// Amalgamated source file #include "upb.h" /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2008-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #include #include typedef struct { size_t len; char str[1]; // Null-terminated string data follows. } str_t; static str_t *newstr(const char *data, size_t len) { str_t *ret = malloc(sizeof(*ret) + len); if (!ret) return NULL; ret->len = len; memcpy(ret->str, data, len); ret->str[len] = '\0'; return ret; } static void freestr(str_t *s) { free(s); } // isalpha() etc. from are locale-dependent, which we don't want. static bool upb_isbetween(char c, char low, char high) { return c >= low && c <= high; } static bool upb_isletter(char c) { return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_'; } static bool upb_isalphanum(char c) { return upb_isletter(c) || upb_isbetween(c, '0', '9'); } static bool upb_isident(const char *str, size_t len, bool full, upb_status *s) { bool start = true; for (size_t i = 0; i < len; i++) { char c = str[i]; if (c == '.') { if (start || !full) { upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str); return false; } start = true; } else if (start) { if (!upb_isletter(c)) { upb_status_seterrf( s, "invalid name: path components must start with a letter (%s)", str); return false; } start = false; } else { if (!upb_isalphanum(c)) { upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)", str); return false; } } } return !start; } /* upb_def ********************************************************************/ upb_deftype_t upb_def_type(const upb_def *d) { return d->type; } const char *upb_def_fullname(const upb_def *d) { return d->fullname; } bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s) { assert(!upb_def_isfrozen(def)); if (!upb_isident(fullname, strlen(fullname), true, s)) return false; free((void*)def->fullname); def->fullname = upb_strdup(fullname); return true; } upb_def *upb_def_dup(const upb_def *def, const void *o) { switch (def->type) { case UPB_DEF_MSG: return UPB_UPCAST(upb_msgdef_dup(upb_downcast_msgdef(def), o)); case UPB_DEF_FIELD: return UPB_UPCAST(upb_fielddef_dup(upb_downcast_fielddef(def), o)); case UPB_DEF_ENUM: return UPB_UPCAST(upb_enumdef_dup(upb_downcast_enumdef(def), o)); default: assert(false); return NULL; } } bool upb_def_isfrozen(const upb_def *def) { return upb_refcounted_isfrozen(UPB_UPCAST(def)); } void upb_def_ref(const upb_def *def, const void *owner) { upb_refcounted_ref(UPB_UPCAST(def), owner); } void upb_def_unref(const upb_def *def, const void *owner) { upb_refcounted_unref(UPB_UPCAST(def), owner); } void upb_def_donateref(const upb_def *def, const void *from, const void *to) { upb_refcounted_donateref(UPB_UPCAST(def), from, to); } void upb_def_checkref(const upb_def *def, const void *owner) { upb_refcounted_checkref(UPB_UPCAST(def), owner); } static bool upb_def_init(upb_def *def, upb_deftype_t type, const struct upb_refcounted_vtbl *vtbl, const void *owner) { if (!upb_refcounted_init(UPB_UPCAST(def), vtbl, owner)) return false; def->type = type; def->fullname = NULL; def->came_from_user = false; return true; } static void upb_def_uninit(upb_def *def) { free((void*)def->fullname); } static const char *msgdef_name(const upb_msgdef *m) { const char *name = upb_def_fullname(UPB_UPCAST(m)); return name ? name : "(anonymous)"; } static bool upb_validate_field(upb_fielddef *f, upb_status *s) { if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { upb_status_seterrmsg(s, "fielddef must have name and number set"); return false; } if (!f->type_is_set_) { upb_status_seterrmsg(s, "fielddef type was not initialized"); return false; } if (upb_fielddef_lazy(f) && upb_fielddef_descriptortype(f) != UPB_DESCRIPTOR_TYPE_MESSAGE) { upb_status_seterrmsg(s, "only length-delimited submessage fields may be lazy"); return false; } if (upb_fielddef_hassubdef(f)) { if (f->subdef_is_symbolic) { upb_status_seterrf(s, "field '%s.%s' has not been resolved", msgdef_name(f->msg.def), upb_fielddef_name(f)); return false; } const upb_def *subdef = upb_fielddef_subdef(f); if (subdef == NULL) { upb_status_seterrf(s, "field %s.%s is missing required subdef", msgdef_name(f->msg.def), upb_fielddef_name(f)); return false; } if (!upb_def_isfrozen(subdef) && !subdef->came_from_user) { upb_status_seterrf(s, "subdef of field %s.%s is not frozen or being frozen", msgdef_name(f->msg.def), upb_fielddef_name(f)); return false; } } if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { bool has_default_name = upb_fielddef_enumhasdefaultstr(f); bool has_default_number = upb_fielddef_enumhasdefaultint32(f); // Previously verified by upb_validate_enumdef(). assert(upb_enumdef_numvals(upb_fielddef_enumsubdef(f)) > 0); // We've already validated that we have an associated enumdef and that it // has at least one member, so at least one of these should be true. // Because if the user didn't set anything, we'll pick up the enum's // default, but if the user *did* set something we should at least pick up // the one they set (int32 or string). assert(has_default_name || has_default_number); if (!has_default_name) { upb_status_seterrf(s, "enum default for field %s.%s (%d) is not in the enum", msgdef_name(f->msg.def), upb_fielddef_name(f), upb_fielddef_defaultint32(f)); return false; } if (!has_default_number) { upb_status_seterrf(s, "enum default for field %s.%s (%s) is not in the enum", msgdef_name(f->msg.def), upb_fielddef_name(f), upb_fielddef_defaultstr(f, NULL)); return false; } // Lift the effective numeric default into the field's default slot, in case // we were only getting it "by reference" from the enumdef. upb_fielddef_setdefaultint32(f, upb_fielddef_defaultint32(f)); } return true; } static bool upb_validate_enumdef(const upb_enumdef *e, upb_status *s) { if (upb_enumdef_numvals(e) == 0) { upb_status_seterrf(s, "enum %s has no members (must have at least one)", upb_enumdef_fullname(e)); return false; } return true; } // All submessage fields are lower than all other fields. // Secondly, fields are increasing in order. uint32_t field_rank(const upb_fielddef *f) { uint32_t ret = upb_fielddef_number(f); const uint32_t high_bit = 1 << 30; assert(ret < high_bit); if (!upb_fielddef_issubmsg(f)) ret |= high_bit; return ret; } int cmp_fields(const void *p1, const void *p2) { const upb_fielddef *f1 = *(upb_fielddef*const*)p1; const upb_fielddef *f2 = *(upb_fielddef*const*)p2; return field_rank(f1) - field_rank(f2); } static bool assign_msg_indices(upb_msgdef *m, upb_status *s) { // Sort fields. upb internally relies on UPB_TYPE_MESSAGE fields having the // lowest indexes, but we do not publicly guarantee this. int n = upb_msgdef_numfields(m); upb_fielddef **fields = malloc(n * sizeof(*fields)); if (!fields) return false; upb_msg_iter j; int i; m->submsg_field_count = 0; for(i = 0, upb_msg_begin(&j, m); !upb_msg_done(&j); upb_msg_next(&j), i++) { upb_fielddef *f = upb_msg_iter_field(&j); assert(f->msg.def == m); if (!upb_validate_field(f, s)) { free(fields); return false; } if (upb_fielddef_issubmsg(f)) { m->submsg_field_count++; } fields[i] = f; } qsort(fields, n, sizeof(*fields), cmp_fields); uint32_t selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count; for (i = 0; i < n; i++) { upb_fielddef *f = fields[i]; f->index_ = i; f->selector_base = selector + upb_handlers_selectorbaseoffset(f); selector += upb_handlers_selectorcount(f); } m->selector_count = selector; #ifndef NDEBUG // Verify that all selectors for the message are distinct. // #define TRY(type) \ if (upb_handlers_getselector(f, type, &sel)) upb_inttable_insert(&t, sel, v); upb_inttable t; upb_inttable_init(&t, UPB_CTYPE_BOOL); upb_value v = upb_value_bool(true); upb_selector_t sel; upb_inttable_insert(&t, UPB_STARTMSG_SELECTOR, v); upb_inttable_insert(&t, UPB_ENDMSG_SELECTOR, v); for(upb_msg_begin(&j, m); !upb_msg_done(&j); upb_msg_next(&j)) { upb_fielddef *f = upb_msg_iter_field(&j); // These calls will assert-fail in upb_table if the value already exists. TRY(UPB_HANDLER_INT32); TRY(UPB_HANDLER_INT64) TRY(UPB_HANDLER_UINT32) TRY(UPB_HANDLER_UINT64) TRY(UPB_HANDLER_FLOAT) TRY(UPB_HANDLER_DOUBLE) TRY(UPB_HANDLER_BOOL) TRY(UPB_HANDLER_STARTSTR) TRY(UPB_HANDLER_STRING) TRY(UPB_HANDLER_ENDSTR) TRY(UPB_HANDLER_STARTSUBMSG) TRY(UPB_HANDLER_ENDSUBMSG) TRY(UPB_HANDLER_STARTSEQ) TRY(UPB_HANDLER_ENDSEQ) } upb_inttable_uninit(&t); #undef TRY #endif free(fields); return true; } bool upb_def_freeze(upb_def *const* defs, int n, upb_status *s) { upb_status_clear(s); // First perform validation, in two passes so we can check that we have a // transitive closure without needing to search. for (int i = 0; i < n; i++) { upb_def *def = defs[i]; if (upb_def_isfrozen(def)) { // Could relax this requirement if it's annoying. upb_status_seterrmsg(s, "def is already frozen"); goto err; } else if (def->type == UPB_DEF_FIELD) { upb_status_seterrmsg(s, "standalone fielddefs can not be frozen"); goto err; } else if (def->type == UPB_DEF_ENUM) { if (!upb_validate_enumdef(upb_dyncast_enumdef(def), s)) { goto err; } } else { // Set now to detect transitive closure in the second pass. def->came_from_user = true; } } // Second pass of validation. Also assign selector bases and indexes, and // compact tables. for (int i = 0; i < n; i++) { upb_msgdef *m = upb_dyncast_msgdef_mutable(defs[i]); upb_enumdef *e = upb_dyncast_enumdef_mutable(defs[i]); if (m) { upb_inttable_compact(&m->itof); if (!assign_msg_indices(m, s)) { goto err; } } else if (e) { upb_inttable_compact(&e->iton); } } // Def graph contains FieldDefs between each MessageDef, so double the limit. int maxdepth = UPB_MAX_MESSAGE_DEPTH * 2; // Validation all passed; freeze the defs. bool ret = upb_refcounted_freeze((upb_refcounted * const *)defs, n, s, maxdepth); assert(!(s && ret != upb_ok(s))); return ret; err: for (int i = 0; i < n; i++) { defs[i]->came_from_user = false; } assert(!(s && upb_ok(s))); return false; } /* upb_enumdef ****************************************************************/ static void upb_enumdef_free(upb_refcounted *r) { upb_enumdef *e = (upb_enumdef*)r; upb_inttable_iter i; upb_inttable_begin(&i, &e->iton); for( ; !upb_inttable_done(&i); upb_inttable_next(&i)) { // To clean up the upb_strdup() from upb_enumdef_addval(). free(upb_value_getcstr(upb_inttable_iter_value(&i))); } upb_strtable_uninit(&e->ntoi); upb_inttable_uninit(&e->iton); upb_def_uninit(UPB_UPCAST(e)); free(e); } upb_enumdef *upb_enumdef_new(const void *owner) { static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_enumdef_free}; upb_enumdef *e = malloc(sizeof(*e)); if (!e) return NULL; if (!upb_def_init(UPB_UPCAST(e), UPB_DEF_ENUM, &vtbl, owner)) goto err2; if (!upb_strtable_init(&e->ntoi, UPB_CTYPE_INT32)) goto err2; if (!upb_inttable_init(&e->iton, UPB_CTYPE_CSTR)) goto err1; return e; err1: upb_strtable_uninit(&e->ntoi); err2: free(e); return NULL; } upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner) { upb_enumdef *new_e = upb_enumdef_new(owner); if (!new_e) return NULL; upb_enum_iter i; for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { bool success = upb_enumdef_addval( new_e, upb_enum_iter_name(&i),upb_enum_iter_number(&i), NULL); if (!success) { upb_enumdef_unref(new_e, owner); return NULL; } } return new_e; } bool upb_enumdef_isfrozen(const upb_enumdef *e) { return upb_def_isfrozen(UPB_UPCAST(e)); } void upb_enumdef_ref(const upb_enumdef *e, const void *owner) { upb_def_ref(UPB_UPCAST(e), owner); } void upb_enumdef_unref(const upb_enumdef *e, const void *owner) { upb_def_unref(UPB_UPCAST(e), owner); } void upb_enumdef_donateref( const upb_enumdef *e, const void *from, const void *to) { upb_def_donateref(UPB_UPCAST(e), from, to); } void upb_enumdef_checkref(const upb_enumdef *e, const void *owner) { upb_def_checkref(UPB_UPCAST(e), owner); } bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status) { upb_def *d = UPB_UPCAST(e); return upb_def_freeze(&d, 1, status); } const char *upb_enumdef_fullname(const upb_enumdef *e) { return upb_def_fullname(UPB_UPCAST(e)); } bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname, upb_status *s) { return upb_def_setfullname(UPB_UPCAST(e), fullname, s); } bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num, upb_status *status) { if (!upb_isident(name, strlen(name), false, status)) { return false; } if (upb_enumdef_ntoiz(e, name, NULL)) { upb_status_seterrf(status, "name '%s' is already defined", name); return false; } if (!upb_strtable_insert(&e->ntoi, name, upb_value_int32(num))) { upb_status_seterrmsg(status, "out of memory"); return false; } if (!upb_inttable_lookup(&e->iton, num, NULL) && !upb_inttable_insert(&e->iton, num, upb_value_cstr(upb_strdup(name)))) { upb_status_seterrmsg(status, "out of memory"); upb_strtable_remove(&e->ntoi, name, NULL); return false; } if (upb_enumdef_numvals(e) == 1) { bool ok = upb_enumdef_setdefault(e, num, NULL); UPB_ASSERT_VAR(ok, ok); } return true; } int32_t upb_enumdef_default(const upb_enumdef *e) { assert(upb_enumdef_iton(e, e->defaultval)); return e->defaultval; } bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s) { assert(!upb_enumdef_isfrozen(e)); if (!upb_enumdef_iton(e, val)) { upb_status_seterrf(s, "number '%d' is not in the enum.", val); return false; } e->defaultval = val; return true; } int upb_enumdef_numvals(const upb_enumdef *e) { return upb_strtable_count(&e->ntoi); } void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) { // We iterate over the ntoi table, to account for duplicate numbers. upb_strtable_begin(i, &e->ntoi); } void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); } bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); } bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name, size_t len, int32_t *num) { upb_value v; if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) { return false; } if (num) *num = upb_value_getint32(v); return true; } const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) { upb_value v; return upb_inttable_lookup32(&def->iton, num, &v) ? upb_value_getcstr(v) : NULL; } const char *upb_enum_iter_name(upb_enum_iter *iter) { return upb_strtable_iter_key(iter); } int32_t upb_enum_iter_number(upb_enum_iter *iter) { return upb_value_getint32(upb_strtable_iter_value(iter)); } /* upb_fielddef ***************************************************************/ static void upb_fielddef_init_default(upb_fielddef *f); static void upb_fielddef_uninit_default(upb_fielddef *f) { if (f->type_is_set_ && f->default_is_string && f->defaultval.bytes) freestr(f->defaultval.bytes); } static void visitfield(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_fielddef *f = (const upb_fielddef*)r; if (upb_fielddef_containingtype(f)) { visit(r, UPB_UPCAST2(upb_fielddef_containingtype(f)), closure); } if (upb_fielddef_subdef(f)) { visit(r, UPB_UPCAST(upb_fielddef_subdef(f)), closure); } } static void freefield(upb_refcounted *r) { upb_fielddef *f = (upb_fielddef*)r; upb_fielddef_uninit_default(f); if (f->subdef_is_symbolic) free(f->sub.name); upb_def_uninit(UPB_UPCAST(f)); free(f); } static const char *enumdefaultstr(const upb_fielddef *f) { assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); const upb_enumdef *e = upb_fielddef_enumsubdef(f); if (f->default_is_string && f->defaultval.bytes) { // Default was explicitly set as a string. str_t *s = f->defaultval.bytes; return s->str; } else if (e) { if (!f->default_is_string) { // Default was explicitly set as an integer; look it up in enumdef. const char *name = upb_enumdef_iton(e, f->defaultval.sint); if (name) { return name; } } else { // Default is completely unset; pull enumdef default. if (upb_enumdef_numvals(e) > 0) { const char *name = upb_enumdef_iton(e, upb_enumdef_default(e)); assert(name); return name; } } } return NULL; } static bool enumdefaultint32(const upb_fielddef *f, int32_t *val) { assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); const upb_enumdef *e = upb_fielddef_enumsubdef(f); if (!f->default_is_string) { // Default was explicitly set as an integer. *val = f->defaultval.sint; return true; } else if (e) { if (f->defaultval.bytes) { // Default was explicitly set as a str; try to lookup corresponding int. str_t *s = f->defaultval.bytes; if (upb_enumdef_ntoiz(e, s->str, val)) { return true; } } else { // Default is unset; try to pull in enumdef default. if (upb_enumdef_numvals(e) > 0) { *val = upb_enumdef_default(e); return true; } } } return false; } upb_fielddef *upb_fielddef_new(const void *owner) { static const struct upb_refcounted_vtbl vtbl = {visitfield, freefield}; upb_fielddef *f = malloc(sizeof(*f)); if (!f) return NULL; if (!upb_def_init(UPB_UPCAST(f), UPB_DEF_FIELD, &vtbl, owner)) { free(f); return NULL; } f->msg.def = NULL; f->sub.def = NULL; f->subdef_is_symbolic = false; f->msg_is_symbolic = false; f->label_ = UPB_LABEL_OPTIONAL; f->type_ = UPB_TYPE_INT32; f->number_ = 0; f->type_is_set_ = false; f->tagdelim = false; f->is_extension_ = false; f->lazy_ = false; f->packed_ = true; // For the moment we default this to UPB_INTFMT_VARIABLE, since it will work // with all integer types and is in some since more "default" since the most // normal-looking proto2 types int32/int64/uint32/uint64 use variable. // // Other options to consider: // - there is no default; users must set this manually (like type). // - default signed integers to UPB_INTFMT_ZIGZAG, since it's more likely to // be an optimal default for signed integers. f->intfmt = UPB_INTFMT_VARIABLE; return f; } upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner) { upb_fielddef *newf = upb_fielddef_new(owner); if (!newf) return NULL; upb_fielddef_settype(newf, upb_fielddef_type(f)); upb_fielddef_setlabel(newf, upb_fielddef_label(f)); upb_fielddef_setnumber(newf, upb_fielddef_number(f), NULL); upb_fielddef_setname(newf, upb_fielddef_name(f), NULL); if (f->default_is_string && f->defaultval.bytes) { str_t *s = f->defaultval.bytes; upb_fielddef_setdefaultstr(newf, s->str, s->len, NULL); } else { newf->default_is_string = f->default_is_string; newf->defaultval = f->defaultval; } const char *srcname; if (f->subdef_is_symbolic) { srcname = f->sub.name; // Might be NULL. } else { srcname = f->sub.def ? upb_def_fullname(f->sub.def) : NULL; } if (srcname) { char *newname = malloc(strlen(f->sub.def->fullname) + 2); if (!newname) { upb_fielddef_unref(newf, owner); return NULL; } strcpy(newname, "."); strcat(newname, f->sub.def->fullname); upb_fielddef_setsubdefname(newf, newname, NULL); free(newname); } return newf; } bool upb_fielddef_isfrozen(const upb_fielddef *f) { return upb_def_isfrozen(UPB_UPCAST(f)); } void upb_fielddef_ref(const upb_fielddef *f, const void *owner) { upb_def_ref(UPB_UPCAST(f), owner); } void upb_fielddef_unref(const upb_fielddef *f, const void *owner) { upb_def_unref(UPB_UPCAST(f), owner); } void upb_fielddef_donateref( const upb_fielddef *f, const void *from, const void *to) { upb_def_donateref(UPB_UPCAST(f), from, to); } void upb_fielddef_checkref(const upb_fielddef *f, const void *owner) { upb_def_checkref(UPB_UPCAST(f), owner); } bool upb_fielddef_typeisset(const upb_fielddef *f) { return f->type_is_set_; } upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) { assert(f->type_is_set_); return f->type_; } uint32_t upb_fielddef_index(const upb_fielddef *f) { return f->index_; } upb_label_t upb_fielddef_label(const upb_fielddef *f) { return f->label_; } upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f) { return f->intfmt; } bool upb_fielddef_istagdelim(const upb_fielddef *f) { return f->tagdelim; } uint32_t upb_fielddef_number(const upb_fielddef *f) { return f->number_; } bool upb_fielddef_isextension(const upb_fielddef *f) { return f->is_extension_; } bool upb_fielddef_lazy(const upb_fielddef *f) { return f->lazy_; } bool upb_fielddef_packed(const upb_fielddef *f) { return f->packed_; } const char *upb_fielddef_name(const upb_fielddef *f) { return upb_def_fullname(UPB_UPCAST(f)); } const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) { return f->msg_is_symbolic ? NULL : f->msg.def; } upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f) { return (upb_msgdef*)upb_fielddef_containingtype(f); } const char *upb_fielddef_containingtypename(upb_fielddef *f) { return f->msg_is_symbolic ? f->msg.name : NULL; } static void release_containingtype(upb_fielddef *f) { if (f->msg_is_symbolic) free(f->msg.name); } bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name, upb_status *s) { assert(!upb_fielddef_isfrozen(f)); if (upb_fielddef_containingtype(f)) { upb_status_seterrmsg(s, "field has already been added to a message."); return false; } // TODO: validate name (upb_isident() doesn't quite work atm because this name // may have a leading "."). release_containingtype(f); f->msg.name = upb_strdup(name); f->msg_is_symbolic = true; return true; } bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s) { return upb_def_setfullname(UPB_UPCAST(f), name, s); } static void chkdefaulttype(const upb_fielddef *f, upb_fieldtype_t type) { UPB_UNUSED(f); UPB_UNUSED(type); assert(f->type_is_set_ && upb_fielddef_type(f) == type); } int64_t upb_fielddef_defaultint64(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_INT64); return f->defaultval.sint; } int32_t upb_fielddef_defaultint32(const upb_fielddef *f) { if (f->type_is_set_ && upb_fielddef_type(f) == UPB_TYPE_ENUM) { int32_t val; bool ok = enumdefaultint32(f, &val); UPB_ASSERT_VAR(ok, ok); return val; } else { chkdefaulttype(f, UPB_TYPE_INT32); return f->defaultval.sint; } } uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_UINT64); return f->defaultval.uint; } uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_UINT32); return f->defaultval.uint; } bool upb_fielddef_defaultbool(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_BOOL); return f->defaultval.uint; } float upb_fielddef_defaultfloat(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_FLOAT); return f->defaultval.flt; } double upb_fielddef_defaultdouble(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_DOUBLE); return f->defaultval.dbl; } const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) { assert(f->type_is_set_); assert(upb_fielddef_type(f) == UPB_TYPE_STRING || upb_fielddef_type(f) == UPB_TYPE_BYTES || upb_fielddef_type(f) == UPB_TYPE_ENUM); if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { const char *ret = enumdefaultstr(f); assert(ret); // Enum defaults can't have embedded NULLs. if (len) *len = strlen(ret); return ret; } if (f->default_is_string) { str_t *str = f->defaultval.bytes; if (len) *len = str->len; return str->str; } return NULL; } static void upb_fielddef_init_default(upb_fielddef *f) { f->default_is_string = false; switch (upb_fielddef_type(f)) { case UPB_TYPE_DOUBLE: f->defaultval.dbl = 0; break; case UPB_TYPE_FLOAT: f->defaultval.flt = 0; break; case UPB_TYPE_INT32: case UPB_TYPE_INT64: f->defaultval.sint = 0; break; case UPB_TYPE_UINT64: case UPB_TYPE_UINT32: case UPB_TYPE_BOOL: f->defaultval.uint = 0; break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: f->defaultval.bytes = newstr("", 0); f->default_is_string = true; break; case UPB_TYPE_MESSAGE: break; case UPB_TYPE_ENUM: // This is our special sentinel that indicates "not set" for an enum. f->default_is_string = true; f->defaultval.bytes = NULL; break; } } const upb_def *upb_fielddef_subdef(const upb_fielddef *f) { return f->subdef_is_symbolic ? NULL : f->sub.def; } const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) { const upb_def *def = upb_fielddef_subdef(f); return def ? upb_dyncast_msgdef(def) : NULL; } const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) { const upb_def *def = upb_fielddef_subdef(f); return def ? upb_dyncast_enumdef(def) : NULL; } upb_def *upb_fielddef_subdef_mutable(upb_fielddef *f) { return (upb_def*)upb_fielddef_subdef(f); } const char *upb_fielddef_subdefname(const upb_fielddef *f) { if (f->subdef_is_symbolic) { return f->sub.name; } else if (f->sub.def) { return upb_def_fullname(f->sub.def); } else { return NULL; } } bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s) { if (upb_fielddef_containingtype(f)) { upb_status_seterrmsg( s, "cannot change field number after adding to a message"); return false; } if (number == 0 || number > UPB_MAX_FIELDNUMBER) { upb_status_seterrf(s, "invalid field number (%u)", number); return false; } f->number_ = number; return true; } void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_checktype(type)); upb_fielddef_uninit_default(f); f->type_ = type; f->type_is_set_ = true; upb_fielddef_init_default(f); } void upb_fielddef_setdescriptortype(upb_fielddef *f, int type) { assert(!upb_fielddef_isfrozen(f)); switch (type) { case UPB_DESCRIPTOR_TYPE_DOUBLE: upb_fielddef_settype(f, UPB_TYPE_DOUBLE); break; case UPB_DESCRIPTOR_TYPE_FLOAT: upb_fielddef_settype(f, UPB_TYPE_FLOAT); break; case UPB_DESCRIPTOR_TYPE_INT64: case UPB_DESCRIPTOR_TYPE_SFIXED64: case UPB_DESCRIPTOR_TYPE_SINT64: upb_fielddef_settype(f, UPB_TYPE_INT64); break; case UPB_DESCRIPTOR_TYPE_UINT64: case UPB_DESCRIPTOR_TYPE_FIXED64: upb_fielddef_settype(f, UPB_TYPE_UINT64); break; case UPB_DESCRIPTOR_TYPE_INT32: case UPB_DESCRIPTOR_TYPE_SFIXED32: case UPB_DESCRIPTOR_TYPE_SINT32: upb_fielddef_settype(f, UPB_TYPE_INT32); break; case UPB_DESCRIPTOR_TYPE_UINT32: case UPB_DESCRIPTOR_TYPE_FIXED32: upb_fielddef_settype(f, UPB_TYPE_UINT32); break; case UPB_DESCRIPTOR_TYPE_BOOL: upb_fielddef_settype(f, UPB_TYPE_BOOL); break; case UPB_DESCRIPTOR_TYPE_STRING: upb_fielddef_settype(f, UPB_TYPE_STRING); break; case UPB_DESCRIPTOR_TYPE_BYTES: upb_fielddef_settype(f, UPB_TYPE_BYTES); break; case UPB_DESCRIPTOR_TYPE_GROUP: case UPB_DESCRIPTOR_TYPE_MESSAGE: upb_fielddef_settype(f, UPB_TYPE_MESSAGE); break; case UPB_DESCRIPTOR_TYPE_ENUM: upb_fielddef_settype(f, UPB_TYPE_ENUM); break; default: assert(false); } if (type == UPB_DESCRIPTOR_TYPE_FIXED64 || type == UPB_DESCRIPTOR_TYPE_FIXED32 || type == UPB_DESCRIPTOR_TYPE_SFIXED64 || type == UPB_DESCRIPTOR_TYPE_SFIXED32) { upb_fielddef_setintfmt(f, UPB_INTFMT_FIXED); } else if (type == UPB_DESCRIPTOR_TYPE_SINT64 || type == UPB_DESCRIPTOR_TYPE_SINT32) { upb_fielddef_setintfmt(f, UPB_INTFMT_ZIGZAG); } else { upb_fielddef_setintfmt(f, UPB_INTFMT_VARIABLE); } upb_fielddef_settagdelim(f, type == UPB_DESCRIPTOR_TYPE_GROUP); } upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_FLOAT: return UPB_DESCRIPTOR_TYPE_FLOAT; case UPB_TYPE_DOUBLE: return UPB_DESCRIPTOR_TYPE_DOUBLE; case UPB_TYPE_BOOL: return UPB_DESCRIPTOR_TYPE_BOOL; case UPB_TYPE_STRING: return UPB_DESCRIPTOR_TYPE_STRING; case UPB_TYPE_BYTES: return UPB_DESCRIPTOR_TYPE_BYTES; case UPB_TYPE_ENUM: return UPB_DESCRIPTOR_TYPE_ENUM; case UPB_TYPE_INT32: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT32; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED32; case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT32; } case UPB_TYPE_INT64: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT64; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED64; case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT64; } case UPB_TYPE_UINT32: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT32; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED32; case UPB_INTFMT_ZIGZAG: return -1; } case UPB_TYPE_UINT64: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT64; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED64; case UPB_INTFMT_ZIGZAG: return -1; } case UPB_TYPE_MESSAGE: return upb_fielddef_istagdelim(f) ? UPB_DESCRIPTOR_TYPE_GROUP : UPB_DESCRIPTOR_TYPE_MESSAGE; } return 0; } void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension) { assert(!upb_fielddef_isfrozen(f)); f->is_extension_ = is_extension; } void upb_fielddef_setlazy(upb_fielddef *f, bool lazy) { assert(!upb_fielddef_isfrozen(f)); f->lazy_ = lazy; } void upb_fielddef_setpacked(upb_fielddef *f, bool packed) { assert(!upb_fielddef_isfrozen(f)); f->packed_ = packed; } void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_checklabel(label)); f->label_ = label; } void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_checkintfmt(fmt)); f->intfmt = fmt; } void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim) { assert(!upb_fielddef_isfrozen(f)); f->tagdelim = tag_delim; f->tagdelim = tag_delim; } static bool checksetdefault(upb_fielddef *f, upb_fieldtype_t type) { if (!f->type_is_set_ || upb_fielddef_isfrozen(f) || upb_fielddef_type(f) != type) { assert(false); return false; } if (f->default_is_string) { str_t *s = f->defaultval.bytes; assert(s || type == UPB_TYPE_ENUM); if (s) freestr(s); } f->default_is_string = false; return true; } void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t value) { if (checksetdefault(f, UPB_TYPE_INT64)) f->defaultval.sint = value; } void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t value) { if ((upb_fielddef_type(f) == UPB_TYPE_ENUM && checksetdefault(f, UPB_TYPE_ENUM)) || checksetdefault(f, UPB_TYPE_INT32)) { f->defaultval.sint = value; } } void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t value) { if (checksetdefault(f, UPB_TYPE_UINT64)) f->defaultval.uint = value; } void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t value) { if (checksetdefault(f, UPB_TYPE_UINT32)) f->defaultval.uint = value; } void upb_fielddef_setdefaultbool(upb_fielddef *f, bool value) { if (checksetdefault(f, UPB_TYPE_BOOL)) f->defaultval.uint = value; } void upb_fielddef_setdefaultfloat(upb_fielddef *f, float value) { if (checksetdefault(f, UPB_TYPE_FLOAT)) f->defaultval.flt = value; } void upb_fielddef_setdefaultdouble(upb_fielddef *f, double value) { if (checksetdefault(f, UPB_TYPE_DOUBLE)) f->defaultval.dbl = value; } bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len, upb_status *s) { assert(upb_fielddef_isstring(f) || f->type_ == UPB_TYPE_ENUM); if (f->type_ == UPB_TYPE_ENUM && !upb_isident(str, len, false, s)) return false; if (f->default_is_string) { str_t *s = f->defaultval.bytes; assert(s || f->type_ == UPB_TYPE_ENUM); if (s) freestr(s); } else { assert(f->type_ == UPB_TYPE_ENUM); } str_t *str2 = newstr(str, len); f->defaultval.bytes = str2; f->default_is_string = true; return true; } void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str, upb_status *s) { assert(f->type_is_set_); upb_fielddef_setdefaultstr(f, str, str ? strlen(str) : 0, s); } bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f) { assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); int32_t val; return enumdefaultint32(f, &val); } bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f) { assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); return enumdefaultstr(f) != NULL; } static bool upb_subdef_typecheck(upb_fielddef *f, const upb_def *subdef, upb_status *s) { if (f->type_ == UPB_TYPE_MESSAGE) { if (upb_dyncast_msgdef(subdef)) return true; upb_status_seterrmsg(s, "invalid subdef type for this submessage field"); return false; } else if (f->type_ == UPB_TYPE_ENUM) { if (upb_dyncast_enumdef(subdef)) return true; upb_status_seterrmsg(s, "invalid subdef type for this enum field"); return false; } else { upb_status_seterrmsg(s, "only message and enum fields can have a subdef"); return false; } } static void release_subdef(upb_fielddef *f) { if (f->subdef_is_symbolic) { free(f->sub.name); } else if (f->sub.def) { upb_unref2(f->sub.def, f); } } bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef, upb_status *s) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_hassubdef(f)); if (subdef && !upb_subdef_typecheck(f, subdef, s)) return false; release_subdef(f); f->sub.def = subdef; f->subdef_is_symbolic = false; if (f->sub.def) upb_ref2(f->sub.def, f); return true; } bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef, upb_status *s) { return upb_fielddef_setsubdef(f, UPB_UPCAST(subdef), s); } bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef, upb_status *s) { return upb_fielddef_setsubdef(f, UPB_UPCAST(subdef), s); } bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name, upb_status *s) { assert(!upb_fielddef_isfrozen(f)); if (!upb_fielddef_hassubdef(f)) { upb_status_seterrmsg(s, "field type does not accept a subdef"); return false; } // TODO: validate name (upb_isident() doesn't quite work atm because this name // may have a leading "."). release_subdef(f); f->sub.name = upb_strdup(name); f->subdef_is_symbolic = true; return true; } bool upb_fielddef_issubmsg(const upb_fielddef *f) { return upb_fielddef_type(f) == UPB_TYPE_MESSAGE; } bool upb_fielddef_isstring(const upb_fielddef *f) { return upb_fielddef_type(f) == UPB_TYPE_STRING || upb_fielddef_type(f) == UPB_TYPE_BYTES; } bool upb_fielddef_isseq(const upb_fielddef *f) { return upb_fielddef_label(f) == UPB_LABEL_REPEATED; } bool upb_fielddef_isprimitive(const upb_fielddef *f) { return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f); } bool upb_fielddef_hassubdef(const upb_fielddef *f) { return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM; } static bool between(int32_t x, int32_t low, int32_t high) { return x >= low && x <= high; } bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); } bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); } bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); } bool upb_fielddef_checkdescriptortype(int32_t type) { return between(type, 1, 18); } /* upb_msgdef *****************************************************************/ static void visitmsg(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_msgdef *m = (const upb_msgdef*)r; upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); visit(r, UPB_UPCAST2(f), closure); } } static void freemsg(upb_refcounted *r) { upb_msgdef *m = (upb_msgdef*)r; upb_strtable_uninit(&m->ntof); upb_inttable_uninit(&m->itof); upb_def_uninit(UPB_UPCAST(m)); free(m); } upb_msgdef *upb_msgdef_new(const void *owner) { static const struct upb_refcounted_vtbl vtbl = {visitmsg, freemsg}; upb_msgdef *m = malloc(sizeof(*m)); if (!m) return NULL; if (!upb_def_init(UPB_UPCAST(m), UPB_DEF_MSG, &vtbl, owner)) goto err2; if (!upb_inttable_init(&m->itof, UPB_CTYPE_PTR)) goto err2; if (!upb_strtable_init(&m->ntof, UPB_CTYPE_PTR)) goto err1; m->map_entry = false; return m; err1: upb_inttable_uninit(&m->itof); err2: free(m); return NULL; } upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner) { upb_msgdef *newm = upb_msgdef_new(owner); if (!newm) return NULL; bool ok = upb_def_setfullname(UPB_UPCAST(newm), upb_def_fullname(UPB_UPCAST(m)), NULL); newm->map_entry = m->map_entry; UPB_ASSERT_VAR(ok, ok); upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_fielddef_dup(upb_msg_iter_field(&i), &f); if (!f || !upb_msgdef_addfield(newm, f, &f, NULL)) { upb_msgdef_unref(newm, owner); return NULL; } } return newm; } bool upb_msgdef_isfrozen(const upb_msgdef *m) { return upb_def_isfrozen(UPB_UPCAST(m)); } void upb_msgdef_ref(const upb_msgdef *m, const void *owner) { upb_def_ref(UPB_UPCAST(m), owner); } void upb_msgdef_unref(const upb_msgdef *m, const void *owner) { upb_def_unref(UPB_UPCAST(m), owner); } void upb_msgdef_donateref( const upb_msgdef *m, const void *from, const void *to) { upb_def_donateref(UPB_UPCAST(m), from, to); } void upb_msgdef_checkref(const upb_msgdef *m, const void *owner) { upb_def_checkref(UPB_UPCAST(m), owner); } bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status) { upb_def *d = UPB_UPCAST(m); return upb_def_freeze(&d, 1, status); } const char *upb_msgdef_fullname(const upb_msgdef *m) { return upb_def_fullname(UPB_UPCAST(m)); } bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s) { return upb_def_setfullname(UPB_UPCAST(m), fullname, s); } bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor, upb_status *s) { // TODO: extensions need to have a separate namespace, because proto2 allows a // top-level extension (ie. one not in any package) to have the same name