. Requires that any SubHandlers are already // frozen. For cycles, you must use the static version below and freeze the // whole graph at once. bool Freeze(Status* s); // Freezes the given set of handlers. You may not freeze a handler without // also freezing any handlers they point to. static bool Freeze(Handlers*const* handlers, int n, Status* s); static bool Freeze(const std::vector& handlers, Status* s); // Returns the msgdef associated with this handlers object. const MessageDef* message_def() const; // Adds the given pointer and function to the list of cleanup functions that // will be run when these handlers are freed. If this pointer has previously // been registered, the function returns false and does nothing. bool AddCleanup(void *ptr, upb_handlerfree *cleanup); // Sets the startmsg handler for the message, which is defined as follows: // // bool startmsg(MyType* closure) { // // Called when the message begins. Returns true if processing should // // continue. // return true; // } bool SetStartMessageHandler(const StartMessageHandler& handler); // Sets the endmsg handler for the message, which is defined as follows: // // bool endmsg(MyType* closure, upb_status *status) { // // Called when processing of this message ends, whether in success or // // failure. "status" indicates the final status of processing, and // // can also be modified in-place to update the final status. // } bool SetEndMessageHandler(const EndMessageHandler& handler); // Sets the value handler for the given field, which is defined as follows // (this is for an int32 field; other field types will pass their native // C/C++ type for "val"): // // bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) { // // Called when the field's value is encountered. "d" contains // // whatever data was bound to this field when it was registered. // // Returns true if processing should continue. // return true; // } // // handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...))); // // The value type must exactly match f->type(). // For example, a handler that takes an int32_t parameter may only be used for // fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM. // // Returns false if the handler failed to register; in this case the cleanup // handler (if any) will be called immediately. bool SetInt32Handler (const FieldDef* f, const Int32Handler& h); bool SetInt64Handler (const FieldDef* f, const Int64Handler& h); bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h); bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h); bool SetFloatHandler (const FieldDef* f, const FloatHandler& h); bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h); bool SetBoolHandler (const FieldDef* f, const BoolHandler& h); // Like the previous, but templated on the type on the value (ie. int32). // This is mostly useful to call from other templates. To call this you must // specify the template parameter explicitly, ie: // h->SetValueHandler(f, UpbBind(MyHandler, MyData)); template bool SetValueHandler( const FieldDef *f, const typename ValueHandler::Type>::H& handler); // Sets handlers for a string field, which are defined as follows: // // MySubClosure* startstr(MyClosure* c, const MyHandlerData* d, // size_t size_hint) { // // Called when a string value begins. The return value indicates the // // closure for the string. "size_hint" indicates the size of the // // string if it is known, however if the string is length-delimited // // and the end-of-string is not available size_hint will be zero. // // This case is indistinguishable from the case where the size is // // known to be zero. // // // // TODO(haberman): is it important to distinguish these cases? // // If we had ssize_t as a type we could make -1 "unknown", but // // ssize_t is POSIX (not ANSI) and therefore less portable. // // In practice I suspect it won't be important to distinguish. // return closure; // } // // size_t str(MyClosure* closure, const MyHandlerData* d, // const char *str, size_t len) { // // Called for each buffer of string data; the multiple physical buffers // // are all part of the same logical string. The return value indicates // // how many bytes were consumed. If this number is less than "len", // // this will also indicate that processing should be halted for now, // // like returning false or UPB_BREAK from any other callback. If // // number is greater than "len", the excess bytes will be skipped over // // and not passed to the callback. // return len; // } // // bool endstr(MyClosure* c, const MyHandlerData* d) { // // Called when a string value ends. Return value indicates whether // // processing should continue. // return true; // } bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h); bool SetStringHandler(const FieldDef* f, const StringHandler& h); bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h); // Sets the startseq handler, which is defined as follows: // // MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) { // // Called when a sequence (repeated field) begins. The returned // // pointer indicates the closure for the sequence (or UPB_BREAK // // to interrupt processing). // return closure; // } // // h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...))); // // Returns "false" if "f" does not belong to this message or is not a // repeated field. bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h); // Sets the startsubmsg handler for the given field, which is defined as // follows: // // MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) { // // Called when a submessage begins. The returned pointer indicates the // // closure for the sequence (or UPB_BREAK to interrupt processing). // return closure; // } // // h->SetStartSubMessageHandler(f, UpbBind(startsubmsg, // new MyHandlerData(...))); // // Returns "false" if "f" does not belong to this message or is not a // submessage/group field. bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h); // Sets the endsubmsg handler for the given field, which is defined as // follows: // // bool endsubmsg(MyClosure* c, const MyHandlerData* d) { // // Called when a submessage ends. Returns true to continue processing. // return true; // } // // Returns "false" if "f" does not belong to this message or is not a // submessage/group field. bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h); // Starts the endsubseq handler for the given field, which is defined as // follows: // // bool endseq(MyClosure* c, const MyHandlerData* d) { // // Called when a sequence ends. Returns true continue processing. // return true; // } // // Returns "false" if "f" does not belong to this message or is not a // repeated field. bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h); // Sets or gets the object that specifies handlers for the given field, which // must be a submessage or group. Returns NULL if no handlers are set. bool SetSubHandlers(const FieldDef* f, const Handlers* sub); const Handlers* GetSubHandlers(const FieldDef* f) const; // Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the // field. const Handlers* GetSubHandlers(Selector startsubmsg) const; // A selector refers to a specific field handler in the Handlers object // (for example: the STARTSUBMSG handler for field "field15"). // On success, returns true and stores the selector in "s". // If the FieldDef or Type are invalid, returns false. // The returned selector is ONLY valid for Handlers whose MessageDef // contains this FieldDef. static bool GetSelector(const FieldDef* f, Type type, Selector* s); // Given a START selector of any kind, returns the corresponding END selector. static Selector GetEndSelector(Selector start_selector); // Returns the function pointer for this handler. It is the client's // responsibility to cast to the correct function type before calling it. GenericFunction* GetHandler(Selector selector); // Sets the given attributes to the attributes for this selector. bool GetAttributes(Selector selector, HandlerAttributes* attr); // Returns the handler data that was registered with this handler. const void* GetHandlerData(Selector selector); // Could add any of the following functions as-needed, with some minor // implementation changes: // // const FieldDef* GetFieldDef(Selector selector); // static bool IsSequence(Selector selector); private: UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers); friend UPB_INLINE GenericFunction *::upb_handlers_gethandler( const upb_handlers *h, upb_selector_t s); friend UPB_INLINE const void *::upb_handlers_gethandlerdata( const upb_handlers *h, upb_selector_t s); , UPB_DEFINE_STRUCT(upb_handlers, upb_refcounted, const upb_msgdef *msg; const upb_handlers **sub; const void *top_closure_type; upb_inttable cleanup_; upb_status status_; // Used only when mutable. upb_handlers_tabent table[1]; // Dynamically-sized field handler array. )); #ifdef __cplusplus namespace upb { // Convenience macros for creating a Handler object that is wrapped with a // type-safe wrapper function that converts the "void*" parameters/returns // of the underlying C API into nice C++ function. // // Sample usage: // void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) { // // do stuff ... // } // // // Handler that doesn't need any data bound to it. // void OnValue2(MyClosure* c, int32_t val) { // // do stuff ... // } // // // Handler that returns bool so it can return failure if necessary. // bool OnValue3(MyClosure* c, int32_t val) { // // do stuff ... // return ok; // } // // // Member function handler. // class MyClosure { // public: // void OnValue(int32_t val) { // // do stuff ... // } // }; // // // Takes ownership of the MyHandlerData. // handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...))); // handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2)); // handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3)); // handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue)); #ifdef UPB_CXX11 // In C++11, the "template" disambiguator can appear even outside templates, // so all calls can safely use this pair of macros. #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc() // We have to be careful to only evaluate "d" once. #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc((d)) #else // Prior to C++11, the "template" disambiguator may only appear inside a // template, so the regular macro must not use "template" #define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc() #define UpbBind(f, d) upb::MatchFunc(f).GetFunc((d)) #endif // UPB_CXX11 // This macro must be used in C++98 for calls from inside a template. But we // define this variant in all cases; code that wants to be compatible with both // C++98 and C++11 should always use this macro when calling from a template. #define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc() // We have to be careful to only evaluate "d" once. #define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc((d)) // Handler: a struct that contains the (handler, data, deleter) tuple that is // used to register all handlers. Users can Make() these directly but it's // more convenient to use the UpbMakeHandler/UpbBind macros above. template class Handler { public: // The underlying, handler function signature that upb uses internally. typedef T FuncPtr; // Intentionally implicit. template Handler(F func); ~Handler(); private: void AddCleanup(Handlers* h) const { if (cleanup_func_) { bool ok = h->AddCleanup(cleanup_data_, cleanup_func_); UPB_ASSERT_VAR(ok, ok); } } UPB_DISALLOW_COPY_AND_ASSIGN(Handler); friend class Handlers; FuncPtr handler_; mutable HandlerAttributes attr_; mutable bool registered_; void *cleanup_data_; upb_handlerfree *cleanup_func_; }; } // namespace upb #endif // __cplusplus UPB_BEGIN_EXTERN_C // Native C API. // Handler function typedefs. typedef bool upb_startmsg_handlerfunc(void *c, const void*); typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status); typedef void* upb_startfield_handlerfunc(void *c, const void *hd); typedef bool upb_endfield_handlerfunc(void *c, const void *hd); typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val); typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val); typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val); typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val); typedef bool upb_float_handlerfunc(void *c, const void *hd, float val); typedef bool upb_double_handlerfunc(void *c, const void *hd, double val); typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val); typedef void *upb_startstr_handlerfunc(void *c, const void *hd, size_t size_hint); typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf, size_t n, const upb_bufhandle* handle); // upb_bufhandle size_t upb_bufhandle_objofs(const upb_bufhandle *h); // upb_handlerattr void upb_handlerattr_init(upb_handlerattr *attr); void upb_handlerattr_uninit(upb_handlerattr *attr); bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd); bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type); const void *upb_handlerattr_closuretype(const upb_handlerattr *attr); bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr, const void *type); const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr); bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok); bool upb_handlerattr_alwaysok(const upb_handlerattr *attr); UPB_INLINE const void *upb_handlerattr_handlerdata( const upb_handlerattr *attr) { return attr->handler_data_; } // upb_handlers typedef void upb_handlers_callback(const void *closure, upb_handlers *h); upb_handlers *upb_handlers_new(const upb_msgdef *m, const void *owner); const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m, const void *owner, upb_handlers_callback *callback, const void *closure); bool upb_handlers_isfrozen(const upb_handlers *h); void upb_handlers_ref(const upb_handlers *h, const void *owner); void upb_handlers_unref(const upb_handlers *h, const void *owner); void upb_handlers_donateref(const upb_handlers *h, const void *from, const void *to); void upb_handlers_checkref(const upb_handlers *h, const void *owner); const upb_status *upb_handlers_status(upb_handlers *h); void upb_handlers_clearerr(upb_handlers *h); const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h); bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree); bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f, upb_int32_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f, upb_int64_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f, upb_uint32_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f, upb_uint64_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f, upb_float_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f, upb_double_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f, upb_bool_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f, upb_startstr_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f, upb_string_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f, upb_startfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f, upb_startfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, const upb_handlers *sub); const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, const upb_fielddef *f); const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, upb_selector_t sel); UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s) { return (upb_func *)h->table[s].func; } bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s, upb_handlerattr *attr); UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h, upb_selector_t s) { return upb_handlerattr_handlerdata(&h->table[s].attr); } // Handler types for single fields. // Right now we only have one for TYPE_BYTES but ones for other types // should follow. // // These follow the same handlers protocol for fields of a message. UPB_DEFINE_CLASS0(upb::BytesHandler, public: BytesHandler(); ~BytesHandler(); , UPB_DEFINE_STRUCT0(upb_byteshandler, upb_handlers_tabent table[3]; )); void upb_byteshandler_init(upb_byteshandler *h); void upb_byteshandler_uninit(upb_byteshandler *h); // Caller must ensure that "d" outlives the handlers. // TODO(haberman): support handlerfree function for the data. // TODO(haberman): should this have a "freeze" operation? It's not necessary // for memory management, but could be useful to force immutability and provide // a convenient moment to verify that all registration succeeded. bool upb_byteshandler_setstartstr(upb_byteshandler *h, upb_startstr_handlerfunc *func, void *d); bool upb_byteshandler_setstring(upb_byteshandler *h, upb_string_handlerfunc *func, void *d); bool upb_byteshandler_setendstr(upb_byteshandler *h, upb_endfield_handlerfunc *func, void *d); // "Static" methods bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s); upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f); bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, upb_selector_t *s); UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) { return start + 1; } // Internal-only. uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f); uint32_t upb_handlers_selectorcount(const upb_fielddef *f); UPB_END_EXTERN_C /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2011-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Inline definitions for handlers.h, which are particularly long and a bit * tricky. */ #ifndef UPB_HANDLERS_INL_H_ #define UPB_HANDLERS_INL_H_ #include // Type detection and typedefs for integer types. // For platforms where there are multiple 32-bit or 64-bit types, we need to be // able to enumerate them so we can properly create overloads for all variants. // // If any platform existed where there were three integer types with the same // size, this would have to become more complicated. For example, short, int, // and long could all be 32-bits. Even more diabolically, short, int, long, // and long long could all be 64 bits and still be standard-compliant. // However, few platforms are this strange, and it's unlikely that upb will be // used on the strangest ones. // Can't count on stdint.h limits like INT32_MAX, because in C++ these are // only defined when __STDC_LIMIT_MACROS are defined before the *first* include // of stdint.h. We can't guarantee that someone else didn't include these first // without defining __STDC_LIMIT_MACROS. #define UPB_INT32_MAX 0x7fffffffLL #define UPB_INT32_MIN (-UPB_INT32_MAX - 1) #define UPB_INT64_MAX 0x7fffffffffffffffLL #define UPB_INT64_MIN (-UPB_INT64_MAX - 1) #if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN #define UPB_INT_IS_32BITS 1 #endif #if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN #define UPB_LONG_IS_32BITS 1 #endif #if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN #define UPB_LONG_IS_64BITS 1 #endif #if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN #define UPB_LLONG_IS_64BITS 1 #endif // We use macros instead of typedefs so we can undefine them later and avoid // leaking them outside this header file. #if UPB_INT_IS_32BITS #define UPB_INT32_T int #define UPB_UINT32_T unsigned int #if UPB_LONG_IS_32BITS #define UPB_TWO_32BIT_TYPES 1 #define UPB_INT32ALT_T long #define UPB_UINT32ALT_T unsigned long #endif // UPB_LONG_IS_32BITS #elif UPB_LONG_IS_32BITS // && !UPB_INT_IS_32BITS #define UPB_INT32_T long #define UPB_UINT32_T unsigned long #endif // UPB_INT_IS_32BITS #if UPB_LONG_IS_64BITS #define UPB_INT64_T long #define UPB_UINT64_T unsigned long #if UPB_LLONG_IS_64BITS #define UPB_TWO_64BIT_TYPES 1 #define UPB_INT64ALT_T long long #define UPB_UINT64ALT_T unsigned long long #endif // UPB_LLONG_IS_64BITS #elif UPB_LLONG_IS_64BITS // && !UPB_LONG_IS_64BITS #define UPB_INT64_T long long #define UPB_UINT64_T unsigned long long #endif // UPB_LONG_IS_64BITS #undef UPB_INT32_MAX #undef UPB_INT32_MIN #undef UPB_INT64_MAX #undef UPB_INT64_MIN #undef UPB_INT_IS_32BITS #undef UPB_LONG_IS_32BITS #undef UPB_LONG_IS_64BITS #undef UPB_LLONG_IS_64BITS // C inline methods. // upb_bufhandle UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) { h->obj_ = NULL; h->objtype_ = NULL; h->buf_ = NULL; h->objofs_ = 0; } UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) { UPB_UNUSED(h); } UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, const void *type) { h->obj_ = obj; h->objtype_ = type; } UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, size_t ofs) { h->buf_ = buf; h->objofs_ = ofs; } UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) { return h->obj_; } UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) { return h->objtype_; } UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) { return h->buf_; } #ifdef __cplusplus namespace upb { typedef void CleanupFunc(void *ptr); // Template to remove "const" from "const T*" and just return "T*". // // We define a nonsense default because otherwise it will fail to instantiate as // a function parameter type even in cases where we don't expect any caller to // actually match the overload. class CouldntRemoveConst {}; template struct remove_constptr { typedef CouldntRemoveConst type; }; template struct remove_constptr { typedef T *type; }; // Template that we use below to remove a template specialization from // consideration if it matches a specific type. template struct disable_if_same { typedef void Type; }; template struct disable_if_same {}; template void DeletePointer(void *p) { delete static_cast(p); } template struct FirstUnlessVoid { typedef T1 value; }; template struct FirstUnlessVoid { typedef T2 value; }; template struct is_same { static bool value; }; template struct is_same { static bool value; }; template bool is_same::value = false; template bool is_same::value = true; // FuncInfo //////////////////////////////////////////////////////////////////// // Info about the user's original, pre-wrapped function. template struct FuncInfo { // The type of the closure that the function takes (its first param). typedef C Closure; // The return type. typedef R Return; }; // Func //////////////////////////////////////////////////////////////////////// // Func1, Func2, Func3: Template classes representing a function and its // signature. // // Since the function is a template parameter, calling the function can be // inlined at compile-time and does not require a function pointer at runtime. // These functions are not bound to a handler data so have no data or cleanup // handler. struct UnboundFunc { CleanupFunc *GetCleanup() { return NULL; } void *GetData() { return NULL; } }; template struct Func1 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1) { return F(p1); } }; template struct Func2 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2) { return F(p1, p2); } }; template struct Func3 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); } }; template struct Func4 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); } }; template struct Func5 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) { return F(p1, p2, p3, p4, p5); } }; // BoundFunc /////////////////////////////////////////////////////////////////// // BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that // shall be bound to the function's second parameter. // // Note that the second parameter is a const pointer, but our stored bound value // is non-const so we can free it when the handlers are destroyed. template struct BoundFunc { typedef typename remove_constptr::type MutableP2; explicit BoundFunc(MutableP2 data_) : data(data_) {} CleanupFunc *GetCleanup() { return &DeletePointer; } MutableP2 GetData() { return data; } MutableP2 data; }; template struct BoundFunc2 : public BoundFunc { typedef BoundFunc Base; typedef I FuncInfo; explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {} }; template struct BoundFunc3 : public BoundFunc { typedef BoundFunc Base; typedef I FuncInfo; explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {} }; template struct BoundFunc4 : public BoundFunc { typedef BoundFunc Base; typedef I FuncInfo; explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {} }; template struct BoundFunc5 : public BoundFunc { typedef BoundFunc Base; typedef I FuncInfo; explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {} }; // FuncSig ///////////////////////////////////////////////////////////////////// // FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function // *signature*, but without a specific function attached. // // These classes contain member functions that can be invoked with a // specific function to return a Func/BoundFunc class. template struct FuncSig1 { template Func1 > GetFunc() { return Func1 >(); } }; template struct FuncSig2 { template Func2 > GetFunc() { return Func2 >(); } template BoundFunc2 > GetFunc( typename remove_constptr::type param2) { return BoundFunc2 >(param2); } }; template struct FuncSig3 { template Func3 > GetFunc() { return Func3 >(); } template BoundFunc3 > GetFunc( typename remove_constptr::type param2) { return BoundFunc3 >(param2); } }; template struct FuncSig4 { template Func4 > GetFunc() { return Func4 >(); } template BoundFunc4 > GetFunc( typename remove_constptr::type param2) { return BoundFunc4 >(param2); } }; template struct FuncSig5 { template Func5 > GetFunc() { return Func5 >(); } template BoundFunc5 > GetFunc( typename remove_constptr::type param2) { return BoundFunc5 >(param2); } }; // Overloaded template function that can construct the appropriate FuncSig* // class given a function pointer by deducing the template parameters. template inline FuncSig1 MatchFunc(R (*f)(P1)) { UPB_UNUSED(f); // Only used for template parameter deduction. return FuncSig1(); } template inline FuncSig2 MatchFunc(R (*f)(P1, P2)) { UPB_UNUSED(f); // Only used for template parameter deduction. return FuncSig2(); } template inline FuncSig3 MatchFunc(R (*f)(P1, P2, P3)) { UPB_UNUSED(f); // Only used for template parameter deduction. return FuncSig3(); } template inline FuncSig4 MatchFunc(R (*f)(P1, P2, P3, P4)) { UPB_UNUSED(f); // Only used for template parameter deduction. return FuncSig4(); } template inline FuncSig5 MatchFunc(R (*f)(P1, P2, P3, P4, P5)) { UPB_UNUSED(f); // Only used for template parameter deduction. return FuncSig5(); } // MethodSig /////////////////////////////////////////////////////////////////// // CallMethod*: a function template that calls a given method. template R CallMethod0(C *obj) { return ((*obj).*F)(); } template R CallMethod1(C *obj, P1 arg1) { return ((*obj).