as a // field from the message. // // This also implies that there needs to be a separate lookup-by-name method // for extensions. It seems desirable for iteration to return both extensions // and non-extensions though. // // We also need to validate that the field number is in an extension range iff // it is an extension. // Check constraints for all fields before performing any action. if (upb_fielddef_containingtype(f) != NULL) { upb_status_seterrmsg(s, "fielddef already belongs to a message"); return false; } else if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { upb_status_seterrmsg(s, "field name or number were not set"); return false; } else if(upb_msgdef_itof(m, upb_fielddef_number(f)) || upb_msgdef_ntofz(m, upb_fielddef_name(f))) { upb_status_seterrmsg(s, "duplicate field name or number"); return false; } // Constraint checks ok, perform the action. release_containingtype(f); f->msg.def = m; f->msg_is_symbolic = false; upb_inttable_insert(&m->itof, upb_fielddef_number(f), upb_value_ptr(f)); upb_strtable_insert(&m->ntof, upb_fielddef_name(f), upb_value_ptr(f)); upb_ref2(f, m); upb_ref2(m, f); if (ref_donor) upb_fielddef_unref(f, ref_donor); return true; } const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) { upb_value val; return upb_inttable_lookup32(&m->itof, i, &val) ? upb_value_getptr(val) : NULL; } const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, size_t len) { upb_value val; return upb_strtable_lookup2(&m->ntof, name, len, &val) ? upb_value_getptr(val) : NULL; } int upb_msgdef_numfields(const upb_msgdef *m) { return upb_strtable_count(&m->ntof); } void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry) { assert(!upb_msgdef_isfrozen(m)); m->map_entry = map_entry; } bool upb_msgdef_mapentry(const upb_msgdef *m) { return m->map_entry; } void upb_msg_begin(upb_msg_iter *iter, const upb_msgdef *m) { upb_inttable_begin(iter, &m->itof); } void upb_msg_next(upb_msg_iter *iter) { upb_inttable_next(iter); } bool upb_msg_done(const upb_msg_iter *iter) { return upb_inttable_done(iter); } upb_fielddef *upb_msg_iter_field(const upb_msg_iter *iter) { return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter)); } void upb_msg_iter_setdone(upb_msg_iter *iter) { upb_inttable_iter_setdone(iter); } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2011-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * TODO(haberman): it's unclear whether a lot of the consistency checks should * assert() or return false. */ #include #include // Defined for the sole purpose of having a unique pointer value for // UPB_NO_CLOSURE. char _upb_noclosure; static void freehandlers(upb_refcounted *r) { upb_handlers *h = (upb_handlers*)r; upb_inttable_iter i; upb_inttable_begin(&i, &h->cleanup_); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { void *val = (void*)upb_inttable_iter_key(&i); upb_value func_val = upb_inttable_iter_value(&i); upb_handlerfree *func = upb_value_getfptr(func_val); func(val); } upb_inttable_uninit(&h->cleanup_); upb_msgdef_unref(h->msg, h); free(h->sub); free(h); } static void visithandlers(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_handlers *h = (const upb_handlers*)r; upb_msg_iter i; for(upb_msg_begin(&i, h->msg); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (!upb_fielddef_issubmsg(f)) continue; const upb_handlers *sub = upb_handlers_getsubhandlers(h, f); if (sub) visit(r, UPB_UPCAST(sub), closure); } } static const struct upb_refcounted_vtbl vtbl = {visithandlers, freehandlers}; typedef struct { upb_inttable tab; // maps upb_msgdef* -> upb_handlers*. upb_handlers_callback *callback; const void *closure; } dfs_state; // TODO(haberman): discard upb_handlers* objects that do not actually have any // handlers set and cannot reach any upb_handlers* object that does. This is // slightly tricky to do correctly. static upb_handlers *newformsg(const upb_msgdef *m, const void *owner, dfs_state *s) { upb_handlers *h = upb_handlers_new(m, owner); if (!h) return NULL; if (!upb_inttable_insertptr(&s->tab, m, upb_value_ptr(h))) goto oom; s->callback(s->closure, h); // For each submessage field, get or create a handlers object and set it as // the subhandlers. upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (!upb_fielddef_issubmsg(f)) continue; const upb_msgdef *subdef = upb_downcast_msgdef(upb_fielddef_subdef(f)); upb_value subm_ent; if (upb_inttable_lookupptr(&s->tab, subdef, &subm_ent)) { upb_handlers_setsubhandlers(h, f, upb_value_getptr(subm_ent)); } else { upb_handlers *sub_mh = newformsg(subdef, &sub_mh, s); if (!sub_mh) goto oom; upb_handlers_setsubhandlers(h, f, sub_mh); upb_handlers_unref(sub_mh, &sub_mh); } } return h; oom: upb_handlers_unref(h, owner); return NULL; } // Given a selector for a STARTSUBMSG handler, resolves to a pointer to the // subhandlers for this submessage field. #define SUBH(h, selector) (h->sub[selector]) // The selector for a submessage field is the field index. #define SUBH_F(h, f) SUBH(h, f->index_) static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t sel; assert(!upb_handlers_isfrozen(h)); if (upb_handlers_msgdef(h) != upb_fielddef_containingtype(f)) { upb_status_seterrf( &h->status_, "type mismatch: field %s does not belong to message %s", upb_fielddef_name(f), upb_msgdef_fullname(upb_handlers_msgdef(h))); return -1; } if (!upb_handlers_getselector(f, type, &sel)) { upb_status_seterrf( &h->status_, "type mismatch: cannot register handler type %d for field %s", type, upb_fielddef_name(f)); return -1; } return sel; } static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { int32_t sel = trygetsel(h, f, type); assert(sel >= 0); return sel; } static const void **returntype(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type_; } static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f, upb_handlertype_t type, upb_func *func, upb_handlerattr *attr) { assert(!upb_handlers_isfrozen(h)); if (sel < 0) { upb_status_seterrmsg(&h->status_, "incorrect handler type for this field."); return false; } if (h->table[sel].func) { upb_status_seterrmsg(&h->status_, "cannot change handler once it has been set."); return false; } upb_handlerattr set_attr = UPB_HANDLERATTR_INITIALIZER; if (attr) { set_attr = *attr; } // Check that the given closure type matches the closure type that has been // established for this context (if any). const void *closure_type = upb_handlerattr_closuretype(&set_attr); const void **context_closure_type; if (type == UPB_HANDLER_STRING) { context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR); } else if (f && upb_fielddef_isseq(f) && type != UPB_HANDLER_STARTSEQ && type != UPB_HANDLER_ENDSEQ) { context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ); } else { context_closure_type = &h->top_closure_type; } if (closure_type && *context_closure_type && closure_type != *context_closure_type) { // TODO(haberman): better message for debugging. upb_status_seterrmsg(&h->status_, "closure type does not match"); return false; } if (closure_type) *context_closure_type = closure_type; // If this is a STARTSEQ or STARTSTR handler, check that the returned pointer // matches any pre-existing expectations about what type is expected. if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) { const void *return_type = upb_handlerattr_returnclosuretype(&set_attr); const void *table_return_type = upb_handlerattr_returnclosuretype(&h->table[sel].attr); if (return_type && table_return_type && return_type != table_return_type) { upb_status_seterrmsg(&h->status_, "closure return type does not match"); return false; } if (table_return_type && !return_type) upb_handlerattr_setreturnclosuretype(&set_attr, table_return_type); } h->table[sel].func = (upb_func*)func; h->table[sel].attr = set_attr; return true; } // Returns the effective closure type for this handler (which will propagate // from outer frames if this frame has no START* handler). Not implemented for // UPB_HANDLER_STRING at the moment since this is not needed. Returns NULL is // the effective closure type is unspecified (either no handler was registered // to specify it or the handler that was registered did not specify the closure // type). const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { assert(type != UPB_HANDLER_STRING); const void *ret = h->top_closure_type; upb_selector_t sel; if (upb_fielddef_isseq(f) && type != UPB_HANDLER_STARTSEQ && type != UPB_HANDLER_ENDSEQ && h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) { ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); } if (type == UPB_HANDLER_STRING && h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) { ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); } // The effective type of the submessage; not used yet. // if (type == SUBMESSAGE && // h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) { // ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); // } return ret; } // Checks whether the START* handler specified by f & type is missing even // though it is required to convert the established type of an outer frame // ("closure_type") into the established type of an inner frame (represented in // the return closure type of this handler's attr. bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type, upb_status *status) { upb_selector_t sel = handlers_getsel(h, f, type); if (h->table[sel].func) return true; const void *closure_type = effective_closure_type(h, f, type); const upb_handlerattr *attr = &h->table[sel].attr; const void *return_closure_type = upb_handlerattr_returnclosuretype(attr); if (closure_type && return_closure_type && closure_type != return_closure_type) { upb_status_seterrf(status, "expected start handler to return sub type for field %f", upb_fielddef_name(f)); return false; } return true; } /* Public interface ***********************************************************/ bool upb_handlers_isfrozen(const upb_handlers *h) { return upb_refcounted_isfrozen(UPB_UPCAST(h)); } void upb_handlers_ref(const upb_handlers *h, const void *owner) { upb_refcounted_ref(UPB_UPCAST(h), owner); } void upb_handlers_unref(const upb_handlers *h, const void *owner) { upb_refcounted_unref(UPB_UPCAST(h), owner); } void upb_handlers_donateref( const upb_handlers *h, const void *from, const void *to) { upb_refcounted_donateref(UPB_UPCAST(h), from, to); } void upb_handlers_checkref(const upb_handlers *h, const void *owner) { upb_refcounted_checkref(UPB_UPCAST(h), owner); } upb_handlers *upb_handlers_new(const upb_msgdef *md, const void *owner) { assert(upb_msgdef_isfrozen(md)); int extra = sizeof(upb_handlers_tabent) * (md->selector_count - 1); upb_handlers *h = calloc(sizeof(*h) + extra, 1); if (!h) return NULL; h->msg = md; upb_msgdef_ref(h->msg, h); upb_status_clear(&h->status_); h->sub = calloc(md->submsg_field_count, sizeof(*h->sub)); if (!h->sub) goto oom; if (!upb_refcounted_init(UPB_UPCAST(h), &vtbl, owner)) goto oom; if (!upb_inttable_init(&h->cleanup_, UPB_CTYPE_FPTR)) goto oom; // calloc() above initialized all handlers to NULL. return h; oom: freehandlers(UPB_UPCAST(h)); return NULL; } const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m, const void *owner, upb_handlers_callback *callback, const void *closure) { dfs_state state; state.callback = callback; state.closure = closure; if (!upb_inttable_init(&state.tab, UPB_CTYPE_PTR)) return NULL; upb_handlers *ret = newformsg(m, owner, &state); upb_inttable_uninit(&state.tab); if (!ret) return NULL; upb_refcounted *r = UPB_UPCAST(ret); bool ok = upb_refcounted_freeze(&r, 1, NULL, UPB_MAX_HANDLER_DEPTH); UPB_ASSERT_VAR(ok, ok); return ret; } const upb_status *upb_handlers_status(upb_handlers *h) { assert(!upb_handlers_isfrozen(h)); return &h->status_; } void upb_handlers_clearerr(upb_handlers *h) { assert(!upb_handlers_isfrozen(h)); upb_status_clear(&h->status_); } #define SETTER(name, handlerctype, handlertype) \ bool upb_handlers_set ## name(upb_handlers *h, const upb_fielddef *f, \ handlerctype func, upb_handlerattr *attr) { \ int32_t sel = trygetsel(h, f, handlertype); \ return doset(h, sel, f, handlertype, (upb_func*)func, attr); \ } SETTER(int32, upb_int32_handlerfunc*, UPB_HANDLER_INT32); SETTER(int64, upb_int64_handlerfunc*, UPB_HANDLER_INT64); SETTER(uint32, upb_uint32_handlerfunc*, UPB_HANDLER_UINT32); SETTER(uint64, upb_uint64_handlerfunc*, UPB_HANDLER_UINT64); SETTER(float, upb_float_handlerfunc*, UPB_HANDLER_FLOAT); SETTER(double, upb_double_handlerfunc*, UPB_HANDLER_DOUBLE); SETTER(bool, upb_bool_handlerfunc*, UPB_HANDLER_BOOL); SETTER(startstr, upb_startstr_handlerfunc*, UPB_HANDLER_STARTSTR); SETTER(string, upb_string_handlerfunc*, UPB_HANDLER_STRING); SETTER(endstr, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSTR); SETTER(startseq, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSEQ); SETTER(startsubmsg, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSUBMSG); SETTER(endsubmsg, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSUBMSG); SETTER(endseq, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSEQ); #undef SETTER bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, upb_handlerattr *attr) { return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32, (upb_func *)func, attr); } bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, upb_handlerattr *attr) { assert(!upb_handlers_isfrozen(h)); return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32, (upb_func *)func, attr); } bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, const upb_handlers *sub) { assert(sub); assert(!upb_handlers_isfrozen(h)); assert(upb_fielddef_issubmsg(f)); if (SUBH_F(h, f)) return false; // Can't reset. if (UPB_UPCAST(upb_handlers_msgdef(sub)) != upb_fielddef_subdef(f)) { return false; } SUBH_F(h, f) = sub; upb_ref2(sub, h); return true; } const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, const upb_fielddef *f) { assert(upb_fielddef_issubmsg(f)); return SUBH_F(h, f); } bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel, upb_handlerattr *attr) { if (!upb_handlers_gethandler(h, sel)) return false; *attr = h->table[sel].attr; return true; } const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, upb_selector_t sel) { // STARTSUBMSG selector in sel is the field's selector base. return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT); } const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; } bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) { if (upb_inttable_lookupptr(&h->cleanup_, p, NULL)) { return false; } bool ok = upb_inttable_insertptr(&h->cleanup_, p, upb_value_fptr(func)); UPB_ASSERT_VAR(ok, ok); return true; } /* "Static" methods ***********************************************************/ bool upb_handlers_freeze(upb_handlers *const*handlers, int n, upb_status *s) { // TODO: verify we have a transitive closure. for (int i = 0; i < n; i++) { upb_handlers *h = handlers[i]; if (!upb_ok(&h->status_)) { upb_status_seterrf(s, "handlers for message %s had error status: %s", upb_msgdef_fullname(upb_handlers_msgdef(h)), upb_status_errmsg(&h->status_)); return false; } // Check that there are no closure mismatches due to missing Start* handlers // or subhandlers with different type-level types. upb_msg_iter j; for(upb_msg_begin(&j, h->msg); !upb_msg_done(&j); upb_msg_next(&j)) { const upb_fielddef *f = upb_msg_iter_field(&j); if (upb_fielddef_isseq(f)) { if (!checkstart(h, f, UPB_HANDLER_STARTSEQ, s)) return false; } if (upb_fielddef_isstring(f)) { if (!checkstart(h, f, UPB_HANDLER_STARTSTR, s)) return false; } if (upb_fielddef_issubmsg(f)) { bool hashandler = false; if (upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)) || upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_ENDSUBMSG))) { hashandler = true; } if (upb_fielddef_isseq(f) && (upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)) || upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_ENDSEQ)))) { hashandler = true; } if (hashandler && !upb_handlers_getsubhandlers(h, f)) { // For now we add an empty subhandlers in this case. It makes the // decoder code generator simpler, because it only has to handle two // cases (submessage has handlers or not) as opposed to three // (submessage has handlers in enclosing message but no subhandlers). // // This makes parsing less efficient in the case that we want to // notice a submessage but skip its contents (like if we're testing // for submessage presence or counting the number of repeated // submessages). In this case we will end up parsing the submessage // field by field and throwing away the results for each, instead of // skipping the whole delimited thing at once. If this is an issue we // can revisit it, but do remember that this only arises when you have // handlers (startseq/startsubmsg/endsubmsg/endseq) set for the // submessage but no subhandlers. The uses cases for this are // limited. upb_handlers *sub = upb_handlers_new(upb_fielddef_msgsubdef(f), &sub); upb_handlers_setsubhandlers(h, f, sub); upb_handlers_unref(sub, &sub); } // TODO(haberman): check type of submessage. // This is slightly tricky; also consider whether we should check that // they match at setsubhandlers time. } } } if (!upb_refcounted_freeze((upb_refcounted*const*)handlers, n, s, UPB_MAX_HANDLER_DEPTH)) { return false; } return true; } upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: case UPB_TYPE_ENUM: return UPB_HANDLER_INT32; case UPB_TYPE_INT64: return UPB_HANDLER_INT64; case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32; case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64; case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT; case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE; case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL; default: assert(false); return -1; // Invalid input. } } bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, upb_selector_t *s) { switch (type) { case UPB_HANDLER_INT32: case UPB_HANDLER_INT64: case UPB_HANDLER_UINT32: case UPB_HANDLER_UINT64: case UPB_HANDLER_FLOAT: case UPB_HANDLER_DOUBLE: case UPB_HANDLER_BOOL: if (!upb_fielddef_isprimitive(f) || upb_handlers_getprimitivehandlertype(f) != type) return false; *s = f->selector_base; break; case UPB_HANDLER_STRING: if (upb_fielddef_isstring(f)) { *s = f->selector_base; } else if (upb_fielddef_lazy(f)) { *s = f->selector_base + 3; } else { return false; } break; case UPB_HANDLER_STARTSTR: if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { *s = f->selector_base + 1; } else { return false; } break; case UPB_HANDLER_ENDSTR: if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { *s = f->selector_base + 2; } else { return false; } break; case UPB_HANDLER_STARTSEQ: if (!upb_fielddef_isseq(f)) return false; *s = f->selector_base - 2; break; case UPB_HANDLER_ENDSEQ: if (!upb_fielddef_isseq(f)) return false; *s = f->selector_base - 1; break; case UPB_HANDLER_STARTSUBMSG: if (!upb_fielddef_issubmsg(f)) return false; // Selectors for STARTSUBMSG are at the beginning of the table so that the // selector can also be used as an index into the "sub" array of // subhandlers. The indexes for the two into these two tables are the // same, except that in the handler table the static selectors come first. *s = f->index_ + UPB_STATIC_SELECTOR_COUNT; break; case UPB_HANDLER_ENDSUBMSG: if (!upb_fielddef_issubmsg(f)) return false; *s = f->selector_base; break; } assert(*s < upb_fielddef_containingtype(f)->selector_count); return true; } uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) { return upb_fielddef_isseq(f) ? 