*F)(arg1); } template R CallMethod2(C *obj, P1 arg1, P2 arg2) { return ((*obj).*F)(arg1, arg2); } template R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) { return ((*obj).*F)(arg1, arg2, arg3); } template R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) { return ((*obj).*F)(arg1, arg2, arg3, arg4); } // MethodSig: like FuncSig, but for member functions. // // GetFunc() returns a normal FuncN object, so after calling GetFunc() no // more logic is required to special-case methods. template struct MethodSig0 { template Func1, FuncInfo > GetFunc() { return Func1, FuncInfo >(); } }; template struct MethodSig1 { template Func2, FuncInfo > GetFunc() { return Func2, FuncInfo >(); } template BoundFunc2, FuncInfo > GetFunc( typename remove_constptr::type param1) { return BoundFunc2, FuncInfo >( param1); } }; template struct MethodSig2 { template Func3, FuncInfo > GetFunc() { return Func3, FuncInfo >(); } template BoundFunc3, FuncInfo > GetFunc(typename remove_constptr::type param1) { return BoundFunc3, FuncInfo >(param1); } }; template struct MethodSig3 { template Func4, FuncInfo > GetFunc() { return Func4, FuncInfo >(); } template BoundFunc4, FuncInfo > GetFunc(typename remove_constptr::type param1) { return BoundFunc4, FuncInfo >(param1); } }; template struct MethodSig4 { template Func5, FuncInfo > GetFunc() { return Func5, FuncInfo >(); } template BoundFunc5, FuncInfo > GetFunc(typename remove_constptr::type param1) { return BoundFunc5, FuncInfo >( param1); } }; template inline MethodSig0 MatchFunc(R (C::*f)()) { UPB_UNUSED(f); // Only used for template parameter deduction. return MethodSig0(); } template inline MethodSig1 MatchFunc(R (C::*f)(P1)) { UPB_UNUSED(f); // Only used for template parameter deduction. return MethodSig1(); } template inline MethodSig2 MatchFunc(R (C::*f)(P1, P2)) { UPB_UNUSED(f); // Only used for template parameter deduction. return MethodSig2(); } template inline MethodSig3 MatchFunc(R (C::*f)(P1, P2, P3)) { UPB_UNUSED(f); // Only used for template parameter deduction. return MethodSig3(); } template inline MethodSig4 MatchFunc(R (C::*f)(P1, P2, P3, P4)) { UPB_UNUSED(f); // Only used for template parameter deduction. return MethodSig4(); } // MaybeWrapReturn ///////////////////////////////////////////////////////////// // Template class that attempts to wrap the return value of the function so it // matches the expected type. There are two main adjustments it may make: // // 1. If the function returns void, make it return the expected type and with // a value that always indicates success. // 2. If the function is expected to return void* but doesn't, wrap it so it // does (either by returning the closure param if the wrapped function // returns void or by casting a different pointer type to void* for // return). // Template parameters are FuncN type and desired return type. template struct MaybeWrapReturn; // If the return type matches, return the given function unwrapped. template struct MaybeWrapReturn { typedef F Func; }; // Function wrapper that munges the return value from void to (bool)true. template bool ReturnTrue2(P1 p1, P2 p2) { F(p1, p2); return true; } template bool ReturnTrue3(P1 p1, P2 p2, P3 p3) { F(p1, p2, p3); return true; } // Function wrapper that munges the return value from void to (void*)arg1 template void *ReturnClosure2(P1 p1, P2 p2) { F(p1, p2); return p1; } template void *ReturnClosure3(P1 p1, P2 p2, P3 p3) { F(p1, p2, p3); return p1; } // Function wrapper that munges the return value from R to void*. template void *CastReturnToVoidPtr2(P1 p1, P2 p2) { return F(p1, p2); } template void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); } // Function wrapper that munges the return value from bool to void*. template void *ReturnClosureOrBreak2(P1 p1, P2 p2) { return F(p1, p2) ? p1 : UPB_BREAK; } template void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3) ? p1 : UPB_BREAK; } // For the string callback, which takes five params, returns the size param. template size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4, const BufferHandle *p5) { F(p1, p2, p3, p4, p5); return p4; } // For the string callback, which takes five params, returns the size param or // zero. template size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4, const BufferHandle *p5) { return F(p1, p2, p3, p4, p5) ? p4 : 0; } // If we have a function returning void but want a function returning bool, wrap // it in a function that returns true. template struct MaybeWrapReturn, bool> { typedef Func2, I> Func; }; template struct MaybeWrapReturn, bool> { typedef Func3, I> Func; }; // If our function returns void but we want one returning void*, wrap it in a // function that returns the first argument. template struct MaybeWrapReturn, void *> { typedef Func2, I> Func; }; template struct MaybeWrapReturn, void *> { typedef Func3, I> Func; }; // If our function returns R* but we want one returning void*, wrap it in a // function that casts to void*. template struct MaybeWrapReturn, void *, typename disable_if_same::Type> { typedef Func2, I> Func; }; template struct MaybeWrapReturn, void *, typename disable_if_same::Type> { typedef Func3, I> Func; }; // If our function returns bool but we want one returning void*, wrap it in a // function that returns either the first param or UPB_BREAK. template struct MaybeWrapReturn, void *> { typedef Func2, I> Func; }; template struct MaybeWrapReturn, void *> { typedef Func3, I> Func; }; // If our function returns void but we want one returning size_t, wrap it in a // function that returns the size argument. template struct MaybeWrapReturn< Func5, size_t> { typedef Func5, I> Func; }; // If our function returns bool but we want one returning size_t, wrap it in a // function that returns either 0 or the buf size. template struct MaybeWrapReturn< Func5, size_t> { typedef Func5, I> Func; }; // ConvertParams /////////////////////////////////////////////////////////////// // Template class that converts the function parameters if necessary, and // ignores the HandlerData parameter if appropriate. // // Template parameter is the are FuncN function type. template struct ConvertParams; // Function that discards the handler data parameter. template R IgnoreHandlerData2(void *p1, const void *hd) { UPB_UNUSED(hd); return F(static_cast(p1)); } template R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) { UPB_UNUSED(hd); return F(static_cast(p1), p2); } template R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) { UPB_UNUSED(hd); return F(static_cast(p1), p2, p3); } template R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) { UPB_UNUSED(hd); return F(static_cast(p1), p2, p3, p4); } template R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2, size_t p3, const BufferHandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); return F(static_cast(p1), p2, p3); } // Function that casts the handler data parameter. template R CastHandlerData2(void *c, const void *hd) { return F(static_cast(c), static_cast(hd)); } template R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) { return F(static_cast(c), static_cast(hd), p3); } template R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) { return F(static_cast(c), static_cast(hd), p3, p4, p5); } template R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3, size_t p4, const BufferHandle *handle) { UPB_UNUSED(handle); return F(static_cast(c), static_cast(hd), p3, p4); } // For unbound functions, ignore the handler data. template struct ConvertParams, T> { typedef Func2, I> Func; }; template struct ConvertParams, R2 (*)(P1_2, P2_2, P3_2)> { typedef Func3, I> Func; }; // For StringBuffer only; this ignores both the handler data and the // BufferHandle. template struct ConvertParams, T> { typedef Func5, I> Func; }; template struct ConvertParams, T> { typedef Func5, I> Func; }; // For bound functions, cast the handler data. template struct ConvertParams, T> { typedef Func2, I> Func; }; template struct ConvertParams, R2 (*)(P1_2, P2_2, P3_2)> { typedef Func3, I> Func; }; // For StringBuffer only; this ignores the BufferHandle. template struct ConvertParams, T> { typedef Func5, I> Func; }; template struct ConvertParams, T> { typedef Func5, I> Func; }; // utype/ltype are upper/lower-case, ctype is canonical C type, vtype is // variant C type. #define TYPE_METHODS(utype, ltype, ctype, vtype) \ template <> struct CanonicalType { \ typedef ctype Type; \ }; \ template <> \ inline bool Handlers::SetValueHandler( \ const FieldDef *f, \ const Handlers::utype ## Handler& handler) { \ assert(!handler.registered_); \ handler.AddCleanup(this); \ handler.registered_ = true; \ return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \ } \ TYPE_METHODS(Double, double, double, double); TYPE_METHODS(Float, float, float, float); TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T); TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T); TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T); TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T); TYPE_METHODS(Bool, bool, bool, bool); #ifdef UPB_TWO_32BIT_TYPES TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T); TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T); #endif #ifdef UPB_TWO_64BIT_TYPES TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T); TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T); #endif #undef TYPE_METHODS template <> struct CanonicalType { typedef Status* Type; }; // Type methods that are only one-per-canonical-type and not one-per-cvariant. #define TYPE_METHODS(utype, ctype) \ inline bool Handlers::Set##utype##Handler(const FieldDef *f, \ const utype##Handler &h) { \ return SetValueHandler(f, h); \ } \ TYPE_METHODS(Double, double); TYPE_METHODS(Float, float); TYPE_METHODS(UInt64, uint64_t); TYPE_METHODS(UInt32, uint32_t); TYPE_METHODS(Int64, int64_t); TYPE_METHODS(Int32, int32_t); TYPE_METHODS(Bool, bool); #undef TYPE_METHODS template struct ReturnOf; template struct ReturnOf { typedef R Return; }; template struct ReturnOf { typedef R Return; }; template struct ReturnOf { typedef R Return; }; template struct ReturnOf { typedef R Return; }; template const void *UniquePtrForType() { static const char ch = 0; return &ch; } template template inline Handler::Handler(F func) : registered_(false), cleanup_data_(func.GetData()), cleanup_func_(func.GetCleanup()) { upb_handlerattr_sethandlerdata(&attr_, func.GetData()); typedef typename ReturnOf::Return Return; typedef typename ConvertParams::Func ConvertedParamsFunc; typedef typename MaybeWrapReturn::Func ReturnWrappedFunc; handler_ = ReturnWrappedFunc().Call; // Set attributes based on what templates can statically tell us about the // user's function. // If the original function returns void, then we know that we wrapped it to // always return ok. bool always_ok = is_same::value; attr_.SetAlwaysOk(always_ok); // Closure parameter and return type. attr_.SetClosureType(UniquePtrForType()); // We use the closure type (from the first parameter) if the return type is // void. This is all nonsense for non START* handlers, but it doesn't matter // because in that case the value will be ignored. typedef typename FirstUnlessVoid::value EffectiveReturn; attr_.SetReturnClosureType(UniquePtrForType()); } template inline Handler::~Handler() { assert(registered_); } inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); } inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); } inline bool HandlerAttributes::SetHandlerData(const void *hd) { return upb_handlerattr_sethandlerdata(this, hd); } inline const void* HandlerAttributes::handler_data() const { return upb_handlerattr_handlerdata(this); } inline bool HandlerAttributes::SetClosureType(const void *type) { return upb_handlerattr_setclosuretype(this, type); } inline const void* HandlerAttributes::closure_type() const { return upb_handlerattr_closuretype(this); } inline bool HandlerAttributes::SetReturnClosureType(const void *type) { return upb_handlerattr_setreturnclosuretype(this, type); } inline const void* HandlerAttributes::return_closure_type() const { return upb_handlerattr_returnclosuretype(this); } inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) { return upb_handlerattr_setalwaysok(this, always_ok); } inline bool HandlerAttributes::always_ok() const { return upb_handlerattr_alwaysok(this); } inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); } inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); } inline const char* BufferHandle::buffer() const { return upb_bufhandle_buf(this); } inline size_t BufferHandle::object_offset() const { return upb_bufhandle_objofs(this); } inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) { upb_bufhandle_setbuf(this, buf, ofs); } template void BufferHandle::SetAttachedObject(const T* obj) { upb_bufhandle_setobj(this, obj, UniquePtrForType()); } template const T* BufferHandle::GetAttachedObject() const { return upb_bufhandle_objtype(this) == UniquePtrForType() ? static_cast(upb_bufhandle_obj(this)) : NULL; } inline reffed_ptr Handlers::New(const MessageDef *m) { upb_handlers *h = upb_handlers_new(m, &h); return reffed_ptr(h, &h); } inline reffed_ptr Handlers::NewFrozen( const MessageDef *m, upb_handlers_callback *callback, const void *closure) { const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure); return reffed_ptr(h, &h); } inline bool Handlers::IsFrozen() const { return upb_handlers_isfrozen(this); } inline void Handlers::Ref(const void *owner) const { upb_handlers_ref(this, owner); } inline void Handlers::Unref(const void *owner) const { upb_handlers_unref(this, owner); } inline void Handlers::DonateRef(const void *from, const void *to) const { upb_handlers_donateref(this, from, to); } inline void Handlers::CheckRef(const void *owner) const { upb_handlers_checkref(this, owner); } inline const Status* Handlers::status() { return upb_handlers_status(this); } inline void Handlers::ClearError() { return upb_handlers_clearerr(this); } inline bool Handlers::Freeze(Status *s) { upb::Handlers* h = this; return upb_handlers_freeze(&h, 1, s); } inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) { return upb_handlers_freeze(handlers, n, s); } inline bool Handlers::Freeze(const std::vector& h, Status* status) { return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status); } inline const MessageDef *Handlers::message_def() const { return upb_handlers_msgdef(this); } inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) { return upb_handlers_addcleanup(this, p, func); } inline bool Handlers::SetStartMessageHandler( const Handlers::StartMessageHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndMessageHandler( const Handlers::EndMessageHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_); } inline bool Handlers::SetStartStringHandler(const FieldDef *f, const StartStringHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndStringHandler(const FieldDef *f, const EndFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetStringHandler(const FieldDef *f, const StringHandler& handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetStartSequenceHandler( const FieldDef *f, const StartFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetStartSubMessageHandler( const FieldDef *f, const StartFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndSequenceHandler(const FieldDef *f, const EndFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) { return upb_handlers_setsubhandlers(this, f, sub); } inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const { return upb_handlers_getsubhandlers(this, f); } inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const { return upb_handlers_getsubhandlers_sel(this, sel); } inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type, Handlers::Selector *s) { return upb_handlers_getselector(f, type, s); } inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) { return upb_handlers_getendselector(start); } inline Handlers::GenericFunction *Handlers::GetHandler( Handlers::Selector selector) { return upb_handlers_gethandler(this, selector); } inline const void *Handlers::GetHandlerData(Handlers::Selector selector) { return upb_handlers_gethandlerdata(this, selector); } inline BytesHandler::BytesHandler() { upb_byteshandler_init(this); } inline BytesHandler::~BytesHandler() { upb_byteshandler_uninit(this); } } // namespace upb #endif // __cplusplus #undef UPB_TWO_32BIT_TYPES #undef UPB_TWO_64BIT_TYPES #undef UPB_INT32_T #undef UPB_UINT32_T #undef UPB_INT32ALT_T #undef UPB_UINT32ALT_T #undef UPB_INT64_T #undef UPB_UINT64_T #undef UPB_INT64ALT_T #undef UPB_UINT64ALT_T #endif // UPB_HANDLERS_INL_H_ #endif // UPB_HANDLERS_H /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2010-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A upb_sink is an object that binds a upb_handlers object to some runtime * state. It is the object that can actually receive data via the upb_handlers * interface. * * Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or * thread-safe. You can create as many of them as you want, but each one may * only be used in a single thread at a time. * * If we compare with class-based OOP, a you can think of a upb_def as an * abstract base class, a upb_handlers as a concrete derived class, and a * upb_sink as an object (class instance). */ #ifndef UPB_SINK_H #define UPB_SINK_H #ifdef __cplusplus namespace upb { class BufferSource; class BytesSink; class Sink; } #endif UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc); UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink); UPB_DECLARE_TYPE(upb::Sink, upb_sink); // Internal-only struct for the sink. struct upb_sinkframe { UPB_PRIVATE_FOR_CPP const upb_handlers *h; void *closure; // For any frames besides the top, this is the END* callback that will run // when the subframe is popped (for example, for a "sequence" frame the frame // above it will be a UPB_HANDLER_ENDSEQ handler). But this is only // necessary for assertion checking inside upb_sink and can be omitted if the // sink has only one caller. // // TODO(haberman): have a mechanism for ensuring that a sink only has one // caller. upb_selector_t selector; }; // The maximum nesting depth that upb::Sink will allow. Matches proto2's limit. // TODO: make this a runtime-settable property of Sink. #define UPB_SINK_MAX_NESTING 64 // A upb::Sink is an object that binds a upb::Handlers object to some runtime // state. It represents an endpoint to which data can be sent. // // TODO(haberman): right now all of these functions take selectors. Should they // take selectorbase instead? // // ie. instead of calling: // sink->StartString(FOO_FIELD_START_STRING, ...) // a selector base would let you say: // sink->StartString(FOO_FIELD, ...) // // This would make call sites a little nicer and require emitting fewer selector // definitions in .h files. // // But the current scheme has the benefit that you can retrieve a function // pointer for any handler with handlers->GetHandler(selector), without having // to have a separate GetHandler() function for each handler type. The JIT // compiler uses this. To accommodate we'd have to expose a separate // GetHandler() for every handler type. // // Also to ponder: selectors right now are independent of a specific Handlers // instance. In other words, they allocate a number to every possible handler // that *could* be registered, without knowing anything about what handlers // *are* registered. That means that using selectors as table offsets prohibits // us from compacting the handler table at Freeze() time. If the table is very // sparse, this could be wasteful. // // Having another selector-like thing that is specific to a Handlers instance // would allow this compacting, but then it would be impossible to write code // ahead-of-time that can be bound to any Handlers instance at runtime. For // example, a .proto file parser written as straight C will not know what // Handlers it will be bound to, so when it calls sink->StartString() what // selector will it pass? It needs a selector like we have today, that is // independent of any particular upb::Handlers. // // Is there a way then to allow Handlers table compaction? UPB_DEFINE_CLASS0(upb::Sink, public: // Constructor with no initialization; must be Reset() before use. Sink() {} // Constructs a new sink for the given frozen handlers and closure. // // TODO: once the Handlers know the expected closure type, verify that T // matches it. template Sink(const Handlers* handlers, T* closure); // Resets the value of the sink. template void Reset(const Handlers* handlers, T* closure); // Returns the top-level object that is bound to this sink. // // TODO: once the Handlers know the expected closure type, verify that T // matches it. template T* GetObject() const; // Functions for pushing data into the sink. // // These return false if processing should stop (either due to error or just // to suspend). // // These may not be called from within one of the same sink's handlers (in // other words, handlers are not re-entrant). // Should be called at the start and end of every message; both the top-level // message and submessages. This means that submessages should use the // following sequence: // sink->StartSubMessage(startsubmsg_selector); // sink->StartMessage(); // // ... // sink->EndMessage(&status); // sink->EndSubMessage(endsubmsg_selector); bool StartMessage(); bool EndMessage(Status* status); // Putting of individual values. These work for both repeated and // non-repeated fields, but for repeated fields you must wrap them in // calls to StartSequence()/EndSequence(). bool PutInt32(Handlers::Selector s, int32_t val); bool PutInt64(Handlers::Selector s, int64_t val); bool PutUInt32(Handlers::Selector s, uint32_t val); bool PutUInt64(Handlers::Selector s, uint64_t val); bool PutFloat(Handlers::Selector s, float val); bool PutDouble(Handlers::Selector s, double val); bool PutBool(Handlers::Selector s, bool val); // Putting of string/bytes values. Each string can consist of zero or more // non-contiguous buffers of data. // // For StartString(), the function will write a sink for the string to "sub." // The sub-sink must be used for any/all PutStringBuffer() calls. bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub); size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len, const BufferHandle *handle); bool EndString(Handlers::Selector s); // For submessage fields. // // For StartSubMessage(), the function will write a sink for the string to // "sub." The sub-sink must be used for any/all handlers called within the // submessage. bool StartSubMessage(Handlers::Selector s, Sink* sub); bool EndSubMessage(Handlers::Selector s); // For repeated fields of any type, the sequence of values must be wrapped in // these calls. // // For StartSequence(), the function will write a sink for the string to // "sub." The sub-sink must be used for any/all handlers called within the // sequence. bool StartSequence(Handlers::Selector s, Sink* sub); bool EndSequence(Handlers::Selector s); // Copy and assign specifically allowed. // We don't even bother making these members private because so many // functions need them and this is mainly just a dumb data container anyway. , UPB_DEFINE_STRUCT0(upb_sink, const upb_handlers *handlers; void *closure; )); UPB_DEFINE_CLASS0(upb::BytesSink, public: BytesSink() {} // Constructs a new sink for the given frozen handlers and closure. // // TODO(haberman): once the Handlers know the expected closure type, verify // that T matches it. template BytesSink(const BytesHandler* handler, T* closure); // Resets the value of the sink. template void Reset(const BytesHandler* handler, T* closure); bool Start(size_t size_hint, void **subc); size_t PutBuffer(void *subc, const char *buf, size_t len, const BufferHandle *handle); bool End(); , UPB_DEFINE_STRUCT0(upb_bytessink, const upb_byteshandler *handler; void *closure; )); // A class for pushing a flat buffer of data to a BytesSink. // You can construct an instance of this to get a resumable source, // or just call the static PutBuffer() to do a non-resumable push all in one go. UPB_DEFINE_CLASS0(upb::BufferSource, public: BufferSource(); BufferSource(const char* buf, size_t len, BytesSink* sink); // Returns true if the entire buffer was pushed successfully. Otherwise the // next call to PutNext() will resume where the previous one left off. // TODO(haberman): implement this. bool PutNext(); // A static version; with this version is it not possible to resume in the // case of failure or a partially-consumed buffer. static bool PutBuffer(const char* buf, size_t len, BytesSink* sink); template static bool PutBuffer(const T& str, BytesSink* sink) { return PutBuffer(str.c_str(), str.size(), sink); } , UPB_DEFINE_STRUCT0(upb_bufsrc, )); UPB_BEGIN_EXTERN_C // { // Inline definitions. UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h, void *closure) { s->handler = h; s->closure = closure; } UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint, void **subc) { *subc = s->closure; if (!s->handler) return true; upb_startstr_handlerfunc *start = (upb_startstr_handlerfunc *)s->handler->table[UPB_STARTSTR_SELECTOR].func; if (!start) return true; *subc = start(s->closure, upb_handlerattr_handlerdata( &s->handler->table[UPB_STARTSTR_SELECTOR].attr), size_hint); return *subc != NULL; } UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc, const char *buf, size_t size, const upb_bufhandle* handle) { if (!s->handler) return true; upb_string_handlerfunc *putbuf = (upb_string_handlerfunc *)s->handler->table[UPB_STRING_SELECTOR].func; if (!putbuf) return true; return putbuf(subc, upb_handlerattr_handlerdata( &s->handler->table[UPB_STRING_SELECTOR].attr), buf, size, handle); } UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) { if (!s->handler) return true; upb_endfield_handlerfunc *end = (upb_endfield_handlerfunc *)s->handler->table[UPB_ENDSTR_SELECTOR].func; if (!end) return true; return end(s->closure, upb_handlerattr_handlerdata( &s->handler->table[UPB_ENDSTR_SELECTOR].attr)); } UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len, upb_bytessink *sink) { void *subc; upb_bufhandle handle; upb_bufhandle_init(&handle); upb_bufhandle_setbuf(&handle, buf, 0); bool ret = upb_bytessink_start(sink, len, &subc); if (ret && len != 0) { ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) == len); } if (ret) { ret = upb_bytessink_end(sink); } upb_bufhandle_uninit(&handle); return ret; } #define PUTVAL(type, ctype) \ UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel, \ ctype val) { \ if (!s->handlers) return true; \ upb_##type##_handlerfunc *func = \ (upb_##type##_handlerfunc *)upb_handlers_gethandler(s->handlers, sel); \ if (!func) return true; \ const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); \ return func(s->closure, hd, val); \ } PUTVAL(int32, int32_t); PUTVAL(int64, int64_t); PUTVAL(uint32, uint32_t); PUTVAL(uint64, uint64_t); PUTVAL(float, float); PUTVAL(double, double); PUTVAL(bool, bool); #undef PUTVAL UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) { s->handlers = h; s->closure = c; } UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel, const char *buf, size_t n, const upb_bufhandle *handle) { if (!s->handlers) return n; upb_string_handlerfunc *handler = (upb_string_handlerfunc *)upb_handlers_gethandler(s->handlers, sel); if (!handler) return n; const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); return handler(s->closure, hd, buf, n, handle); } UPB_INLINE bool upb_sink_startmsg(upb_sink *s) { if (!s->handlers) return true; upb_startmsg_handlerfunc *startmsg = (upb_startmsg_handlerfunc *)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR); if (!startmsg) return true; const void *hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR); return startmsg(s->closure, hd); } UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) { if (!s->handlers) return true; upb_endmsg_handlerfunc *endmsg = (upb_endmsg_handlerfunc *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR); if (!endmsg) return true; const void *hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR); return endmsg(s->closure, hd, status); } UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel, upb_sink *sub) { sub->closure = s->closure; sub->handlers = s->handlers; if (!s->handlers) return true; upb_startfield_handlerfunc *startseq = (upb_startfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel); if (!startseq) return true; const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); sub->closure = startseq(s->closure, hd); return sub->closure ? true : false; } UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) { if (!s->handlers) return true; upb_endfield_handlerfunc *endseq = (upb_endfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel); if (!endseq) return true; const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); return endseq(s->closure, hd); } UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel, size_t size_hint, upb_sink *sub) { sub->closure = s->closure; sub->handlers = s->handlers; if (!s->handlers) return true; upb_startstr_handlerfunc *startstr = (upb_startstr_handlerfunc*)upb_handlers_gethandler(s->handlers, sel); if (!startstr) return true; const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); sub->closure = startstr(s->closure, hd, size_hint); return sub->closure ? true : false; } UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) { if (!s->handlers) return true; upb_endfield_handlerfunc *endstr = (upb_endfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel); if (!endstr) return true; const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); return endstr(s->closure, hd); } UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel, upb_sink *sub) { sub->closure = s->closure; if (!s->handlers) { sub->handlers = NULL; return true; } sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel); upb_startfield_handlerfunc *startsubmsg = (upb_startfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel); if (!startsubmsg) return true; const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); sub->closure = startsubmsg(s->closure, hd); return sub->closure ? true : false; } UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) { if (!s->handlers) return true; upb_endfield_handlerfunc *endsubmsg = (upb_endfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel); if (!endsubmsg) return s->closure; const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); return endsubmsg(s->closure, hd); } UPB_END_EXTERN_C // } #ifdef __cplusplus namespace upb { template Sink::Sink(const Handlers* handlers, T* closure) { upb_sink_reset(this, handlers, closure); } template inline void Sink::Reset(const Handlers* handlers, T* closure) { upb_sink_reset(this, handlers, closure); } inline bool Sink::StartMessage() { return upb_sink_startmsg(this); } inline bool Sink::EndMessage(Status* status) { return upb_sink_endmsg(this, status); } inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) { return upb_sink_putint32(this, sel, val); } inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) { return upb_sink_putint64(this, sel, val); } inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) { return upb_sink_putuint32(this, sel, val); } inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) { return upb_sink_putuint64(this, sel, val); } inline bool Sink::PutFloat(Handlers::Selector sel, float val) { return upb_sink_putfloat(this, sel, val); } inline bool Sink::PutDouble(Handlers::Selector sel, double val) { return upb_sink_putdouble(this, sel, val); } inline bool Sink::PutBool(Handlers::Selector sel, bool val) { return upb_sink_putbool(this, sel, val); } inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint, Sink *sub) { return upb_sink_startstr(this, sel, size_hint, sub); } inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf, size_t len, const BufferHandle* handle) { return upb_sink_putstring(this, sel, buf, len, handle); } inline bool Sink::EndString(Handlers::Selector sel) { return upb_sink_endstr(this, sel); } inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) { return upb_sink_startsubmsg(this, sel, sub); } inline bool Sink::EndSubMessage(Handlers::Selector sel) { return upb_sink_endsubmsg(this, sel); } inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) { return upb_sink_startseq(this, sel, sub); } inline bool Sink::EndSequence(Handlers::Selector sel) { return upb_sink_endseq(this, sel); } template BytesSink::BytesSink(const BytesHandler* handler, T* closure) { Reset(handler, closure); } template void BytesSink::Reset(const BytesHandler *handler, T *closure) { upb_bytessink_reset(this, handler, closure); } inline bool BytesSink::Start(size_t size_hint, void **subc) { return upb_bytessink_start(this, size_hint, subc); } inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len, const BufferHandle *handle) { return upb_bytessink_putbuf(this, subc, buf, len, handle); } inline bool BytesSink::End() { return upb_bytessink_end(this); } inline bool BufferSource::PutBuffer(const char *buf, size_t len, BytesSink *sink) { return upb_bufsrc_putbuf(buf, len, sink); } } // namespace upb #endif #endif /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2013 Google Inc. See LICENSE for details. * Author: Josh Haberman * * For handlers that do very tiny, very simple operations, the function call * overhead of calling a handler can be significant. This file allows the * user to define handlers that do something very simple like store the value * to memory and/or set a hasbit. JIT compilers can then special-case these * handlers and emit specialized code for them instead of actually calling the * handler. * * The functionality is very simple/limited right now but may expand to be able * to call another function. */ #ifndef UPB_SHIM_H #define UPB_SHIM_H typedef struct { size_t offset; int32_t hasbit; } upb_shim_data; #ifdef __cplusplus namespace upb { struct Shim { typedef upb_shim_data Data; // Sets a handler for the given field that writes the value to the given // offset and, if hasbit >= 0, sets a bit at the given bit offset. Returns // true if the handler was set successfully. static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit); // If this handler is a shim, returns the corresponding upb::Shim::Data and // stores the type in "type". Otherwise returns NULL. static const Data* GetData(const Handlers* h, Handlers::Selector s, FieldDef::Type* type); }; } // namespace upb #endif UPB_BEGIN_EXTERN_C // { // C API. bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset, int32_t hasbit); const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s, upb_fieldtype_t *type); UPB_END_EXTERN_C // } #ifdef __cplusplus // C++ Wrappers. namespace upb { inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs, int32_t hasbit) { return upb_shim_set(h, f, ofs, hasbit); } inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s, FieldDef::Type* type) { return upb_shim_getdata(h, s, type); } } // namespace upb #endif #endif // UPB_SHIM_H /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2011 Google Inc. See LICENSE for details. * Author: Josh Haberman * * upb::descriptor::Reader provides a way of building upb::Defs from * data in descriptor.proto format. */ #ifndef UPB_DESCRIPTOR_H #define UPB_DESCRIPTOR_H #ifdef __cplusplus namespace upb { namespace descriptor { class Reader; } // namespace descriptor } // namespace upb #endif UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader); // Internal-only structs used by Reader. // upb_deflist is an internal-only dynamic array for storing a growing list of // upb_defs. typedef struct { UPB_PRIVATE_FOR_CPP upb_def **defs; size_t len; size_t size; bool owned; } upb_deflist; // We keep a stack of all the messages scopes we are currently in, as well as // the top-level file scope. This is necessary to correctly qualify the // definitions that are contained inside. "name" tracks the name of the // message or package (a bare name -- not qualified by any enclosing scopes). typedef struct { UPB_PRIVATE_FOR_CPP char *name; // Index of the first def that is under this scope. For msgdefs, the // msgdef itself is at start-1. int start; } upb_descreader_frame; // The maximum number of nested declarations that are allowed, ie. // message Foo { // message Bar { // message Baz { // } // } // } // // This is a resource limit that affects how big our runtime stack can grow. // TODO: make this a runtime-settable property of the Reader instance. #define UPB_MAX_MESSAGE_NESTING 64 // Class that receives descriptor data according to the descriptor.proto schema // and use it to build upb::Defs corresponding to that schema. UPB_DEFINE_CLASS0(upb::descriptor::Reader, public: // These handlers must have come from NewHandlers() and must outlive the // Reader. // // TODO: generate the handlers statically (like we do with the // descriptor.proto defs) so that there is no need to pass this parameter (or // to build/memory-manage the handlers at runtime at all). Unfortunately this // is a bit tricky to implement for Handlers, but necessary to simplify this // interface. Reader(const Handlers* handlers, Status* status); ~Reader(); // Resets the reader's state and discards any defs it may have built. void Reset(); // The reader's input; this is where descriptor.proto data should be sent. Sink* input(); // Returns an array of all defs that have been parsed, and transfers ownership // of them to "owner". The number of defs is stored in *n. Ownership of the // returned array is retained and is invalidated by any other call into // Reader. // // These defs are not frozen or resolved; they are ready to be added to a // symtab. upb::Def** GetDefs(void* owner, int* n); // Builds and returns handlers for the reader, owned by "owner." static Handlers* NewHandlers(const void* owner); , UPB_DEFINE_STRUCT0(upb_descreader, upb_sink sink; upb_deflist defs; upb_descreader_frame stack[UPB_MAX_MESSAGE_NESTING]; int stack_len; uint32_t number; char *name; bool saw_number; bool saw_name; char *default_string; upb_fielddef *f; )); UPB_BEGIN_EXTERN_C // { // C API. void upb_descreader_init(upb_descreader *r, const upb_handlers *handlers, upb_status *status); void upb_descreader_uninit(upb_descreader *r); void upb_descreader_reset(upb_descreader *r); upb_sink *upb_descreader_input(upb_descreader *r); upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n); const upb_handlers *upb_descreader_newhandlers(const void *owner); UPB_END_EXTERN_C // } #ifdef __cplusplus // C++ implementation details. ///////////////////////////////////////////////// namespace upb { namespace descriptor { inline Reader::Reader(const Handlers *h, Status *s) { upb_descreader_init(this, h, s); } inline Reader::~Reader() { upb_descreader_uninit(this); } inline void Reader::Reset() { upb_descreader_reset(this); } inline Sink* Reader::input() { return upb_descreader_input(this); } inline upb::Def** Reader::GetDefs(void* owner, int* n) { return upb_descreader_getdefs(this, owner, n); } } // namespace descriptor } // namespace upb #endif #endif // UPB_DESCRIPTOR_H /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009-2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Internal-only definitions for the decoder. */ #ifndef UPB_DECODER_INT_H_ #define UPB_DECODER_INT_H_ #include /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009-2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * upb::pb::Decoder implements a high performance, streaming, resumable decoder * for the binary protobuf format. * * This interface works the