2 : 0; } uint32_t upb_handlers_selectorcount(const upb_fielddef *f) { uint32_t ret = 1; if (upb_fielddef_isseq(f)) ret += 2; // STARTSEQ/ENDSEQ if (upb_fielddef_isstring(f)) ret += 2; // [STRING]/STARTSTR/ENDSTR if (upb_fielddef_issubmsg(f)) { // ENDSUBMSG (STARTSUBMSG is at table beginning) ret += 0; if (upb_fielddef_lazy(f)) { // STARTSTR/ENDSTR/STRING (for lazy) ret += 3; } } return ret; } /* upb_handlerattr ************************************************************/ void upb_handlerattr_init(upb_handlerattr *attr) { upb_handlerattr from = UPB_HANDLERATTR_INITIALIZER; memcpy(attr, &from, sizeof(*attr)); } void upb_handlerattr_uninit(upb_handlerattr *attr) { UPB_UNUSED(attr); } bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd) { attr->handler_data_ = hd; return true; } bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type) { attr->closure_type_ = type; return true; } const void *upb_handlerattr_closuretype(const upb_handlerattr *attr) { return attr->closure_type_; } bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr, const void *type) { attr->return_closure_type_ = type; return true; } const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr) { return attr->return_closure_type_; } bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok) { attr->alwaysok_ = alwaysok; return true; } bool upb_handlerattr_alwaysok(const upb_handlerattr *attr) { return attr->alwaysok_; } /* upb_bufhandle **************************************************************/ size_t upb_bufhandle_objofs(const upb_bufhandle *h) { return h->objofs_; } /* upb_byteshandler ***********************************************************/ void upb_byteshandler_init(upb_byteshandler* h) { memset(h, 0, sizeof(*h)); } // For when we support handlerfree callbacks. void upb_byteshandler_uninit(upb_byteshandler* h) { UPB_UNUSED(h); } bool upb_byteshandler_setstartstr(upb_byteshandler *h, upb_startstr_handlerfunc *func, void *d) { h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func; h->table[UPB_STARTSTR_SELECTOR].attr.handler_data_ = d; return true; } bool upb_byteshandler_setstring(upb_byteshandler *h, upb_string_handlerfunc *func, void *d) { h->table[UPB_STRING_SELECTOR].func = (upb_func*)func; h->table[UPB_STRING_SELECTOR].attr.handler_data_ = d; return true; } bool upb_byteshandler_setendstr(upb_byteshandler *h, upb_endfield_handlerfunc *func, void *d) { h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func; h->table[UPB_ENDSTR_SELECTOR].attr.handler_data_ = d; return true; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2012 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Our key invariants are: * 1. reference cycles never span groups * 2. for ref2(to, from), we increment to's count iff group(from) != group(to) * * The previous two are how we avoid leaking cycles. Other important * invariants are: * 3. for mutable objects "from" and "to", if there exists a ref2(to, from) * this implies group(from) == group(to). (In practice, what we implement * is even stronger; "from" and "to" will share a group if there has *ever* * been a ref2(to, from), but all that is necessary for correctness is the * weaker one). * 4. mutable and immutable objects are never in the same group. */ #include #include static void freeobj(upb_refcounted *o); const char untracked_val; const void *UPB_UNTRACKED_REF = &untracked_val; /* arch-specific atomic primitives *******************************************/ #ifdef UPB_THREAD_UNSAFE ////////////////////////////////////////////////////// static void atomic_inc(uint32_t *a) { (*a)++; } static bool atomic_dec(uint32_t *a) { return --(*a) == 0; } #elif defined(__GNUC__) || defined(__clang__) ////////////////////////////////// static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); } static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; } #elif defined(WIN32) /////////////////////////////////////////////////////////// #include static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); } static bool atomic_dec(upb_atomic_t *a) { return InterlockedDecrement(&a->val) == 0; } #else #error Atomic primitives not defined for your platform/CPU. \ Implement them or compile with UPB_THREAD_UNSAFE. #endif // All static objects point to this refcount. // It is special-cased in ref/unref below. uint32_t static_refcount = -1; // We can avoid atomic ops for statically-declared objects. // This is a minor optimization but nice since we can avoid degrading under // contention in this case. static void refgroup(uint32_t *group) { if (group != &static_refcount) atomic_inc(group); } static bool unrefgroup(uint32_t *group) { if (group == &static_refcount) { return false; } else { return atomic_dec(group); } } /* Reference tracking (debug only) ********************************************/ #ifdef UPB_DEBUG_REFS #ifdef UPB_THREAD_UNSAFE static void upb_lock() {} static void upb_unlock() {} #else // User must define functions that lock/unlock a global mutex and link this // file against them. void upb_lock(); void upb_unlock(); #endif // UPB_DEBUG_REFS mode counts on being able to malloc() memory in some // code-paths that can normally never fail, like upb_refcounted_ref(). Since // we have no way to propagage out-of-memory errors back to the user, and since // these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail. #define CHECK_OOM(predicate) if (!(predicate)) { assert(predicate); exit(1); } typedef struct { int count; // How many refs there are (duplicates only allowed for ref2). bool is_ref2; } trackedref; static trackedref *trackedref_new(bool is_ref2) { trackedref *ret = malloc(sizeof(*ret)); CHECK_OOM(ret); ret->count = 1; ret->is_ref2 = is_ref2; return ret; } static void track(const upb_refcounted *r, const void *owner, bool ref2) { assert(owner); if (owner == UPB_UNTRACKED_REF) return; upb_lock(); upb_value v; if (upb_inttable_lookupptr(r->refs, owner, &v)) { trackedref *ref = upb_value_getptr(v); // Since we allow multiple ref2's for the same to/from pair without // allocating separate memory for each one, we lose the fine-grained // tracking behavior we get with regular refs. Since ref2s only happen // inside upb, we'll accept this limitation until/unless there is a really // difficult upb-internal bug that can't be figured out without it. assert(ref2); assert(ref->is_ref2); ref->count++; } else { trackedref *ref = trackedref_new(ref2); bool ok = upb_inttable_insertptr(r->refs, owner, upb_value_ptr(ref)); CHECK_OOM(ok); if (ref2) { // We know this cast is safe when it is a ref2, because it's coming from // another refcounted object. const upb_refcounted *from = owner; assert(!upb_inttable_lookupptr(from->ref2s, r, NULL)); ok = upb_inttable_insertptr(from->ref2s, r, upb_value_ptr(NULL)); CHECK_OOM(ok); } } upb_unlock(); } static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { assert(owner); if (owner == UPB_UNTRACKED_REF) return; upb_lock(); upb_value v; bool found = upb_inttable_lookupptr(r->refs, owner, &v); // This assert will fail if an owner attempts to release a ref it didn't have. UPB_ASSERT_VAR(found, found); trackedref *ref = upb_value_getptr(v); assert(ref->is_ref2 == ref2); if (--ref->count == 0) { free(ref); upb_inttable_removeptr(r->refs, owner, NULL); if (ref2) { // We know this cast is safe when it is a ref2, because it's coming from // another refcounted object. const upb_refcounted *from = owner; bool removed = upb_inttable_removeptr(from->ref2s, r, NULL); assert(removed); } } upb_unlock(); } static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { upb_lock(); upb_value v; bool found = upb_inttable_lookupptr(r->refs, owner, &v); UPB_ASSERT_VAR(found, found); trackedref *ref = upb_value_getptr(v); assert(ref->is_ref2 == ref2); upb_unlock(); } // Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that // originate from the given owner. static void getref2s(const upb_refcounted *owner, upb_inttable *tab) { upb_lock(); upb_inttable_iter i; upb_inttable_begin(&i, owner->ref2s); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_refcounted *to = (upb_refcounted*)upb_inttable_iter_key(&i); // To get the count we need to look in the target's table. upb_value v; bool found = upb_inttable_lookupptr(to->refs, owner, &v); assert(found); trackedref *ref = upb_value_getptr(v); upb_value count = upb_value_int32(ref->count); bool ok = upb_inttable_insertptr(tab, to, count); CHECK_OOM(ok); } upb_unlock(); } typedef struct { upb_inttable ref2; const upb_refcounted *obj; } check_state; static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure) { check_state *s = closure; assert(obj == s->obj); assert(subobj); upb_inttable *ref2 = &s->ref2; upb_value v; bool removed = upb_inttable_removeptr(ref2, subobj, &v); // The following assertion will fail if the visit() function visits a subobj // that it did not have a ref2 on, or visits the same subobj too many times. assert(removed); int32_t newcount = upb_value_getint32(v) - 1; if (newcount > 0) { upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount)); } } static void visit(const upb_refcounted *r, upb_refcounted_visit *v, void *closure) { // In DEBUG_REFS mode we know what existing ref2 refs there are, so we know // exactly the set of nodes that visit() should visit. So we verify visit()'s // correctness here. check_state state; state.obj = r; bool ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32); CHECK_OOM(ok); getref2s(r, &state.ref2); // This should visit any children in the ref2 table. if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state); // This assertion will fail if the visit() function missed any children. assert(upb_inttable_count(&state.ref2) == 0); upb_inttable_uninit(&state.ref2); if (r->vtbl->visit) r->vtbl->visit(r, v, closure); } static bool trackinit(upb_refcounted *r) { r->refs = malloc(sizeof(*r->refs)); r->ref2s = malloc(sizeof(*r->ref2s)); if (!r->refs || !r->ref2s) goto err1; if (!upb_inttable_init(r->refs, UPB_CTYPE_PTR)) goto err1; if (!upb_inttable_init(r->ref2s, UPB_CTYPE_PTR)) goto err2; return true; err2: upb_inttable_uninit(r->refs); err1: free(r->refs); free(r->ref2s); return false; } static void trackfree(const upb_refcounted *r) { upb_inttable_uninit(r->refs); upb_inttable_uninit(r->ref2s); free(r->refs); free(r->ref2s); } #else static void track(const upb_refcounted *r, const void *owner, bool ref2) { UPB_UNUSED(r); UPB_UNUSED(owner); UPB_UNUSED(ref2); } static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { UPB_UNUSED(r); UPB_UNUSED(owner); UPB_UNUSED(ref2); } static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { UPB_UNUSED(r); UPB_UNUSED(owner); UPB_UNUSED(ref2); } static bool trackinit(upb_refcounted *r) { UPB_UNUSED(r); return true; } static void trackfree(const upb_refcounted *r) { UPB_UNUSED(r); } static void visit(const upb_refcounted *r, upb_refcounted_visit *v, void *closure) { if (r->vtbl->visit) r->vtbl->visit(r, v, closure); } #endif // UPB_DEBUG_REFS /* freeze() *******************************************************************/ // The freeze() operation is by far the most complicated part of this scheme. // We compute strongly-connected components and then mutate the graph such that // we preserve the invariants documented at the top of this file. And we must // handle out-of-memory errors gracefully (without leaving the graph // inconsistent), which adds to the fun. // The state used by the freeze operation (shared across many functions). typedef struct { int depth; int maxdepth; uint64_t index; // Maps upb_refcounted* -> attributes (color, etc). attr layout varies by // color. upb_inttable objattr; upb_inttable stack; // stack of upb_refcounted* for Tarjan's algorithm. upb_inttable groups; // array of uint32_t*, malloc'd refcounts for new groups upb_status *status; jmp_buf err; } tarjan; static void release_ref2(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure); // Node attributes ///////////////////////////////////////////////////////////// // After our analysis phase all nodes will be either GRAY or WHITE. typedef enum { BLACK = 0, // Object has not been seen. GRAY, // Object has been found via a refgroup but may not be reachable. GREEN, // Object is reachable and is currently on the Tarjan stack. WHITE, // Object is reachable and has been assigned a group (SCC). } color_t; UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); } UPB_NORETURN static void oom(tarjan *t) { upb_status_seterrmsg(t->status, "out of memory"); err(t); } static uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) { upb_value v; return upb_inttable_lookupptr(&t->objattr, r, &v) ? upb_value_getuint64(v) : 0; } static uint64_t getattr(const tarjan *t, const upb_refcounted *r) { upb_value v; bool found = upb_inttable_lookupptr(&t->objattr, r, &v); UPB_ASSERT_VAR(found, found); return upb_value_getuint64(v); } static void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) { upb_inttable_removeptr(&t->objattr, r, NULL); upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr)); } static color_t color(tarjan *t, const upb_refcounted *r) { return trygetattr(t, r) & 0x3; // Color is always stored in the low 2 bits. } static void set_gray(tarjan *t, const upb_refcounted *r) { assert(color(t, r) == BLACK); setattr(t, r, GRAY); } // Pushes an obj onto the Tarjan stack and sets it to GREEN. static void push(tarjan *t, const upb_refcounted *r) { assert(color(t, r) == BLACK || color(t, r) == GRAY); // This defines the attr layout for the GREEN state. "index" and "lowlink" // get 31 bits, which is plenty (limit of 2B objects frozen at a time). setattr(t, r, GREEN | (t->index << 2) | (t->index << 33)); if (++t->index == 0x80000000) { upb_status_seterrmsg(t->status, "too many objects to freeze"); err(t); } upb_inttable_push(&t->stack, upb_value_ptr((void*)r)); } // Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its // SCC group. static upb_refcounted *pop(tarjan *t) { upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack)); assert(color(t, r) == GREEN); // This defines the attr layout for nodes in the WHITE state. // Top of group stack is [group, NULL]; we point at group. setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8); return r; } static void tarjan_newgroup(tarjan *t) { uint32_t *group = malloc(sizeof(*group)); if (!group) oom(t); // Push group and empty group leader (we'll fill in leader later). if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) || !upb_inttable_push(&t->groups, upb_value_ptr(NULL))) { free(group); oom(t); } *group = 0; } static uint32_t idx(tarjan *t, const upb_refcounted *r) { assert(color(t, r) == GREEN); return (getattr(t, r) >> 2) & 0x7FFFFFFF; } static uint32_t lowlink(tarjan *t, const upb_refcounted *r) { if (color(t, r) == GREEN) { return getattr(t, r) >> 33; } else { return UINT32_MAX; } } static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) { assert(color(t, r) == GREEN); setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF)); } static uint32_t *group(tarjan *t, upb_refcounted *r) { assert(color(t, r) == WHITE); uint64_t groupnum = getattr(t, r) >> 8; upb_value v; bool found = upb_inttable_lookup(&t->groups, groupnum, &v); UPB_ASSERT_VAR(found, found); return upb_value_getptr(v); } // If the group leader for this object's group has not previously been set, // the given object is assigned to be its leader. static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) { assert(color(t, r) == WHITE); uint64_t leader_slot = (getattr(t, r) >> 8) + 1; upb_value v; bool found = upb_inttable_lookup(&t->groups, leader_slot, &v); UPB_ASSERT_VAR(found, found); if (upb_value_getptr(v)) { return upb_value_getptr(v); } else { upb_inttable_remove(&t->groups, leader_slot, NULL); upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r)); return r; } } // Tarjan's algorithm ////////////////////////////////////////////////////////// // See: // http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm static void do_tarjan(const upb_refcounted *obj, tarjan *t); static void tarjan_visit(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure) { tarjan *t = closure; if (++t->depth > t->maxdepth) { upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth); err(t); } else if (subobj->is_frozen || color(t, subobj) == WHITE) { // Do