same regardless of what decoder backend is being * used. A client of this class does not need to know whether decoding is using * a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder. By default, * it will always use the fastest available decoder. However, you can call * set_allow_jit(false) to disable any JIT decoder that might be available. * This is primarily useful for testing purposes. */ #ifndef UPB_DECODER_H_ #define UPB_DECODER_H_ #ifdef __cplusplus namespace upb { namespace pb { class CodeCache; class Decoder; class DecoderMethod; class DecoderMethodOptions; } // namespace pb } // namespace upb #endif UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache); UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder); UPB_DECLARE_TYPE(upb::pb::DecoderMethod, upb_pbdecodermethod); UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts); // The maximum that any submessages can be nested. Matches proto2's limit. // This specifies the size of the decoder's statically-sized array and therefore // setting it high will cause the upb::pb::Decoder object to be larger. // // If necessary we can add a runtime-settable property to Decoder that allow // this to be larger than the compile-time setting, but this would add // complexity, particularly since we would have to decide how/if to give users // the ability to set a custom memory allocation function. #define UPB_DECODER_MAX_NESTING 64 // Internal-only struct used by the decoder. typedef struct { UPB_PRIVATE_FOR_CPP // Space optimization note: we store two pointers here that the JIT // doesn't need at all; the upb_handlers* inside the sink and // the dispatch table pointer. We can optimze so that the JIT uses // smaller stack frames than the interpreter. The only thing we need // to guarantee is that the fallback routines can find end_ofs. upb_sink sink; // The absolute stream offset of the end-of-frame delimiter. // Non-delimited frames (groups and non-packed repeated fields) reuse the // delimiter of their parent, even though the frame may not end there. // // NOTE: the JIT stores a slightly different value here for non-top frames. // It stores the value relative to the end of the enclosed message. But the // top frame is still stored the same way, which is important for ensuring // that calls from the JIT into C work correctly. uint64_t end_ofs; const uint32_t *base; // 0 indicates a length-delimited field. // A positive number indicates a known group. // A negative number indicates an unknown group. int32_t groupnum; upb_inttable *dispatch; // Not used by the JIT. } upb_pbdecoder_frame; // The parameters one uses to construct a DecoderMethod. // TODO(haberman): move allowjit here? Seems more convenient for users. UPB_DEFINE_CLASS0(upb::pb::DecoderMethodOptions, public: // Parameter represents the destination handlers that this method will push // to. explicit DecoderMethodOptions(const Handlers* dest_handlers); // Should the decoder push submessages to lazy handlers for fields that have // them? The caller should set this iff the lazy handlers expect data that is // in protobuf binary format and the caller wishes to lazy parse it. void set_lazy(bool lazy); , UPB_DEFINE_STRUCT0(upb_pbdecodermethodopts, const upb_handlers *handlers; bool lazy; )); // Represents the code to parse a protobuf according to a destination Handlers. UPB_DEFINE_CLASS1(upb::pb::DecoderMethod, upb::RefCounted, public: // From upb::ReferenceCounted. void Ref(const void* owner) const; void Unref(const void* owner) const; void DonateRef(const void* from, const void* to) const; void CheckRef(const void* owner) const; // The destination handlers that are statically bound to this method. // This method is only capable of outputting to a sink that uses these // handlers. const Handlers* dest_handlers() const; // The input handlers for this decoder method. const BytesHandler* input_handler() const; // Whether this method is native. bool is_native() const; // Convenience method for generating a DecoderMethod without explicitly // creating a CodeCache. static reffed_ptr New(const DecoderMethodOptions& opts); private: UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod); , UPB_DEFINE_STRUCT(upb_pbdecodermethod, upb_refcounted, // While compiling, the base is relative in "ofs", after compiling it is // absolute in "ptr". union { uint32_t ofs; // PC offset of method. void *ptr; // Pointer to bytecode or machine code for this method. } code_base; // The decoder method group to which this method belongs. We own a ref. // Owning a ref on the entire group is more coarse-grained than is strictly // necessary; all we truly require is that methods we directly reference // outlive us, while the group could contain many other messages we don't // require. But the group represents the messages that were // allocated+compiled together, so it makes the most sense to free them // together also. const upb_refcounted *group; // Whether this method is native code or bytecode. bool is_native_; // The handler one calls to invoke this method. upb_byteshandler input_handler_; // The destination handlers this method is bound to. We own a ref. const upb_handlers *dest_handlers_; // Dispatch table -- used by both bytecode decoder and JIT when encountering a // field number that wasn't the one we were expecting to see. See // decoder.int.h for the layout of this table. upb_inttable dispatch; )); // A Decoder receives binary protobuf data on its input sink and pushes the // decoded data to its output sink. UPB_DEFINE_CLASS0(upb::pb::Decoder, public: // Constructs a decoder instance for the given method, which must outlive this // decoder. Any errors during parsing will be set on the given status, which // must also outlive this decoder. Decoder(const DecoderMethod* method, Status* status); ~Decoder(); // Returns the DecoderMethod this decoder is parsing from. // TODO(haberman): Do users need to be able to rebind this? const DecoderMethod* method() const; // Resets the state of the decoder. void Reset(); // Returns number of bytes successfully parsed. // // This can be useful for determining the stream position where an error // occurred. // // This value may not be up-to-date when called from inside a parsing // callback. uint64_t BytesParsed() const; // Resets the output sink of the Decoder. // The given sink must match method()->dest_handlers(). // // This must be called at least once before the decoder can be used. It may // only be called with the decoder is in a state where it was just created or // reset with pipeline.Reset(). The given sink must be from the same pipeline // as this decoder. bool ResetOutput(Sink* sink); // The sink on which this decoder receives input. BytesSink* input(); private: UPB_DISALLOW_COPY_AND_ASSIGN(Decoder); , UPB_DEFINE_STRUCT0(upb_pbdecoder, UPB_QUOTE( // Our input sink. upb_bytessink input_; // The decoder method we are parsing with (owned). const upb_pbdecodermethod *method_; size_t call_len; const uint32_t *pc, *last; // Current input buffer and its stream offset. const char *buf, *ptr, *end, *checkpoint; // End of the delimited region, relative to ptr, or NULL if not in this buf. const char *delim_end; // End of the delimited region, relative to ptr, or end if not in this buf. const char *data_end; // Overall stream offset of "buf." uint64_t bufstart_ofs; // Buffer for residual bytes not parsed from the previous buffer. // The maximum number of residual bytes we require is 12; a five-byte // unknown tag plus an eight-byte value, less one because the value // is only a partial value. char residual[12]; char *residual_end; // Stores the user buffer passed to our decode function. const char *buf_param; size_t size_param; const upb_bufhandle *handle; #ifdef UPB_USE_JIT_X64 // Used momentarily by the generated code to store a value while a user // function is called. uint32_t tmp_len; const void *saved_rsp; #endif upb_status *status; // Our internal stack. upb_pbdecoder_frame *top, *limit; upb_pbdecoder_frame stack[UPB_DECODER_MAX_NESTING]; #ifdef UPB_USE_JIT_X64 // Each native stack frame needs two pointers, plus we need a few frames for // the enter/exit trampolines. const uint32_t *callstack[(UPB_DECODER_MAX_NESTING * 2) + 10]; #else const uint32_t *callstack[UPB_DECODER_MAX_NESTING]; #endif ))); // A class for caching protobuf processing code, whether bytecode for the // interpreted decoder or machine code for the JIT. // // This class is not thread-safe. UPB_DEFINE_CLASS0(upb::pb::CodeCache, public: CodeCache(); ~CodeCache(); // Whether the cache is allowed to generate machine code. Defaults to true. // There is no real reason to turn it off except for testing or if you are // having a specific problem with the JIT. // // Note that allow_jit = true does not *guarantee* that the code will be JIT // compiled. If this platform is not supported or the JIT was not compiled // in, the code may still be interpreted. bool allow_jit() const; // This may only be called when the object is first constructed, and prior to // any code generation, otherwise returns false and does nothing. bool set_allow_jit(bool allow); // Returns a DecoderMethod that can push data to the given handlers. // If a suitable method already exists, it will be returned from the cache. // // Specifying the destination handlers here allows the DecoderMethod to be // statically bound to the destination handlers if possible, which can allow // more efficient decoding. However the returned method may or may not // actually be statically bound. But in all cases, the returned method can // push data to the given handlers. const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts); // If/when someone needs to explicitly create a dynamically-bound // DecoderMethod*, we can add a method to get it here. private: UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache); , UPB_DEFINE_STRUCT0(upb_pbcodecache, bool allow_jit_; // Array of mgroups. upb_inttable groups; )); UPB_BEGIN_EXTERN_C // { void upb_pbdecoder_init(upb_pbdecoder *d, const upb_pbdecodermethod *method, upb_status *status); void upb_pbdecoder_uninit(upb_pbdecoder *d); void upb_pbdecoder_reset(upb_pbdecoder *d); const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d); bool upb_pbdecoder_resetoutput(upb_pbdecoder *d, upb_sink *sink); upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d); uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d); void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts, const upb_handlers *h); void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy); void upb_pbdecodermethod_ref(const upb_pbdecodermethod *m, const void *owner); void upb_pbdecodermethod_unref(const upb_pbdecodermethod *m, const void *owner); void upb_pbdecodermethod_donateref(const upb_pbdecodermethod *m, const void *from, const void *to); void upb_pbdecodermethod_checkref(const upb_pbdecodermethod *m, const void *owner); const upb_handlers *upb_pbdecodermethod_desthandlers( const upb_pbdecodermethod *m); const upb_byteshandler *upb_pbdecodermethod_inputhandler( const upb_pbdecodermethod *m); bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m); const upb_pbdecodermethod *upb_pbdecodermethod_new( const upb_pbdecodermethodopts *opts, const void *owner); void upb_pbcodecache_init(upb_pbcodecache *c); void upb_pbcodecache_uninit(upb_pbcodecache *c); bool upb_pbcodecache_allowjit(const upb_pbcodecache *c); bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow); const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod( upb_pbcodecache *c, const upb_pbdecodermethodopts *opts); UPB_END_EXTERN_C // } #ifdef __cplusplus namespace upb { namespace pb { inline Decoder::Decoder(const DecoderMethod* m, Status* s) { upb_pbdecoder_init(this, m, s); } inline Decoder::~Decoder() { upb_pbdecoder_uninit(this); } inline const DecoderMethod* Decoder::method() const { return upb_pbdecoder_method(this); } inline void Decoder::Reset() { upb_pbdecoder_reset(this); } inline uint64_t Decoder::BytesParsed() const { return upb_pbdecoder_bytesparsed(this); } inline bool Decoder::ResetOutput(Sink* sink) { return upb_pbdecoder_resetoutput(this, sink); } inline BytesSink* Decoder::input() { return upb_pbdecoder_input(this); } inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) { upb_pbdecodermethodopts_init(this, h); } inline void DecoderMethodOptions::set_lazy(bool lazy) { upb_pbdecodermethodopts_setlazy(this, lazy); } inline void DecoderMethod::Ref(const void *owner) const { upb_pbdecodermethod_ref(this, owner); } inline void DecoderMethod::Unref(const void *owner) const { upb_pbdecodermethod_unref(this, owner); } inline void DecoderMethod::DonateRef(const void *from, const void *to) const { upb_pbdecodermethod_donateref(this, from, to); } inline void DecoderMethod::CheckRef(const void *owner) const { upb_pbdecodermethod_checkref(this, owner); } inline const Handlers* DecoderMethod::dest_handlers() const { return upb_pbdecodermethod_desthandlers(this); } inline const BytesHandler* DecoderMethod::input_handler() const { return upb_pbdecodermethod_inputhandler(this); } inline bool DecoderMethod::is_native() const { return upb_pbdecodermethod_isnative(this); } // static inline reffed_ptr DecoderMethod::New( const DecoderMethodOptions &opts) { const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m); return reffed_ptr(m, &m); } inline CodeCache::CodeCache() { upb_pbcodecache_init(this); } inline CodeCache::~CodeCache() { upb_pbcodecache_uninit(this); } inline bool CodeCache::allow_jit() const { return upb_pbcodecache_allowjit(this); } inline bool CodeCache::set_allow_jit(bool allow) { return upb_pbcodecache_setallowjit(this, allow); } inline const DecoderMethod *CodeCache::GetDecoderMethod( const DecoderMethodOptions& opts) { return upb_pbcodecache_getdecodermethod(this, &opts); } } // namespace pb } // namespace upb #endif // __cplusplus #endif /* UPB_DECODER_H_ */ // Opcode definitions. The canonical meaning of each opcode is its // implementation in the interpreter (the JIT is written to match this). // // All instructions have the opcode in the low byte. // Instruction format for most instructions is: // // +-------------------+--------+ // | arg (24) | op (8) | // +-------------------+--------+ // // Exceptions are indicated below. A few opcodes are multi-word. typedef enum { // Opcodes 1-8, 13, 15-18 parse their respective descriptor types. // Arg for all of these is the upb selector for this field. #define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32), T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64), #undef T OP_STARTMSG = 9, // No arg. OP_ENDMSG = 10, // No arg. OP_STARTSEQ = 11, OP_ENDSEQ = 12, OP_STARTSUBMSG = 14, OP_ENDSUBMSG = 19, OP_STARTSTR = 20, OP_STRING = 21, OP_ENDSTR = 22, OP_PUSHTAGDELIM = 23, // No arg. OP_PUSHLENDELIM = 24, // No arg. OP_POP = 25, // No arg. OP_SETDELIM = 26, // No arg. OP_SETBIGGROUPNUM = 27, // two words: | unused (24) | opc || groupnum (32) | OP_CHECKDELIM = 28, OP_CALL = 29, OP_RET = 30, OP_BRANCH = 31, // Different opcodes depending on how many bytes expected. OP_TAG1 = 32, // | expected tag (16) | jump target (8) | opc (8) | OP_TAG2 = 33, // | expected tag (16) | jump target (8) | opc (8) | OP_TAGN = 34, // three words: // | unused (16) | jump target(8) | opc (8) | // | expected tag 1 (32) | // | expected tag 2 (32) | OP_SETDISPATCH = 35, // N words: // | unused (24) | opc | // | upb_inttable* (32 or 64) | OP_HALT = 36, // No arg. } opcode; #define OP_MAX OP_HALT UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; } // Method group; represents a set of decoder methods that had their code // emitted together, and must therefore be freed together. Immutable once // created. It is possible we may want to expose this to users at some point. // // Overall ownership of Decoder objects looks like this: // // +----------+ // | | <---> DecoderMethod // | method | // CodeCache ---> | group | <---> DecoderMethod // | | // | (mgroup) | <---> DecoderMethod // +----------+ typedef struct { upb_refcounted base; // Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod. We own refs on the // methods. upb_inttable methods; // When we add the ability to link to previously existing mgroups, we'll // need an array of mgroups we reference here, and own refs on them. // The bytecode for our methods, if any exists. Owned by us. uint32_t *bytecode; uint32_t *bytecode_end; #ifdef UPB_USE_JIT_X64 // JIT-generated machine code, if any. upb_string_handlerfunc *jit_code; // The size of the jit_code (required to munmap()). size_t jit_size; char *debug_info; void *dl; #endif } mgroup; // Decoder entry points; used as handlers. void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint); void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint); size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle); bool upb_pbdecoder_end(void *closure, const void *handler_data); // Decoder-internal functions that the JIT calls to handle fallback paths. int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, size_t size, const upb_bufhandle *handle); size_t upb_pbdecoder_suspend(upb_pbdecoder *d); int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, uint8_t wire_type); int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected); int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64); int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32); int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64); void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg); // Error messages that are shared between the bytecode and JIT decoders. extern const char *kPbDecoderStackOverflow; // Access to decoderplan members needed by the decoder. const char *upb_pbdecoder_getopname(unsigned int op); // JIT codegen entry point. void upb_pbdecoder_jit(mgroup *group); void upb_pbdecoder_freejit(mgroup *group); // A special label that means "do field dispatch for this message and branch to // wherever that takes you." #define LABEL_DISPATCH 0 // A special slot in the dispatch table that stores the epilogue (ENDMSG and/or // RET) for branching to when we find an appropriate ENDGROUP tag. #define DISPATCH_ENDMSG 0 // It's important to use this invalid wire type instead of 0 (which is a valid // wire type). #define NO_WIRE_TYPE 0xff // The dispatch table layout is: // [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ] // // If wt1 matches, jump to the 48-bit offset. If wt2 matches, lookup // (UPB_MAX_FIELDNUMBER + fieldnum) and jump there. // // We need two wire types because of packed/non-packed compatibility. A // primitive repeated field can use either wire type and be valid. While we // could key the table on fieldnum+wiretype, the table would be 8x sparser. // // Storing two wire types in the primary value allows us to quickly rule out // the second wire type without needing to do a separate lookup (this case is // less common than an unknown field). UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1, uint8_t wt2) { return (ofs << 16) | (wt2 << 8) | wt1; } UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs, uint8_t *wt1, uint8_t *wt2) { *wt1 = (uint8_t)dispatch; *wt2 = (uint8_t)(dispatch >> 8); *ofs = dispatch >> 16; } // All of the functions in decoder.c that return int32_t return values according // to the following scheme: // 1. negative values indicate a return code from the following list. // 2. positive values indicate that error or end of buffer was hit, and // that the decode function should immediately return the given value // (the decoder state has already been suspended and is ready to be // resumed). #define DECODE_OK -1 #define DECODE_MISMATCH -2 // Used only from checktag_slow(). #define DECODE_ENDGROUP -3 // Used only from checkunknown(). #define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; } #endif // UPB_DECODER_INT_H_ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2011 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A number of routines for varint manipulation (we keep them all around to * have multiple approaches available for benchmarking). */ #ifndef UPB_VARINT_DECODER_H_ #define UPB_VARINT_DECODER_H_ #include #include #include #ifdef __cplusplus extern "C" { #endif // A list of types as they are encoded on-the-wire. typedef enum { UPB_WIRE_TYPE_VARINT = 0, UPB_WIRE_TYPE_64BIT = 1, UPB_WIRE_TYPE_DELIMITED = 2, UPB_WIRE_TYPE_START_GROUP = 3, UPB_WIRE_TYPE_END_GROUP = 4, UPB_WIRE_TYPE_32BIT = 5, } upb_wiretype_t; #define UPB_MAX_WIRE_TYPE 5 // The maximum number of bytes that it takes to encode a 64-bit varint. // Note that with a better encoding this could be 9 (TODO: write up a // wiki document about this). #define UPB_PB_VARINT_MAX_LEN 10 // Array of the "native" (ie. non-packed-repeated) wire type for the given a // descriptor type (upb_descriptortype_t). extern const uint8_t upb_pb_native_wire_types[]; /* Zig-zag encoding/decoding **************************************************/ UPB_INLINE int32_t upb_zzdec_32(uint32_t n) { return (n >> 1) ^ -(int32_t)(n & 1); } UPB_INLINE int64_t upb_zzdec_64(uint64_t n) { return (n >> 1) ^ -(int64_t)(n & 1); } UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); } UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); } /* Decoding *******************************************************************/ // All decoding functions return this struct by value. typedef struct { const char *p; // NULL if the varint was unterminated. uint64_t val; } upb_decoderet; // Four functions for decoding a varint of at most eight bytes. They are all // functionally identical, but are implemented in different ways and likely have // different performance profiles. We keep them around for performance testing. // // Note that these functions may not read byte-by-byte, so they must not be used // unless there are at least eight bytes left in the buffer! upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r); upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r); upb_decoderet upb_vdecode_max8_wright(upb_decoderet r); upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r); // Template for a function that checks the first two bytes with branching // and dispatches 2-10 bytes with a separate function. Note that this may read // up to 10 bytes, so it must not be used unless there are at least ten bytes // left in the buffer! #define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function) \ UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) { \ uint8_t *p = (uint8_t*)_p; \ if ((*p & 0x80) == 0) { upb_decoderet r = {_p + 1, *p & 0x7fU}; return r; } \ upb_decoderet r = {_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7)}; \ if ((*(p + 1) & 0x80) == 0) return r; \ return decode_max8_function(r); \ } UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32); UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64); UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright); UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino); #undef UPB_VARINT_DECODER_CHECK2 // Our canonical functions for decoding varints, based on the currently // favored best-performing implementations. UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) { if (sizeof(long) == 8) return upb_vdecode_check2_branch64(p); else return upb_vdecode_check2_branch32(p); } UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) { return upb_vdecode_max8_massimino(r); } /* Encoding *******************************************************************/ UPB_INLINE int upb_value_size(uint64_t val) { #ifdef __GNUC__ int high_bit = 63 - __builtin_clzll(val); // 0-based, undef if val == 0. #else int high_bit = 0; uint64_t tmp = val; while(tmp >>= 1) high_bit++; #endif return val == 0 ? 1 : high_bit / 8 + 1; } // Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN // bytes long), returning how many bytes were used. // // TODO: benchmark and optimize if necessary. UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) { if (val == 0) { buf[0] = 0; return 1; } size_t i = 0; while (val) { uint8_t byte = val & 0x7fU; val >>= 7; if (val) byte |= 0x80U; buf[i++] = byte; } return i; } UPB_INLINE size_t upb_varint_size(uint64_t val) { char buf[UPB_PB_VARINT_MAX_LEN]; return upb_vencode64(val, buf); } // Encodes a 32-bit varint, *not* sign-extended. UPB_INLINE uint64_t upb_vencode32(uint32_t val) { char buf[UPB_PB_VARINT_MAX_LEN]; size_t bytes = upb_vencode64(val, buf); uint64_t ret = 0; assert(bytes <= 5); memcpy(&ret, buf, bytes); assert(ret <= 0xffffffffffU); return ret; } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_VARINT_DECODER_H_ */ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009-2010 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Implements a set of upb_handlers that write protobuf data to the binary wire * format. * * This encoder implementation does not have any access to any out-of-band or * precomputed lengths for submessages, so it must buffer submessages internally * before it can emit the first byte. */ #ifndef UPB_ENCODER_H_ #define UPB_ENCODER_H_ #ifdef __cplusplus namespace upb { namespace pb { class Encoder; } // namespace pb } // namespace upb #endif UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder); #define UPB_PBENCODER_MAX_NESTING 100 /* upb::pb::Encoder ***********************************************************/ // The output buffer is divided into segments; a segment is a string of data // that is "ready to go" -- it does not need any varint lengths inserted into // the middle. The seams between segments are where varints will be inserted // once they are known. // // We also use the concept of a "run", which is a range of encoded bytes that // occur at a single submessage level. Every segment contains one or more runs. // // A segment can span messages. Consider: // // .