nothing: we don't want to visit or color already-frozen nodes, // and WHITE nodes have already been assigned a SCC. } else if (color(t, subobj) < GREEN) { // Subdef has not yet been visited; recurse on it. do_tarjan(subobj, t); set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj))); } else if (color(t, subobj) == GREEN) { // Subdef is in the stack and hence in the current SCC. set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj))); } --t->depth; } static void do_tarjan(const upb_refcounted *obj, tarjan *t) { if (color(t, obj) == BLACK) { // We haven't seen this object's group; mark the whole group GRAY. const upb_refcounted *o = obj; do { set_gray(t, o); } while ((o = o->next) != obj); } push(t, obj); visit(obj, tarjan_visit, t); if (lowlink(t, obj) == idx(t, obj)) { tarjan_newgroup(t); while (pop(t) != obj) ; } } // freeze() //////////////////////////////////////////////////////////////////// static void crossref(const upb_refcounted *r, const upb_refcounted *subobj, void *_t) { tarjan *t = _t; assert(color(t, r) > BLACK); if (color(t, subobj) > BLACK && r->group != subobj->group) { // Previously this ref was not reflected in subobj->group because they // were in the same group; now that they are split a ref must be taken. refgroup(subobj->group); } } static bool freeze(upb_refcounted *const*roots, int n, upb_status *s, int maxdepth) { volatile bool ret = false; // We run in two passes so that we can allocate all memory before performing // any mutation of the input -- this allows us to leave the input unchanged // in the case of memory allocation failure. tarjan t; t.index = 0; t.depth = 0; t.maxdepth = maxdepth; t.status = s; if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1; if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2; if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3; if (setjmp(t.err) != 0) goto err4; for (int i = 0; i < n; i++) { if (color(&t, roots[i]) < GREEN) { do_tarjan(roots[i], &t); } } // If we've made it this far, no further errors are possible so it's safe to // mutate the objects without risk of leaving them in an inconsistent state. ret = true; // The transformation that follows requires care. The preconditions are: // - all objects in attr map are WHITE or GRAY, and are in mutable groups // (groups of all mutable objs) // - no ref2(to, from) refs have incremented count(to) if both "to" and // "from" are in our attr map (this follows from invariants (2) and (3)) // Pass 1: we remove WHITE objects from their mutable groups, and add them to // new groups according to the SCC's we computed. These new groups will // consist of only frozen objects. None will be immediately collectible, // because WHITE objects are by definition reachable from one of "roots", // which the caller must own refs on. upb_inttable_iter i; upb_inttable_begin(&i, &t.objattr); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i); // Since removal from a singly-linked list requires access to the object's // predecessor, we consider obj->next instead of obj for moving. With the // while() loop we guarantee that we will visit every node's predecessor. // Proof: // 1. every node's predecessor is in our attr map. // 2. though the loop body may change a node's predecessor, it will only // change it to be the node we are currently operating on, so with a // while() loop we guarantee ourselves the chance to remove each node. while (color(&t, obj->next) == WHITE && group(&t, obj->next) != obj->next->group) { // Remove from old group. upb_refcounted *move = obj->next; if (obj == move) { // Removing the last object from a group. assert(*obj->group == obj->individual_count); free(obj->group); } else { obj->next = move->next; // This may decrease to zero; we'll collect GRAY objects (if any) that // remain in the group in the third pass. assert(*move->group >= move->individual_count); *move->group -= move->individual_count; } // Add to new group. upb_refcounted *leader = groupleader(&t, move); if (move == leader) { // First object added to new group is its leader. move->group = group(&t, move); move->next = move; *move->group = move->individual_count; } else { // Group already has at least one object in it. assert(leader->group == group(&t, move)); move->group = group(&t, move); move->next = leader->next; leader->next = move; *move->group += move->individual_count; } move->is_frozen = true; } } // Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must // increment count(to) if group(obj) != group(to) (which could now be the // case if "to" was just frozen). upb_inttable_begin(&i, &t.objattr); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i); visit(obj, crossref, &t); } // Pass 3: GRAY objects are collected if their group's refcount dropped to // zero when we removed its white nodes. This can happen if they had only // been kept alive by virtue of sharing a group with an object that was just // frozen. // // It is important that we do this last, since the GRAY object's free() // function could call unref2() on just-frozen objects, which will decrement // refs that were added in pass 2. upb_inttable_begin(&i, &t.objattr); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i); if (obj->group == NULL || *obj->group == 0) { if (obj->group) { // We eagerly free() the group's count (since we can't easily determine // the group's remaining size it's the easiest way to ensure it gets // done). free(obj->group); // Visit to release ref2's (done in a separate pass since release_ref2 // depends on o->group being unmodified so it can test merged()). upb_refcounted *o = obj; do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj); // Mark "group" fields as NULL so we know to free the objects later in // this loop, but also don't try to delete the group twice. o = obj; do { o->group = NULL; } while ((o = o->next) != obj); } freeobj(obj); } } err4: if (!ret) { upb_inttable_begin(&i, &t.groups); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) free(upb_value_getptr(upb_inttable_iter_value(&i))); } upb_inttable_uninit(&t.groups); err3: upb_inttable_uninit(&t.stack); err2: upb_inttable_uninit(&t.objattr); err1: return ret; } /* Misc internal functions ***************************************************/ static bool merged(const upb_refcounted *r, const upb_refcounted *r2) { return r->group == r2->group; } static void merge(upb_refcounted *r, upb_refcounted *from) { if (merged(r, from)) return; *r->group += *from->group; free(from->group); upb_refcounted *base = from; // Set all refcount pointers in the "from" chain to the merged refcount. // // TODO(haberman): this linear algorithm can result in an overall O(n^2) bound // if the user continuously extends a group by one object. Prevent this by // using one of the techniques in this paper: // ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf do { from->group = r->group; } while ((from = from->next) != base); // Merge the two circularly linked lists by swapping their next pointers. upb_refcounted *tmp = r->next; r->next = base->next; base->next = tmp; } static void unref(const upb_refcounted *r); static void release_ref2(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure) { UPB_UNUSED(closure); untrack(subobj, obj, true); if (!merged(obj, subobj)) { assert(subobj->is_frozen); unref(subobj); } } static void unref(const upb_refcounted *r) { if (unrefgroup(r->group)) { free(r->group); // In two passes, since release_ref2 needs a guarantee that any subobjs // are alive. const upb_refcounted *o = r; do { visit(o, release_ref2, NULL); } while((o = o->next) != r); o = r; do { const upb_refcounted *next = o->next; assert(o->is_frozen || o->individual_count == 0); freeobj((upb_refcounted*)o); o = next; } while(o != r); } } static void freeobj(upb_refcounted *o) { trackfree(o); o->vtbl->free((upb_refcounted*)o); } /* Public interface ***********************************************************/ bool upb_refcounted_init(upb_refcounted *r, const struct upb_refcounted_vtbl *vtbl, const void *owner) { r->next = r; r->vtbl = vtbl; r->individual_count = 0; r->is_frozen = false; r->group = malloc(sizeof(*r->group)); if (!r->group) return false; *r->group = 0; if (!trackinit(r)) { free(r->group); return false; } upb_refcounted_ref(r, owner); return true; } bool upb_refcounted_isfrozen(const upb_refcounted *r) { return r->is_frozen; } void upb_refcounted_ref(const upb_refcounted *r, const void *owner) { track(r, owner, false); if (!r->is_frozen) ((upb_refcounted*)r)->individual_count++; refgroup(r->group); } void upb_refcounted_unref(const upb_refcounted *r, const void *owner) { untrack(r, owner, false); if (!r->is_frozen) ((upb_refcounted*)r)->individual_count--; unref(r); } void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) { assert(!from->is_frozen); // Non-const pointer implies this. track(r, from, true); if (r->is_frozen) { refgroup(r->group); } else { merge((upb_refcounted*)r, from); } } void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) { assert(!from->is_frozen); // Non-const pointer implies this. untrack(r, from, true); if (r->is_frozen) { unref(r); } else { assert(merged(r, from)); } } void upb_refcounted_donateref( const upb_refcounted *r, const void *from, const void *to) { assert(from != to); if (to != NULL) upb_refcounted_ref(r, to); if (from != NULL) upb_refcounted_unref(r, from); } void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) { checkref(r, owner, false); } bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s, int maxdepth) { for (int i = 0; i < n; i++) { assert(!roots[i]->is_frozen); } return freeze(roots, n, s, maxdepth); } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2013 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #include // Fallback implementation if the shim is not specialized by the JIT. #define SHIM_WRITER(type, ctype) \ bool upb_shim_set ## type (void *c, const void *hd, ctype val) { \ uint8_t *m = c; \ const upb_shim_data *d = hd; \ if (d->hasbit > 0) \ *(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8); \ *(ctype*)&m[d->offset] = val; \ return true; \ } \ SHIM_WRITER(double, double) SHIM_WRITER(float, float) SHIM_WRITER(int32, int32_t) SHIM_WRITER(int64, int64_t) SHIM_WRITER(uint32, uint32_t) SHIM_WRITER(uint64, uint64_t) SHIM_WRITER(bool, bool) #undef SHIM_WRITER bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset, int32_t hasbit) { upb_shim_data *d = malloc(sizeof(*d)); if (!d) return false; d->offset = offset; d->hasbit = hasbit; upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, d); upb_handlerattr_setalwaysok(&attr, true); upb_handlers_addcleanup(h, d, free); #define TYPE(u, l) \ case UPB_TYPE_##u: \ ok = upb_handlers_set##l(h, f, upb_shim_set##l, &attr); break; bool ok = false; switch (upb_fielddef_type(f)) { TYPE(INT64, int64); TYPE(INT32, int32); TYPE(ENUM, int32); TYPE(UINT64, uint64); TYPE(UINT32, uint32); TYPE(DOUBLE, double); TYPE(FLOAT, float); TYPE(BOOL, bool); default: assert(false); break; } #undef TYPE upb_handlerattr_uninit(&attr); return ok; } const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s, upb_fieldtype_t *type) { upb_func *f = upb_handlers_gethandler(h, s); if ((upb_int64_handlerfunc*)f == upb_shim_setint64) { *type = UPB_TYPE_INT64; } else if ((upb_int32_handlerfunc*)f == upb_shim_setint32) { *type = UPB_TYPE_INT32; } else if ((upb_uint64_handlerfunc*)f == upb_shim_setuint64) { *type = UPB_TYPE_UINT64; } else if ((upb_uint32_handlerfunc*)f == upb_shim_setuint32) { *type = UPB_TYPE_UINT32; } else if ((upb_double_handlerfunc*)f == upb_shim_setdouble) { *type = UPB_TYPE_DOUBLE; } else if ((upb_float_handlerfunc*)f == upb_shim_setfloat) { *type = UPB_TYPE_FLOAT; } else if ((upb_bool_handlerfunc*)f == upb_shim_setbool) { *type = UPB_TYPE_BOOL; } else { return NULL; } return (const upb_shim_data*)upb_handlers_gethandlerdata(h, s); } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2008-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #include #include bool upb_symtab_isfrozen(const upb_symtab *s) { return upb_refcounted_isfrozen(UPB_UPCAST(s)); } void upb_symtab_ref(const upb_symtab *s, const void *owner) { upb_refcounted_ref(UPB_UPCAST(s), owner); } void upb_symtab_unref(const upb_symtab *s, const void *owner) { upb_refcounted_unref(UPB_UPCAST(s), owner); } void upb_symtab_donateref( const upb_symtab *s, const void *from, const void *to) { upb_refcounted_donateref(UPB_UPCAST(s), from, to); } void upb_symtab_checkref(const upb_symtab *s, const void *owner) { upb_refcounted_checkref(UPB_UPCAST(s), owner); } static void upb_symtab_free(upb_refcounted *r) { upb_symtab *s = (upb_symtab*)r; upb_strtable_iter i; upb_strtable_begin(&i, &s->symtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); upb_def_unref(def, s); } upb_strtable_uninit(&s->symtab); free(s); } upb_symtab *upb_symtab_new(const void *owner) { static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free}; upb_symtab *s = malloc(sizeof(*s)); upb_refcounted_init(UPB_UPCAST(s), &vtbl, owner); upb_strtable_init(&s->symtab, UPB_CTYPE_PTR); return s; } void upb_symtab_freeze(upb_symtab *s) { assert(!upb_symtab_isfrozen(s)); upb_refcounted *r = UPB_UPCAST(s); // The symtab does not take ref2's (see refcounted.h) on the defs, because // defs cannot refer back to the table and therefore cannot create cycles. So // 0 will suffice for maxdepth here. bool ok = upb_refcounted_freeze(&r, 1, NULL, 0); UPB_ASSERT_VAR(ok, ok); } const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) { upb_value v; upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ? upb_value_getptr(v) : NULL; return ret; } const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) { upb_value v; upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? upb_value_getptr(v) : NULL; return def ? upb_dyncast_msgdef(def) : NULL; } const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) { upb_value v; upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? upb_value_getptr(v) : NULL; return def ? upb_dyncast_enumdef(def) : NULL; } // Given a symbol and the base symbol inside which it is defined, find the // symbol's definition in t. static upb_def *upb_resolvename(const upb_strtable *t, const char *base, const char *sym) { if(strlen(sym) == 0) return NULL; if(sym[0] == '.') { // Symbols starting with '.' are absolute, so we do a single lookup. // Slice to omit the leading '.' upb_value v; return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL; } else { // Remove components from base until we find an entry or run out. // TODO: This branch is totally broken, but currently not used. (void)base; assert(false); return NULL; } } const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, const char *sym) { upb_def *ret = upb_resolvename(&s->symtab, base, sym); return ret; } // Searches def and its children to find defs that have the same name as any // def in "addtab." Returns true if any where found, and as a side-effect adds // duplicates of these defs into addtab. // // We use a modified depth-first traversal that traverses each SCC (which we // already computed) as if it were a single node. This allows us to traverse // the possibly-cyclic graph as if it were a DAG and to dup the correct set of // nodes with O(n) time. static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab, const void *new_owner, upb_inttable *seen, upb_status *s) { // Memoize results of this function for efficiency (since we're traversing a // DAG this is not needed to limit the depth of the search). upb_value v; if (upb_inttable_lookup(seen, (uintptr_t)def, &v)) return upb_value_getbool(v); // Visit submessages for all messages in the SCC. bool need_dup = false; const upb_def *base = def; do { assert(upb_def_isfrozen(def)); if (def->type == UPB_DEF_FIELD) continue; upb_value v; if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) { need_dup = true; } // For messages, continue the recursion by visiting all subdefs. const upb_msgdef *m = upb_dyncast_msgdef(def); if (m) { upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); if (!upb_fielddef_hassubdef(f)) continue; // |= to avoid short-circuit; we need its side-effects. need_dup |= upb_resolve_dfs( upb_fielddef_subdef(f), addtab, new_owner, seen, s); if (!upb_ok(s)) return false; } } } while ((def = (upb_def*)def->base.next) != base); if (need_dup) { // Dup any defs that don't already have entries in addtab. def = base; do { if (def->type == UPB_DEF_FIELD) continue; const char *name = upb_def_fullname(def); if (!upb_strtable_lookup(addtab, name, NULL)) { upb_def *newdef = upb_def_dup(def, new_owner); if (!newdef) goto oom; newdef->came_from_user = false; if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef))) goto oom; } } while ((def = (upb_def*)def->base.next) != base); } upb_inttable_insert(seen, (uintptr_t)def, upb_value_bool(need_dup)); return need_dup; oom: upb_status_seterrmsg(s, "out of memory"); return false; } // TODO(haberman): we need a lot more testing of error conditions. // The came_from_user stuff in particular is not tested. bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor, upb_status *status) { assert(!upb_symtab_isfrozen(s)); upb_def **add_defs = NULL; upb_strtable addtab; if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) { upb_status_seterrmsg(status, "out of memory"); return false; } // Add new defs to our "add" set. for (int i = 0; i < n; i++) { upb_def *def = defs[i]; if (upb_def_isfrozen(def)) { upb_status_seterrmsg(status, "added defs must be mutable"); goto err; } assert(!upb_def_isfrozen(def)); const char *fullname = upb_def_fullname(def); if (!fullname) { upb_status_seterrmsg( status, "Anonymous defs cannot be added to a symtab"); goto err; } upb_fielddef *f = upb_dyncast_fielddef_mutable(def); if (f) { if (!upb_fielddef_containingtypename(f)) { upb_status_seterrmsg(status, "Standalone fielddefs must have a containing type " "(extendee) name