--Submessage lengths---------. // | | | // | V V // V | |--------------- | |----------------- // Submessages: | |----------------------------------------------- // Top-level msg: ------------------------------------------------------------ // // Segments: ----- ------------------- ----------------- // Runs: *---- *--------------*--- *---------------- // (* marks the start) // // Note that the top-level menssage is not in any segment because it does not // have any length preceding it. // // A segment is only interrupted when another length needs to be inserted. So // observe how the second segment spans both the inner submessage and part of // the next enclosing message. typedef struct { UPB_PRIVATE_FOR_CPP uint32_t msglen; // The length to varint-encode before this segment. uint32_t seglen; // Length of the segment. } upb_pb_encoder_segment; UPB_DEFINE_CLASS0(upb::pb::Encoder, public: Encoder(const upb::Handlers* handlers); ~Encoder(); static reffed_ptr NewHandlers(const upb::MessageDef* msg); // Resets the state of the printer, so that it will expect to begin a new // document. void Reset(); // Resets the output pointer which will serve as our closure. void ResetOutput(BytesSink* output); // The input to the encoder. Sink* input(); private: UPB_DISALLOW_COPY_AND_ASSIGN(Encoder); , UPB_DEFINE_STRUCT0(upb_pb_encoder, UPB_QUOTE( // Our input and output. upb_sink input_; upb_bytessink *output_; // The "subclosure" -- used as the inner closure as part of the bytessink // protocol. void *subc; // The output buffer and limit, and our current write position. "buf" // initially points to "initbuf", but is dynamically allocated if we need to // grow beyond the initial size. char *buf, *ptr, *limit; // The beginning of the current run, or undefined if we are at the top level. char *runbegin; // The list of segments we are accumulating. upb_pb_encoder_segment *segbuf, *segptr, *seglimit; // The stack of enclosing submessages. Each entry in the stack points to the // segment where this submessage's length is being accumulated. int stack[UPB_PBENCODER_MAX_NESTING], *top, *stacklimit; // Depth of startmsg/endmsg calls. int depth; // Initial buffers for the output buffer and segment buffer. If we outgrow // these we will dynamically allocate bigger ones. char initbuf[256]; upb_pb_encoder_segment seginitbuf[32]; ))); UPB_BEGIN_EXTERN_C const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, const void *owner); void upb_pb_encoder_reset(upb_pb_encoder *e); upb_sink *upb_pb_encoder_input(upb_pb_encoder *p); void upb_pb_encoder_init(upb_pb_encoder *e, const upb_handlers *h); void upb_pb_encoder_resetoutput(upb_pb_encoder *e, upb_bytessink *output); void upb_pb_encoder_uninit(upb_pb_encoder *e); UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { namespace pb { inline Encoder::Encoder(const upb::Handlers* handlers) { upb_pb_encoder_init(this, handlers); } inline Encoder::~Encoder() { upb_pb_encoder_uninit(this); } inline void Encoder::Reset() { upb_pb_encoder_reset(this); } inline void Encoder::ResetOutput(BytesSink* output) { upb_pb_encoder_resetoutput(this, output); } inline Sink* Encoder::input() { return upb_pb_encoder_input(this); } inline reffed_ptr Encoder::NewHandlers( const upb::MessageDef *md) { const Handlers* h = upb_pb_encoder_newhandlers(md, &h); return reffed_ptr(h, &h); } } // namespace pb } // namespace upb #endif #endif /* UPB_ENCODER_H_ */ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2011-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * upb's core components like upb_decoder and upb_msg are carefully designed to * avoid depending on each other for maximum orthogonality. In other words, * you can use a upb_decoder to decode into *any* kind of structure; upb_msg is * just one such structure. A upb_msg can be serialized/deserialized into any * format, protobuf binary format is just one such format. * * However, for convenience we provide functions here for doing common * operations like deserializing protobuf binary format into a upb_msg. The * compromise is that this file drags in almost all of upb as a dependency, * which could be undesirable if you're trying to use a trimmed-down build of * upb. * * While these routines are convenient, they do not reuse any encoding/decoding * state. For example, if a decoder is JIT-based, it will be re-JITted every * time these functions are called. For this reason, if you are parsing lots * of data and efficiency is an issue, these may not be the best functions to * use (though they are useful for prototyping, before optimizing). */ #ifndef UPB_GLUE_H #define UPB_GLUE_H #include #ifdef __cplusplus extern "C" { #endif // Loads all defs from the given protobuf binary descriptor, setting default // accessors and a default layout on all messages. The caller owns the // returned array of defs, which will be of length *n. On error NULL is // returned and status is set (if non-NULL). upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n, void *owner, upb_status *status); // Like the previous but also adds the loaded defs to the given symtab. bool upb_load_descriptor_into_symtab(upb_symtab *symtab, const char *str, size_t len, upb_status *status); // Like the previous but also reads the descriptor from the given filename. bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname, upb_status *status); // Reads the given filename into a character string, returning NULL if there // was an error. char *upb_readfile(const char *filename, size_t *len); #ifdef __cplusplus } /* extern "C" */ namespace upb { // All routines that load descriptors expect the descriptor to be a // FileDescriptorSet. inline bool LoadDescriptorFileIntoSymtab(SymbolTable* s, const char *fname, Status* status) { return upb_load_descriptor_file_into_symtab(s, fname, status); } inline bool LoadDescriptorIntoSymtab(SymbolTable* s, const char* str, size_t len, Status* status) { return upb_load_descriptor_into_symtab(s, str, len, status); } // Templated so it can accept both string and std::string. template bool LoadDescriptorIntoSymtab(SymbolTable* s, const T& desc, Status* status) { return upb_load_descriptor_into_symtab(s, desc.c_str(), desc.size(), status); } } // namespace upb #endif #endif /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #ifndef UPB_TEXT_H_ #define UPB_TEXT_H_ #ifdef __cplusplus namespace upb { namespace pb { class TextPrinter; } // namespace pb } // namespace upb #endif UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter); UPB_DEFINE_CLASS0(upb::pb::TextPrinter, public: // The given handlers must have come from NewHandlers(). It must outlive the // TextPrinter. explicit TextPrinter(const upb::Handlers* handlers); void SetSingleLineMode(bool single_line); bool ResetOutput(BytesSink* output); Sink* input(); // If handler caching becomes a requirement we can add a code cache as in // decoder.h static reffed_ptr NewHandlers(const MessageDef* md); private: , UPB_DEFINE_STRUCT0(upb_textprinter, upb_sink input_; upb_bytessink *output_; int indent_depth_; bool single_line_; void *subc; )); UPB_BEGIN_EXTERN_C // { // C API. void upb_textprinter_init(upb_textprinter *p, const upb_handlers *h); void upb_textprinter_uninit(upb_textprinter *p); bool upb_textprinter_resetoutput(upb_textprinter *p, upb_bytessink *output); void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line); upb_sink *upb_textprinter_input(upb_textprinter *p); const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m, const void *owner); UPB_END_EXTERN_C // } #ifdef __cplusplus namespace upb { namespace pb { inline TextPrinter::TextPrinter(const upb::Handlers* handlers) { upb_textprinter_init(this, handlers); } inline void TextPrinter::SetSingleLineMode(bool single_line) { upb_textprinter_setsingleline(this, single_line); } inline bool TextPrinter::ResetOutput(BytesSink* output) { return upb_textprinter_resetoutput(this, output); } inline Sink* TextPrinter::input() { return upb_textprinter_input(this); } inline reffed_ptr TextPrinter::NewHandlers( const MessageDef *md) { const Handlers* h = upb_textprinter_newhandlers(md, &h); return reffed_ptr(h, &h); } } // namespace pb } // namespace upb #endif #endif /* UPB_TEXT_H_ */ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * upb::json::Parser can parse JSON according to a specific schema. * Support for parsing arbitrary JSON (schema-less) will be added later. */ #ifndef UPB_JSON_PARSER_H_ #define UPB_JSON_PARSER_H_ #ifdef __cplusplus namespace upb { namespace json { class Parser; } // namespace json } // namespace upb #endif UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser); // Internal-only struct used by the parser. typedef struct { UPB_PRIVATE_FOR_CPP upb_sink sink; const upb_msgdef *m; const upb_fielddef *f; } upb_jsonparser_frame; /* upb::json::Parser **********************************************************/ #define UPB_JSON_MAX_DEPTH 64 // Parses an incoming BytesStream, pushing the results to the destination sink. UPB_DEFINE_CLASS0(upb::json::Parser, public: Parser(Status* status); ~Parser(); // Resets the state of the printer, so that it will expect to begin a new // document. void Reset(); // Resets the output pointer which will serve as our closure. Implies // Reset(). void ResetOutput(Sink* output); // The input to the printer. BytesSink* input(); , UPB_DEFINE_STRUCT0(upb_json_parser, upb_byteshandler input_handler_; upb_bytessink input_; // Stack to track the JSON scopes we are in. upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH]; upb_jsonparser_frame *top; upb_jsonparser_frame *limit; upb_status *status; // Ragel's internal parsing stack for the parsing state machine. int current_state; int parser_stack[UPB_JSON_MAX_DEPTH]; int parser_top; // A pointer to the beginning of whatever text we are currently parsing. const char *text_begin; // We have to accumulate text for member names, integers, unicode escapes, and // base64 partial results. const char *accumulated; size_t accumulated_len; // TODO: add members and code for allocating a buffer when necessary (when the // member spans input buffers or contains escapes). )); UPB_BEGIN_EXTERN_C void upb_json_parser_init(upb_json_parser *p, upb_status *status); void upb_json_parser_uninit(upb_json_parser *p); void upb_json_parser_reset(upb_json_parser *p); void upb_json_parser_resetoutput(upb_json_parser *p, upb_sink *output); upb_bytessink *upb_json_parser_input(upb_json_parser *p); UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { namespace json { inline Parser::Parser(Status* status) { upb_json_parser_init(this, status); } inline Parser::~Parser() { upb_json_parser_uninit(this); } inline void Parser::Reset() { upb_json_parser_reset(this); } inline void Parser::ResetOutput(Sink* output) { upb_json_parser_resetoutput(this, output); } inline BytesSink* Parser::input() { return upb_json_parser_input(this); } } // namespace json } // namespace upb #endif #endif // UPB_JSON_PARSER_H_ /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * upb::json::Printer allows you to create handlers that emit JSON * according to a specific protobuf schema. */ #ifndef UPB_JSON_TYPED_PRINTER_H_ #define UPB_JSON_TYPED_PRINTER_H_ #ifdef __cplusplus namespace upb { namespace json { class Printer; } // namespace json } // namespace upb #endif UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer); /* upb::json::Printer *********************************************************/ // Prints an incoming stream of data to a BytesSink in JSON format. UPB_DEFINE_CLASS0(upb::json::Printer, public: Printer(const upb::Handlers* handlers); ~Printer(); // Resets the state of the printer, so that it will expect to begin a new // document. void Reset(); // Resets the output pointer which will serve as our closure. Implies // Reset(). void ResetOutput(BytesSink* output); // The input to the printer. Sink* input(); // Returns handlers for printing according to the specified schema. static reffed_ptr NewHandlers(const upb::MessageDef* md); , UPB_DEFINE_STRUCT0(upb_json_printer, upb_sink input_; // BytesSink closure. void *subc_; upb_bytessink *output_; // We track the depth so that we know when to emit startstr/endstr on the // output. int depth_; // Have we emitted the first element? This state is necessary to emit commas // without leaving a trailing comma in arrays/maps. We keep this state per // frame depth. // // Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages. // We count frames (contexts in which we separate elements by commas) as both // repeated fields and messages (maps), and the worst case is a // message->repeated field->submessage->repeated field->... nesting. bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2]; )); UPB_BEGIN_EXTERN_C // { // Native C API. void upb_json_printer_init(upb_json_printer *p, const upb_handlers *h); void upb_json_printer_uninit(upb_json_printer *p); void upb_json_printer_reset(upb_json_printer *p); void upb_json_printer_resetoutput(upb_json_printer *p, upb_bytessink *output); upb_sink *upb_json_printer_input(upb_json_printer *p); const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md, const void *owner); UPB_END_EXTERN_C // } #ifdef __cplusplus namespace upb { namespace json { inline Printer::Printer(const upb::Handlers* handlers) { upb_json_printer_init(this, handlers); } inline Printer::~Printer() { upb_json_printer_uninit(this); } inline void Printer::Reset() { upb_json_printer_reset(this); } inline void Printer::ResetOutput(BytesSink* output) { upb_json_printer_resetoutput(this, output); } inline Sink* Printer::input() { return upb_json_printer_input(this); } inline reffed_ptr Printer::NewHandlers( const upb::MessageDef *md) { const Handlers* h = upb_json_printer_newhandlers(md, &h); return reffed_ptr(h, &h); } } // namespace json } // namespace upb #endif #endif // UPB_JSON_TYPED_PRINTER_H_