set"); goto err; } } else { if (upb_strtable_lookup(&addtab, fullname, NULL)) { upb_status_seterrf(status, "Conflicting defs named '%s'", fullname); goto err; } // We need this to back out properly, because if there is a failure we // need to donate the ref back to the caller. def->came_from_user = true; upb_def_donateref(def, ref_donor, s); if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def))) goto oom_err; } } // Add standalone fielddefs (ie. extensions) to the appropriate messages. // If the appropriate message only exists in the existing symtab, duplicate // it so we have a mutable copy we can add the fields to. for (int i = 0; i < n; i++) { upb_def *def = defs[i]; upb_fielddef *f = upb_dyncast_fielddef_mutable(def); if (!f) continue; const char *msgname = upb_fielddef_containingtypename(f); // We validated this earlier in this function. assert(msgname); // If the extendee name is absolutely qualified, move past the initial ".". // TODO(haberman): it is not obvious what it would mean if this was not // absolutely qualified. if (msgname[0] == '.') { msgname++; } upb_value v; upb_msgdef *m; if (upb_strtable_lookup(&addtab, msgname, &v)) { // Extendee is in the set of defs the user asked us to add. m = upb_value_getptr(v); } else { // Need to find and dup the extendee from the existing symtab. const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname); if (!frozen_m) { upb_status_seterrf(status, "Tried to extend message %s that does not exist " "in this SymbolTable.", msgname); goto err; } m = upb_msgdef_dup(frozen_m, s); if (!m) goto oom_err; if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) { upb_msgdef_unref(m, s); goto oom_err; } } if (!upb_msgdef_addfield(m, f, ref_donor, status)) { goto err; } } // Add dups of any existing def that can reach a def with the same name as // anything in our "add" set. upb_inttable seen; if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err; upb_strtable_iter i; upb_strtable_begin(&i, &s->symtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); upb_resolve_dfs(def, &addtab, s, &seen, status); if (!upb_ok(status)) goto err; } upb_inttable_uninit(&seen); // Now using the table, resolve symbolic references for subdefs. upb_strtable_begin(&i, &addtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); upb_msgdef *m = upb_dyncast_msgdef_mutable(def); if (!m) continue; // Type names are resolved relative to the message in which they appear. const char *base = upb_msgdef_fullname(m); upb_msg_iter j; for(upb_msg_begin(&j, m); !upb_msg_done(&j); upb_msg_next(&j)) { upb_fielddef *f = upb_msg_iter_field(&j); const char *name = upb_fielddef_subdefname(f); if (name && !upb_fielddef_subdef(f)) { // Try the lookup in the current set of to-be-added defs first. If not // there, try existing defs. upb_def *subdef = upb_resolvename(&addtab, base, name); if (subdef == NULL) { subdef = upb_resolvename(&s->symtab, base, name); } if (subdef == NULL) { upb_status_seterrf( status, "couldn't resolve name '%s' in message '%s'", name, base); goto err; } else if (!upb_fielddef_setsubdef(f, subdef, status)) { goto err; } } } } // We need an array of the defs in addtab, for passing to upb_def_freeze. add_defs = malloc(sizeof(void*) * upb_strtable_count(&addtab)); if (add_defs == NULL) goto oom_err; upb_strtable_begin(&i, &addtab); for (n = 0; !upb_strtable_done(&i); upb_strtable_next(&i)) { add_defs[n++] = upb_value_getptr(upb_strtable_iter_value(&i)); } if (!upb_def_freeze(add_defs, n, status)) goto err; // This must be delayed until all errors have been detected, since error // recovery code uses this table to cleanup defs. upb_strtable_uninit(&addtab); // TODO(haberman) we don't properly handle errors after this point (like // OOM in upb_strtable_insert() below). for (int i = 0; i < n; i++) { upb_def *def = add_defs[i]; const char *name = upb_def_fullname(def); upb_value v; if (upb_strtable_remove(&s->symtab, name, &v)) { const upb_def *def = upb_value_getptr(v); upb_def_unref(def, s); } bool success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def)); UPB_ASSERT_VAR(success, success == true); } free(add_defs); return true; oom_err: upb_status_seterrmsg(status, "out of memory"); err: { // For defs the user passed in, we need to donate the refs back. For defs // we dup'd, we need to just unref them. upb_strtable_iter i; upb_strtable_begin(&i, &addtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); bool came_from_user = def->came_from_user; def->came_from_user = false; if (came_from_user) { upb_def_donateref(def, s, ref_donor); } else { upb_def_unref(def, s); } } } upb_strtable_uninit(&addtab); free(add_defs); assert(!upb_ok(status)); return false; } // Iteration. static void advance_to_matching(upb_symtab_iter *iter) { if (iter->type == UPB_DEF_ANY) return; while (!upb_strtable_done(&iter->iter) && iter->type != upb_symtab_iter_def(iter)->type) { upb_strtable_next(&iter->iter); } } void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s, upb_deftype_t type) { upb_strtable_begin(&iter->iter, &s->symtab); iter->type = type; advance_to_matching(iter); } void upb_symtab_next(upb_symtab_iter *iter) { upb_strtable_next(&iter->iter); advance_to_matching(iter); } bool upb_symtab_done(const upb_symtab_iter *iter) { return upb_strtable_done(&iter->iter); } const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) { return upb_value_getptr(upb_strtable_iter_value(&iter->iter)); } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Implementation is heavily inspired by Lua's ltable.c. */ #include #include #define UPB_MAXARRSIZE 16 // 64k. // From Chromium. #define ARRAY_SIZE(x) \ ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) static const double MAX_LOAD = 0.85; // The minimum utilization of the array part of a mixed hash/array table. This // is a speed/memory-usage tradeoff (though it's not straightforward because of // cache effects). The lower this is, the more memory we'll use. static const double MIN_DENSITY = 0.1; bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } int log2ceil(uint64_t v) { int ret = 0; bool pow2 = is_pow2(v); while (v >>= 1) ret++; ret = pow2 ? ret : ret + 1; // Ceiling. return UPB_MIN(UPB_MAXARRSIZE, ret); } char *upb_strdup(const char *s) { return upb_strdup2(s, strlen(s)); } char *upb_strdup2(const char *s, size_t len) { // Always null-terminate, even if binary data; but don't rely on the input to // have a null-terminating byte since it may be a raw binary buffer. size_t n = len + 1; char *p = malloc(n); if (p) memcpy(p, s, len); p[len] = 0; return p; } // A type to represent the lookup key of either a strtable or an inttable. typedef struct { upb_tabkey key; } lookupkey_t; static lookupkey_t strkey2(const char *str, size_t len) { lookupkey_t k; k.key.s.str = (char*)str; k.key.s.length = len; return k; } static lookupkey_t intkey(uintptr_t key) { lookupkey_t k; k.key = upb_intkey(key); return k; } typedef uint32_t hashfunc_t(upb_tabkey key); typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); /* Base table (shared code) ***************************************************/ // For when we need to cast away const. static upb_tabent *mutable_entries(upb_table *t) { return (upb_tabent*)t->entries; } static bool isfull(upb_table *t) { return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD; } static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) { t->count = 0; t->ctype = ctype; t->size_lg2 = size_lg2; t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; size_t bytes = upb_table_size(t) * sizeof(upb_tabent); if (bytes > 0) { t->entries = malloc(bytes); if (!t->entries) return false; memset(mutable_entries(t), 0, bytes); } else { t->entries = NULL; } return true; } static void uninit(upb_table *t) { free(mutable_entries(t)); } static upb_tabent *emptyent(upb_table *t) { upb_tabent *e = mutable_entries(t) + upb_table_size(t); while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); } } static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) { return (upb_tabent*)upb_getentry(t, hash); } static const upb_tabent *findentry(const upb_table *t, lookupkey_t key, uint32_t hash, eqlfunc_t *eql) { if (t->size_lg2 == 0) return NULL; const upb_tabent *e = upb_getentry(t, hash); if (upb_tabent_isempty(e)) return NULL; while (1) { if (eql(e->key, key)) return e; if ((e = e->next) == NULL) return NULL; } } static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key, uint32_t hash, eqlfunc_t *eql) { return (upb_tabent*)findentry(t, key, hash, eql); } static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v, uint32_t hash, eqlfunc_t *eql) { const upb_tabent *e = findentry(t, key, hash, eql); if (e) { if (v) { _upb_value_setval(v, e->val, t->ctype); } return true; } else { return false; } } // The given key must not already exist in the table. static void insert(upb_table *t, lookupkey_t key, upb_value val, uint32_t hash, hashfunc_t *hashfunc, eqlfunc_t *eql) { UPB_UNUSED(eql); assert(findentry(t, key, hash, eql) == NULL); assert(val.ctype == t->ctype); t->count++; upb_tabent *mainpos_e = getentry_mutable(t, hash); upb_tabent *our_e = mainpos_e; if (upb_tabent_isempty(mainpos_e)) { // Our main position is empty; use it. our_e->next = NULL; } else { // Collision. upb_tabent *new_e = emptyent(t); // Head of collider's chain. upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key)); if (chain == mainpos_e) { // Existing ent is in its main posisiton (it has the same hash as us, and // is the head of our chain). Insert to new ent and append to this chain. new_e->next = mainpos_e->next; mainpos_e->next = new_e; our_e = new_e; } else { // Existing ent is not in its main position (it is a node in some other // chain). This implies that no existing ent in the table has our hash. // Evict it (updating its chain) and use its ent for head of our chain. *new_e = *mainpos_e; // copies next. while (chain->next != mainpos_e) { chain = (upb_tabent*)chain->next; assert(chain); } chain->next = new_e; our_e = mainpos_e; our_e->next = NULL; } } our_e->key = key.key; our_e->val = val.val; assert(findentry(t, key, hash, eql) == our_e); } static bool rm(upb_table *t, lookupkey_t key, upb_value *val, upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) { upb_tabent *chain = getentry_mutable(t, hash); if (upb_tabent_isempty(chain)) return false; if (eql(chain->key, key)) { // Element to remove is at the head of its chain. t->count--; if (val) { _upb_value_setval(val, chain->val, t->ctype); } if (chain->next) { upb_tabent *move = (upb_tabent*)chain->next; *chain = *move; if (removed) *removed = move->key; move->key.num = 0; // Make the slot empty. } else { if (removed) *removed = chain->key; chain->key.num = 0; // Make the slot empty. } return true; } else { // Element to remove is either in a non-head position or not in the table. while (chain->next && !eql(chain->next->key, key)) chain = (upb_tabent*)chain->next; if (chain->next) { // Found element to remove. if (val) { _upb_value_setval(val, chain->next->val, t->ctype); } upb_tabent *rm = (upb_tabent*)chain->next; if (removed) *removed = rm->key; rm->key.num = 0; chain->next = rm->next; t->count--; return true; } else { return false; } } } static size_t next(const upb_table *t, size_t i) { do { if (++i >= upb_table_size(t)) return SIZE_MAX; } while(upb_tabent_isempty(&t->entries[i])); return i; } static size_t begin(const upb_table *t) { return next(t, -1); } /* upb_strtable ***************************************************************/ // A simple "subclass" of upb_table that only adds a hash function for strings. static uint32_t strhash(upb_tabkey key) { return MurmurHash2(key.s.str, key.s.length, 0); } static bool streql(upb_tabkey k1, lookupkey_t k2) { return k1.s.length == k2.key.s.length && memcmp(k1.s.str, k2.key.s.str, k1.s.length) == 0; } bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) { return init(&t->t, ctype, 2); } void upb_strtable_uninit(upb_strtable *t) { for (size_t i = 0; i < upb_table_size(&t->t); i++) free((void*)t->t.entries[i].key.s.str); uninit(&t->t); } bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) { upb_strtable new_table; if (!init(&new_table.t, t->t.ctype, size_lg2)) return false; upb_strtable_iter i; upb_strtable_begin(&i, t); for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_strtable_insert2( &new_table, upb_strtable_iter_key(&i), upb_strtable_iter_keylength(&i), upb_strtable_iter_value(&i)); } upb_strtable_uninit(t); *t = new_table; return true; } bool upb_strtable_insert2(upb_strtable *t, const char *k, size_t len, upb_value v) { if (isfull(&t->t)) { // Need to resize. New table of double the size, add old elements to it. if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) { return false; } } if ((k = upb_strdup2(k, len)) == NULL) return false; lookupkey_t key = strkey2(k, len); uint32_t hash = MurmurHash2(key.key.s.str, key.key.s.length, 0); insert(&t->t, key, v, hash, &strhash, &streql); return true; } bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, upb_value *v) { uint32_t hash = MurmurHash2(key, len, 0); return lookup(&t->t, strkey2(key, len), v, hash, &streql); } bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len, upb_value *val) { uint32_t hash = MurmurHash2(key, strlen(key), 0); upb_tabkey tabkey; if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) { free((void*)tabkey.s.str); return true; } else { return false; } } // Iteration static const upb_tabent *str_tabent(const upb_strtable_iter *i) { return &i->t->t.entries[i->index]; } void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { i->t = t; i->index = begin(&t->t); } void upb_strtable_next(upb_strtable_iter *i) { i->index = next(&i->t->t, i->index); } bool upb_strtable_done(const upb_strtable_iter *i) { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(str_tabent(i)); } const char *upb_strtable_iter_key(upb_strtable_iter *i) { assert(!upb_strtable_done(i)); return str_tabent(i)->key.s.str; } size_t upb_strtable_iter_keylength(upb_strtable_iter *i) { assert(!upb_strtable_done(i)); return str_tabent(i)->key.s.length; } upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { assert(!upb_strtable_done(i)); return _upb_value_val(str_tabent(i)->val, i->t->t.ctype); } void upb_strtable_iter_setdone(upb_strtable_iter *i) { i->index = SIZE_MAX; } bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, const upb_strtable_iter *i2) { if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index; } /* upb_inttable ***************************************************************/ // For inttables we use a hybrid structure where small keys are kept in an // array and large keys are put in the hash table. static uint32_t inthash(upb_tabkey key) { return upb_inthash(key.num); } static bool inteql(upb_tabkey k1, lookupkey_t k2) { return k1.num == k2.key.num; } static _upb_value *mutable_array(upb_inttable *t) { return (_upb_value*)t->array; } static _upb_value *inttable_val(upb_inttable *t, uintptr_t key) { if (key < t->array_size) { return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; } else { upb_tabent *e = findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); return e ? &e->val : NULL; } } static const _upb_value *inttable_val_const(const upb_inttable *t, uintptr_t key) { return inttable_val((upb_inttable*)t, key); } size_t upb_inttable_count(const upb_inttable *t) { return t->t.count + t->array_count; } static void check(upb_inttable *t) { UPB_UNUSED(t); #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) // This check is very expensive (makes inserts/deletes O(N)). size_t count = 0; upb_inttable_iter i; upb_inttable_begin(&i, t); for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); } assert(count == upb_inttable_count(t)); #endif } bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype, size_t asize, int hsize_lg2) { if (!init(&t->t, ctype, hsize_lg2)) return false; // Always make the array part at least 1 long, so that we know key 0 // won't be in the hash part, which simplifies things. t->array_size = UPB_MAX(1, asize); t->array_count = 0; size_t array_bytes = t->array_size * sizeof(upb_value); t->array = malloc(array_bytes); if (!t->array) { uninit(&t->t); return false; } memset(mutable_array(t), 0xff, array_bytes); check(t); return true; } bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) { return upb_inttable_sizedinit(t, ctype, 0, 4); } void upb_inttable_uninit(upb_inttable *t) { uninit(&t->t); free(mutable_array(t)); } bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) { assert(upb_arrhas(val.val)); if (key < t->array_size) { assert(!upb_arrhas(t->array[key])); t->array_count++; mutable_array(t)[key] = val.val; } else { if (isfull(&t->t)) { // Need to resize the hash part, but we re-use the array part. upb_table new_table; if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1)) return false; size_t i; for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { const upb_tabent *e = &t->t.entries[i]; upb_value v; _upb_value_setval(&v, e->val, t->t.ctype); uint32_t hash = upb_inthash(e->key.num); insert(&new_table, intkey(e->key.num), v, hash, &inthash, &inteql); } assert(t->t.count == new_table.count); uninit(&t->t); t->t = new_table; } insert(&t->t, intkey(key), val, upb_inthash(key), &inthash, &inteql); } check(t); return true; } bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { const _upb_value *table_v = inttable_val_const(t, key); if (!table_v) return false; if (v) _upb_value_setval(v, *table_v, t->t.ctype); return true; } bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { _upb_value *table_v = inttable_val(t, key); if (!table_v) return false; *table_v = val.val; return true; } bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { bool success; if (key < t->array_size) { if (upb_arrhas(t->array[key])) { t->array_count--; if (val) { _upb_value_setval(val, t->array[key], t->t.ctype); } _upb_value empty = UPB_ARRAY_EMPTYENT; mutable_array(t)[key] = empty; success = true; } else { success = false; } } else { upb_tabkey removed; uint32_t hash = upb_inthash(key); success = rm(&t->t, intkey(key), val, &removed, hash, &inteql); } check(t); return success; } bool upb_inttable_push(upb_inttable *t, upb_value val) { return upb_inttable_insert(t, upb_inttable_count(t), val); } upb_value upb_inttable_pop(upb_inttable *t) { upb_value val; bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); UPB_ASSERT_VAR(ok, ok); return val; } bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) { return upb_inttable_insert(t, (uintptr_t)key, val); } bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, upb_value *v) { return upb_inttable_lookup(t, (uintptr_t)key, v); } bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { return upb_inttable_remove(t, (uintptr_t)key, val); } void upb_inttable_compact(upb_inttable *t) { // Create a power-of-two histogram of the table keys. int counts[UPB_MAXARRSIZE + 1] = {0}; uintptr_t max_key = 0; upb_inttable_iter i; upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t key = upb_inttable_iter_key(&i); if (key > max_key) { max_key = key; } counts[log2ceil(key)]++; } int arr_size; int arr_count = upb_inttable_count(t); if (upb_inttable_count(t) >= max_key * MIN_DENSITY) { // We can put 100% of the entries in the array part. arr_size = max_key + 1; } else { // Find the largest power of two that satisfies the MIN_DENSITY definition. for (int size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) { arr_size = 1 << size_lg2; arr_count -= counts[size_lg2]; if (arr_count >= arr_size * MIN_DENSITY) { break; } } } // Array part must always be at least 1 entry large to catch lookups of key // 0. Key 0 must always be in the array part because "0" in the hash part // denotes an empty entry. arr_size = UPB_MAX(arr_size, 1); // Insert all elements into new, perfectly-sized table. int hash_count = upb_inttable_count(t) - arr_count; int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; int hashsize_lg2 = log2ceil(hash_size); assert(hash_count >= 0); upb_inttable new_t; upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2); upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t k = upb_inttable_iter_key(&i); upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i)); } assert(new_t.array_size == arr_size); assert(new_t.t.size_lg2 == hashsize_lg2); upb_inttable_uninit(t); *t = new_t; } // Iteration. static const upb_tabent *int_tabent(const upb_inttable_iter *i) { assert(!i->array_part); return &i->t->t.entries[i->index]; } static _upb_value int_arrent(const upb_inttable_iter *i) { assert(i->array_part); return i->t->array[i->index]; } void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { i->t = t; i->index = -1; i->array_part = true; upb_inttable_next(i); } void upb_inttable_next(upb_inttable_iter *iter) { const upb_inttable *t = iter->t; if (iter->array_part) { while (++iter->index < t->array_size) { if (upb_arrhas(int_arrent(iter))) { return; } } iter->array_part = false; iter->index = begin(&t->t); } else { iter->index = next(&t->t, iter->index); } } bool upb_inttable_done(const upb_inttable_iter *i) { if (i->array_part) { return i->index >= i->t->array_size || !upb_arrhas(int_arrent(i)); } else { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(int_tabent(i)); } } uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { assert(!upb_inttable_done(i)); return i->array_part ? i->index : int_tabent(i)->key.num; } upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { assert(!upb_inttable_done(i)); return _upb_value_val( i->array_part ? i->t->array[i->index] : int_tabent(i)->val, i->t->t.ctype); } void upb_inttable_iter_setdone(upb_inttable_iter *i) { i->index = SIZE_MAX; i->array_part = false; } bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, const upb_inttable_iter *i2) { if (upb_inttable_done(i1) && upb_inttable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index && i1->array_part == i2->array_part; } #ifdef UPB_UNALIGNED_READS_OK //----------------------------------------------------------------------------- // MurmurHash2, by Austin Appleby (released as public domain). // Reformatted and C99-ified by Joshua Haberman. // Note - This code makes a few assumptions about how your machine behaves - // 1. We can read a 4-byte value from any address without crashing // 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t // And it has a few limitations - // 1. It will not work incrementally. // 2. It will not produce the same results on little-endian and big-endian // machines. uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) { // 'm' and 'r' are mixing constants generated offline. // They're not really 'magic', they just happen to work well. const uint32_t m = 0x5bd1e995; const int32_t r = 24; // Initialize the hash to a 'random' value uint32_t h = seed ^ len; // Mix 4 bytes at a time into the hash const uint8_t * data = (const uint8_t *)key; while(len >= 4) { uint32_t k = *(uint32_t *)data; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } // Handle the last few bytes of the input array switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; // Do a few final mixes of the hash to ensure the last few // bytes are well-incorporated. h ^= h >> 13; h *= m; h ^= h >> 15; return h; } #else // !UPB_UNALIGNED_READS_OK //----------------------------------------------------------------------------- // MurmurHashAligned2, by Austin Appleby // Same algorithm as MurmurHash2, but only does aligned reads - should be safer // on certain platforms. // Performance will be lower than MurmurHash2 #define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) { const uint32_t m = 0x5bd1e995; const int32_t r = 24; const uint8_t * data = (const uint8_t *)key; uint32_t h = seed ^ len; uint8_t align = (uintptr_t)data & 3; if(align && (len >= 4)) { // Pre-load the temp registers uint32_t t = 0, d = 0; switch(align) { case 1: t |= data[2] << 16; case 2: t |= data[1] << 8; case 3: t |= data[0]; } t <<= (8 * align); data += 4-align; len -= 4-align; int32_t sl = 8 * (4-align); int32_t sr = 8 * align; // Mix while(len >= 4) { d = *(uint32_t *)data; t = (t >> sr) | (d << sl); uint32_t k = t; MIX(h,k,m); t = d; data += 4; len -= 4; } // Handle leftover data in temp registers d = 0; if(len >= align) { switch(align) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; } uint32_t k = (t >> sr) | (d << sl); MIX(h,k,m); data += align; len -= align; //---------- // Handle tail bytes switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; } else { switch(len) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; case 0: h ^= (t >> sr) | (d << sl); h *= m; } } h ^= h >> 13; h *= m; h ^= h >> 15; return h; } else { while(len >= 4) { uint32_t k = *(uint32_t *)data; MIX(h,k,m); data += 4; len -= 4; } //---------- // Handle tail bytes switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } } #undef MIX #endif // UPB_UNALIGNED_READS_OK /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #include #include #include #include #include #include #include bool upb_dumptostderr(void *closure, const upb_status* status) { UPB_UNUSED(closure); fprintf(stderr, "%s\n", upb_status_errmsg(status)); return false; } // Guarantee null-termination and provide ellipsis truncation. // It may be tempting to "optimize" this by initializing these final // four bytes up-front and then being careful never to overwrite them, // this is safer and simpler. static void nullz(upb_status *status) { const char *ellipsis = "..."; size_t len = strlen(ellipsis); assert(sizeof(status->msg) > len); memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len); } void upb_status_clear(upb_status *status) { upb_status blank = UPB_STATUS_INIT; upb_status_copy(status, &blank); } bool upb_ok(const upb_status *status) { return status->ok_; } upb_errorspace *upb_status_errspace(const upb_status *status) { return status->error_space_; } int upb_status_errcode(const upb_status *status) { return status->code_; } const char *upb_status_errmsg(const upb_status *status) { return status->msg; } void upb_status_seterrmsg(upb_status *status, const char *msg) { if (!status) return; status->ok_ = false; strncpy(status->msg, msg, sizeof(status->msg)); nullz(status); } void upb_status_seterrf(upb_status *status, const char *fmt, ...) { va_list args; va_start(args, fmt); upb_status_vseterrf(status, fmt, args); va_end(args); } void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) { if (!status) return; status->ok_ = false; vsnprintf(status->msg, sizeof(status->msg), fmt, args); nullz(status); } void upb_status_seterrcode(upb_status *status, upb_errorspace *space, int code) { if (!status) return; status->ok_ = false; status->error_space_ = space; status->code_ = code; space->set_message(status, code); } void upb_status_copy(upb_status *to, const upb_status *from) { if (!to) return; *to = *from; } // This file was generated by upbc (the upb compiler). // Do not edit -- your changes will be discarded when the file is // regenerated. static const upb_msgdef msgs[20]; static const upb_fielddef fields[81]; static const upb_enumdef enums[4]; static const upb_tabent strentries[236]; static const upb_tabent intentries[14]; static const _upb_value arrays[232]; #ifdef UPB_DEBUG_REFS static upb_inttable reftables[212]; #endif static const upb_msgdef msgs[20] = { UPB_MSGDEF_INIT("google.protobuf.DescriptorProto", 27, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[0], 8, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[0]),&reftables[0], &reftables[1]), UPB_MSGDEF_INIT("google.protobuf.DescriptorProto.ExtensionRange", 4, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[8], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[16]),&reftables[2], &reftables[3]), UPB_MSGDEF_INIT("google.protobuf.EnumDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[11], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[20]),&reftables[4], &reftables[5]), UPB_MSGDEF_INIT("google.protobuf.EnumOptions", 7, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[0], &arrays[15], 8, 1), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[24]),&reftables[6], &reftables[7]), UPB_MSGDEF_INIT("google.protobuf.EnumValueDescriptorProto", 8, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[23], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[28]),&reftables[8], &reftables[9]), UPB_MSGDEF_INIT("google.protobuf.EnumValueOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[2], &arrays[27], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[32]),&reftables[10], &reftables[11]), UPB_MSGDEF_INIT("google.protobuf.FieldDescriptorProto", 19, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[31], 9, 8), UPB_STRTABLE_INIT(8, 15, UPB_CTYPE_PTR, 4, &strentries[36]),&reftables[12], &reftables[13]), UPB_MSGDEF_INIT("google.protobuf.FieldOptions", 14, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[4], &arrays[40], 32, 6), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[52]),&reftables[14], &reftables[15]), UPB_MSGDEF_INIT("google.protobuf.FileDescriptorProto", 39, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[72], 12, 11), UPB_STRTABLE_INIT(11, 15, UPB_CTYPE_PTR, 4, &strentries[68]),&reftables[16], &reftables[17]), UPB_MSGDEF_INIT("google.protobuf.FileDescriptorSet", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[84], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[84]),&reftables[18], &reftables[19]), UPB_MSGDEF_INIT("google.protobuf.FileOptions", 21, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[6], &arrays[86], 64, 9), UPB_STRTABLE_INIT(10, 15, UPB_CTYPE_PTR, 4, &strentries[88]),&reftables[20], &reftables[21]), UPB_MSGDEF_INIT("google.protobuf.MessageOptions", 8, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[8], &arrays[150], 16, 2), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[104]),&reftables[22], &reftables[23]), UPB_MSGDEF_INIT("google.protobuf.MethodDescriptorProto", 13, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[166], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[108]),&reftables[24], &reftables[25]), UPB_MSGDEF_INIT("google.protobuf.MethodOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[10], &arrays[171], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[116]),&reftables[26], &reftables[27]), UPB_MSGDEF_INIT("google.protobuf.ServiceDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[175], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[120]),&reftables[28], &reftables[29]), UPB_MSGDEF_INIT("google.protobuf.ServiceOptions", 6, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[12], &arrays[179], 4, 0), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[124]),&reftables[30], &reftables[31]), UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[183], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[128]),&reftables[32], &reftables[33]), UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo.Location", 14, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[185], 5, 4), UPB_STRTABLE_INIT(4, 7, UPB_CTYPE_PTR, 3, &strentries[132]),&reftables[34], &reftables[35]), UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption", 18, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[190], 9, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[140]),&reftables[36], &reftables[37]), UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption.NamePart", 6, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[199], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[156]),&reftables[38], &reftables[39]), }; static const upb_fielddef fields[81] = { UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "aggregate_value", 8, &msgs[18], NULL, 15, 6, {0},&reftables[40], &reftables[41]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "allow_alias", 2, &msgs[3], NULL, 6, 1, {0},&reftables[42], &reftables[43]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "cc_generic_services", 16, &msgs[10], NULL, 17, 6, {0},&reftables[44], &reftables[45]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "ctype", 1, &msgs[7], UPB_UPCAST(&enums[2]), 6, 1, {0},&reftables[46], &reftables[47]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "default_value", 7, &msgs[6], NULL, 16, 7, {0},&reftables[48], &reftables[49]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false, false, "dependency", 3, &msgs[8], NULL, 30, 8, {0},&reftables[50], &reftables[51]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 3, &msgs[7], NULL, 8, 3, {0},&reftables[52], &reftables[53]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_DOUBLE, 0, false, false, false, false, "double_value", 6, &msgs[18], NULL, 11, 4, {0},&reftables[54], &reftables[55]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "end", 2, &msgs[1], NULL, 3, 1, {0},&reftables[56], &reftables[57]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 4, &msgs[0], UPB_UPCAST(&msgs[2]), 16, 2, {0},&reftables[58], &reftables[59]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 5, &msgs[8], UPB_UPCAST(&msgs[2]), 13, 1, {0},&reftables[60], &reftables[61]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "experimental_map_key", 9, &msgs[7], NULL, 10, 5, {0},&reftables[62], &reftables[63]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "extendee", 2, &msgs[6], NULL, 7, 2, {0},&reftables[64], &reftables[65]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 7, &msgs[8], UPB_UPCAST(&msgs[6]), 19, 3, {0},&reftables[66], &reftables[67]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 6, &msgs[0], UPB_UPCAST(&msgs[6]), 22, 4, {0},&reftables[68], &reftables[69]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension_range", 5, &msgs[0], UPB_UPCAST(&msgs[1]), 19, 3, {0},&reftables[70], &reftables[71]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "field", 2, &msgs[0], UPB_UPCAST(&msgs[6]), 10, 0, {0},&reftables[72], &reftables[73]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "file", 1, &msgs[9], UPB_UPCAST(&msgs[8]), 5, 0, {0},&reftables[74], &reftables[75]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "go_package", 11, &msgs[10], NULL, 14, 5, {0},&reftables[76], &reftables[77]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "identifier_value", 3, &msgs[18], NULL, 6, 1, {0},&reftables[78], &reftables[79]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "input_type", 2, &msgs[12], NULL, 7, 2, {0},&reftables[80], &reftables[81]), UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_BOOL, 0, false, false, false, false, "is_extension", 2, &msgs[19], NULL, 5, 1, {0},&reftables[82], &reftables[83]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generate_equals_and_hash", 20, &msgs[10], NULL, 20, 9, {0},&reftables[84], &reftables[85]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generic_services", 17, &msgs[10], NULL, 18, 7, {0},&reftables[86], &reftables[87]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_multiple_files", 10, &msgs[10], NULL, 13, 4, {0},&reftables[88], &reftables[89]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_outer_classname", 8, &msgs[10], NULL, 9, 2, {0},&reftables[90], &reftables[91]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_package", 1, &msgs[10], NULL, 6, 1, {0},&reftables[92], &reftables[93]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "label", 4, &msgs[6], UPB_UPCAST(&enums[0]), 11, 4, {0},&reftables[94], &reftables[95]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "lazy", 5, &msgs[7], NULL, 9, 4, {0},&reftables[96], &reftables[97]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "leading_comments", 3, &msgs[17], NULL, 8, 2, {0},&reftables[98], &reftables[99]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "location", 1, &msgs[16], UPB_UPCAST(&msgs[17]), 5, 0, {0},&reftables[100], &reftables[101]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "message_set_wire_format", 1, &msgs[11], NULL, 6, 1, {0},&reftables[102], &reftables[103]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "message_type", 4, &msgs[8], UPB_UPCAST(&msgs[0]), 10, 0, {0},&reftables[104], &reftables[105]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "method", 2, &msgs[14], UPB_UPCAST(&msgs[12]), 6, 0, {0},&reftables[106], &reftables[107]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[8], NULL, 22, 6, {0},&reftables[108], &reftables[109]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[14], NULL, 8, 2, {0},&reftables[110], &reftables[111]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "name", 2, &msgs[18], UPB_UPCAST(&msgs[19]), 5, 0, {0},&reftables[112], &reftables[113]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[4], NULL, 4, 1, {0},&reftables[114], &reftables[115]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[0], NULL, 24, 6, {0},&reftables[116], &reftables[117]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[12], NULL, 4, 1, {0},&reftables[118], &reftables[119]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[2], NULL, 8, 2, {0},&reftables[120], &reftables[121]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[6], NULL, 4, 1, {0},&reftables[122], &reftables[123]), UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_STRING, 0, false, false, false, false, "name_part", 1, &msgs[19], NULL, 2, 0, {0},&reftables[124], &reftables[125]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT64, UPB_INTFMT_VARIABLE, false, false, false, false, "negative_int_value", 5, &msgs[18], NULL, 10, 3, {0},&reftables[126], &reftables[127]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "nested_type", 3, &msgs[0], UPB_UPCAST(&msgs[0]), 13, 1, {0},&reftables[128], &reftables[129]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "no_standard_descriptor_accessor", 2, &msgs[11], NULL, 7, 2, {0},&reftables[130], &reftables[131]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 3, &msgs[6], NULL, 10, 3, {0},&reftables[132], &reftables[133]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 2, &msgs[4], NULL, 7, 2, {0},&reftables[134], &reftables[135]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "optimize_for", 9, &msgs[10], UPB_UPCAST(&enums[3]), 12, 3, {0},&reftables[136], &reftables[137]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 7, &msgs[0], UPB_UPCAST(&msgs[11]), 23, 5, {0},&reftables[138], &reftables[139]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[2], UPB_UPCAST(&msgs[3]), 7, 1, {0},&reftables[140], &reftables[141]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[6], UPB_UPCAST(&msgs[7]), 3, 0, {0},&reftables[142], &reftables[143]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[4], UPB_UPCAST(&msgs[5]), 3, 0, {0},&reftables[144], &reftables[145]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[8], UPB_UPCAST(&msgs[10]), 20, 4, {0},&reftables[146], &reftables[147]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[14], UPB_UPCAST(&msgs[15]), 7, 1, {0},&reftables[148], &reftables[149]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 4, &msgs[12], UPB_UPCAST(&msgs[13]), 3, 0, {0},&reftables[150], &reftables[151]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "output_type", 3, &msgs[12], NULL, 10, 3, {0},&reftables[152], &reftables[153]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "package", 2, &msgs[8], NULL, 25, 7, {0},&reftables[154], &reftables[155]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "packed", 2, &msgs[7], NULL, 7, 2, {0},&reftables[156], &reftables[157]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "path", 1, &msgs[17], NULL, 4, 0, {0},&reftables[158], &reftables[159]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_UINT64, UPB_INTFMT_VARIABLE, false, false, false, false, "positive_int_value", 4, &msgs[18], NULL, 9, 2, {0},&reftables[160], &reftables[161]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "public_dependency", 10, &msgs[8], NULL, 35, 9, {0},&reftables[162], &reftables[163]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "py_generic_services", 18, &msgs[10], NULL, 19, 8, {0},&reftables[164], &reftables[165]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "service", 6, &msgs[8], UPB_UPCAST(&msgs[14]), 16, 2, {0},&reftables[166], &reftables[167]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "source_code_info", 9, &msgs[8], UPB_UPCAST(&msgs[16]), 21, 5, {0},&reftables[168], &reftables[169]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "span", 2, &msgs[17], NULL, 7, 1, {0},&reftables[170], &reftables[171]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "start", 1, &msgs[1], NULL, 2, 0, {0},&reftables[172], &reftables[173]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BYTES, 0, false, false, false, false, "string_value", 7, &msgs[18], NULL, 12, 5, {0},&reftables[174], &reftables[175]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "trailing_comments", 4, &msgs[17], NULL, 11, 3, {0},&reftables[176], &reftables[177]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "type", 5, &msgs[6], UPB_UPCAST(&enums[1]), 12, 5, {0},&reftables[178], &reftables[179]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "type_name", 6, &msgs[6], NULL, 13, 6, {0},&reftables[180], &reftables[181]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[5], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[182], &reftables[183]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[15], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[184], &reftables[185]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[3], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[186], &reftables[187]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[13], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[188], &reftables[189]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[10], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[190], &reftables[191]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[11], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[192], &reftables[193]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[7], UPB_UPCAST(&msgs[18]), 5, 0, {0},&reftables[194], &reftables[195]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "value", 2, &msgs[2], UPB_UPCAST(&msgs[4]), 6, 0, {0},&reftables[196], &reftables[197]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "weak", 10, &msgs[7], NULL, 13, 6, {0},&reftables[198], &reftables[199]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "weak_dependency", 11, &msgs[8], NULL, 38, 10, {0},&reftables[200], &reftables[201]), }; static const upb_enumdef enums[4] = { UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Label", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[160]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[202], 4, 3), 0, &reftables[202], &reftables[203]), UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Type", UPB_STRTABLE_INIT(18, 31, UPB_CTYPE_INT32, 5, &strentries[164]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[206], 19, 18), 0, &reftables[204], &reftables[205]), UPB_ENUMDEF_INIT("google.protobuf.FieldOptions.CType", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[196]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[225], 3, 3), 0, &reftables[206], &reftables[207]), UPB_ENUMDEF_INIT("google.protobuf.FileOptions.OptimizeMode", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[200]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[228], 4, 3), 0, &reftables[208], &reftables[209]), }; static const upb_tabent strentries[236] = { {UPB_TABKEY_STR("extension"), UPB_VALUE_INIT_CONSTPTR(&fields[14]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[38]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("field"), UPB_VALUE_INIT_CONSTPTR(&fields[16]), NULL}, {UPB_TABKEY_STR("extension_range"), UPB_VALUE_INIT_CONSTPTR(&fields[15]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("nested_type"), UPB_VALUE_INIT_CONSTPTR(&fields[44]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[49]), NULL}, {UPB_TABKEY_STR("enum_type"), UPB_VALUE_INIT_CONSTPTR(&fields[9]), &strentries[14]}, {UPB_TABKEY_STR("start"), UPB_VALUE_INIT_CONSTPTR(&fields[66]), NULL}, {UPB_TABKEY_STR("end"), UPB_VALUE_INIT_CONSTPTR(&fields[8]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("value"), UPB_VALUE_INIT_CONSTPTR(&fields[78]), NULL}, {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[50]), NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[40]), &strentries[22]}, {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[73]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("allow_alias"), UPB_VALUE_INIT_CONSTPTR(&fields[1]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("number"), UPB_VALUE_INIT_CONSTPTR(&fields[47]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[52]), NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[37]), &strentries[30]}, {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[71]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("label"), UPB_VALUE_INIT_CONSTPTR(&fields[27]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[41]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("number"), UPB_VALUE_INIT_CONSTPTR(&fields[46]), &strentries[49]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("type_name"), UPB_VALUE_INIT_CONSTPTR(&fields[70]), NULL}, {UPB_TABKEY_STR("extendee"), UPB_VALUE_INIT_CONSTPTR(&fields[12]), NULL}, {UPB_TABKEY_STR("type"), UPB_VALUE_INIT_CONSTPTR(&fields[69]), &strentries[48]}, {UPB_TABKEY_STR("default_value"), UPB_VALUE_INIT_CONSTPTR(&fields[4]), NULL}, {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[51]), NULL}, {UPB_TABKEY_STR("experimental_map_key"), UPB_VALUE_INIT_CONSTPTR(&fields[11]), &strentries[67]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("weak"), UPB_VALUE_INIT_CONSTPTR(&fields[79]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("packed"), UPB_VALUE_INIT_CONSTPTR(&fields[58]), NULL}, {UPB_TABKEY_STR("lazy"), UPB_VALUE_INIT_CONSTPTR(&fields[28]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("ctype"), UPB_VALUE_INIT_CONSTPTR(&fields[3]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("deprecated"), UPB_VALUE_INIT_CONSTPTR(&fields[6]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[77]), NULL}, {UPB_TABKEY_STR("extension"), UPB_VALUE_INIT_CONSTPTR(&fields[13]), NULL}, {UPB_TABKEY_STR("weak_dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[80]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[34]), NULL}, {UPB_TABKEY_STR("service"), UPB_VALUE_INIT_CONSTPTR(&fields[63]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("source_code_info"), UPB_VALUE_INIT_CONSTPTR(&fields[64]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[5]), NULL}, {UPB_TABKEY_STR("message_type"), UPB_VALUE_INIT_CONSTPTR(&fields[32]), NULL}, {UPB_TABKEY_STR("package"), UPB_VALUE_INIT_CONSTPTR(&fields[57]), NULL}, {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[53]), &strentries[82]}, {UPB_TABKEY_STR("enum_type"), UPB_VALUE_INIT_CONSTPTR(&fields[10]), NULL}, {UPB_TABKEY_STR("public_dependency"), UPB_VALUE_INIT_CONSTPTR(&fields[61]), &strentries[81]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("file"), UPB_VALUE_INIT_CONSTPTR(&fields[17]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[75]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("cc_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[2]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("java_multiple_files"), UPB_VALUE_INIT_CONSTPTR(&fields[24]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("java_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[23]), &strentries[102]}, {UPB_TABKEY_STR("java_generate_equals_and_hash"), UPB_VALUE_INIT_CONSTPTR(&fields[22]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("go_package"), UPB_VALUE_INIT_CONSTPTR(&fields[18]), NULL}, {UPB_TABKEY_STR("java_package"), UPB_VALUE_INIT_CONSTPTR(&fields[26]), NULL}, {UPB_TABKEY_STR("optimize_for"), UPB_VALUE_INIT_CONSTPTR(&fields[48]), NULL}, {UPB_TABKEY_STR("py_generic_services"), UPB_VALUE_INIT_CONSTPTR(&fields[62]), NULL}, {UPB_TABKEY_STR("java_outer_classname"), UPB_VALUE_INIT_CONSTPTR(&fields[25]), NULL}, {UPB_TABKEY_STR("message_set_wire_format"), UPB_VALUE_INIT_CONSTPTR(&fields[31]), &strentries[106]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[76]), NULL}, {UPB_TABKEY_STR("no_standard_descriptor_accessor"), UPB_VALUE_INIT_CONSTPTR(&fields[45]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[39]), NULL}, {UPB_TABKEY_STR("input_type"), UPB_VALUE_INIT_CONSTPTR(&fields[20]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("output_type"), UPB_VALUE_INIT_CONSTPTR(&fields[56]), NULL}, {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[55]), NULL}, {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[74]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("options"), UPB_VALUE_INIT_CONSTPTR(&fields[54]), &strentries[122]}, {UPB_TABKEY_STR("method"), UPB_VALUE_INIT_CONSTPTR(&fields[33]), NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[35]), &strentries[121]}, {UPB_TABKEY_STR("uninterpreted_option"), UPB_VALUE_INIT_CONSTPTR(&fields[72]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("location"), UPB_VALUE_INIT_CONSTPTR(&fields[30]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("span"), UPB_VALUE_INIT_CONSTPTR(&fields[65]), &strentries[139]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("trailing_comments"), UPB_VALUE_INIT_CONSTPTR(&fields[68]), NULL}, {UPB_TABKEY_STR("leading_comments"), UPB_VALUE_INIT_CONSTPTR(&fields[29]), &strentries[137]}, {UPB_TABKEY_STR("path"), UPB_VALUE_INIT_CONSTPTR(&fields[59]), NULL}, {UPB_TABKEY_STR("double_value"), UPB_VALUE_INIT_CONSTPTR(&fields[7]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("name"), UPB_VALUE_INIT_CONSTPTR(&fields[36]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("negative_int_value"), UPB_VALUE_INIT_CONSTPTR(&fields[43]), NULL}, {UPB_TABKEY_STR("aggregate_value"), UPB_VALUE_INIT_CONSTPTR(&fields[0]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("positive_int_value"), UPB_VALUE_INIT_CONSTPTR(&fields[60]), NULL}, {UPB_TABKEY_STR("identifier_value"), UPB_VALUE_INIT_CONSTPTR(&fields[19]), NULL}, {UPB_TABKEY_STR("string_value"), UPB_VALUE_INIT_CONSTPTR(&fields[67]), &strentries[154]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("is_extension"), UPB_VALUE_INIT_CONSTPTR(&fields[21]), NULL}, {UPB_TABKEY_STR("name_part"), UPB_VALUE_INIT_CONSTPTR(&fields[42]), NULL}, {UPB_TABKEY_STR("LABEL_REQUIRED"), UPB_VALUE_INIT_INT32(2), &strentries[162]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("LABEL_REPEATED"), UPB_VALUE_INIT_INT32(3), NULL}, {UPB_TABKEY_STR("LABEL_OPTIONAL"), UPB_VALUE_INIT_INT32(1), NULL}, {UPB_TABKEY_STR("TYPE_FIXED64"), UPB_VALUE_INIT_INT32(6), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("TYPE_STRING"), UPB_VALUE_INIT_INT32(9), NULL}, {UPB_TABKEY_STR("TYPE_FLOAT"), UPB_VALUE_INIT_INT32(2), &strentries[193]}, {UPB_TABKEY_STR("TYPE_DOUBLE"), UPB_VALUE_INIT_INT32(1), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("TYPE_INT32"), UPB_VALUE_INIT_INT32(5), NULL}, {UPB_TABKEY_STR("TYPE_SFIXED32"), UPB_VALUE_INIT_INT32(15), NULL}, {UPB_TABKEY_STR("TYPE_FIXED32"), UPB_VALUE_INIT_INT32(7), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("TYPE_MESSAGE"), UPB_VALUE_INIT_INT32(11), &strentries[194]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("TYPE_INT64"), UPB_VALUE_INIT_INT32(3), &strentries[191]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("TYPE_ENUM"), UPB_VALUE_INIT_INT32(14), NULL}, {UPB_TABKEY_STR("TYPE_UINT32"), UPB_VALUE_INIT_INT32(13), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("TYPE_UINT64"), UPB_VALUE_INIT_INT32(4), &strentries[190]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("TYPE_SFIXED64"), UPB_VALUE_INIT_INT32(16), NULL}, {UPB_TABKEY_STR("TYPE_BYTES"), UPB_VALUE_INIT_INT32(12), NULL}, {UPB_TABKEY_STR("TYPE_SINT64"), UPB_VALUE_INIT_INT32(18), NULL}, {UPB_TABKEY_STR("TYPE_BOOL"), UPB_VALUE_INIT_INT32(8), NULL}, {UPB_TABKEY_STR("TYPE_GROUP"), UPB_VALUE_INIT_INT32(10), NULL}, {UPB_TABKEY_STR("TYPE_SINT32"), UPB_VALUE_INIT_INT32(17), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("CORD"), UPB_VALUE_INIT_INT32(1), NULL}, {UPB_TABKEY_STR("STRING"), UPB_VALUE_INIT_INT32(0), &strentries[197]}, {UPB_TABKEY_STR("STRING_PIECE"), UPB_VALUE_INIT_INT32(2), NULL}, {UPB_TABKEY_STR("CODE_SIZE"), UPB_VALUE_INIT_INT32(2), NULL}, {UPB_TABKEY_STR("SPEED"), UPB_VALUE_INIT_INT32(1), &strentries[203]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("LITE_RUNTIME"), UPB_VALUE_INIT_INT32(3), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("google.protobuf.SourceCodeInfo.Location"), UPB_VALUE_INIT_CONSTPTR(&msgs[17]), NULL}, {UPB_TABKEY_STR("google.protobuf.UninterpretedOption"), UPB_VALUE_INIT_CONSTPTR(&msgs[18]), NULL}, {UPB_TABKEY_STR("google.protobuf.FileDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[8]), NULL}, {UPB_TABKEY_STR("google.protobuf.MethodDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[12]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("google.protobuf.EnumValueOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[5]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("google.protobuf.DescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[0]), &strentries[228]}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("google.protobuf.SourceCodeInfo"), UPB_VALUE_INIT_CONSTPTR(&msgs[16]), NULL}, {UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto.Type"), UPB_VALUE_INIT_CONSTPTR(&enums[1]), NULL}, {UPB_TABKEY_STR("google.protobuf.DescriptorProto.ExtensionRange"), UPB_VALUE_INIT_CONSTPTR(&msgs[1]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_STR("google.protobuf.EnumValueDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[4]), NULL}, {UPB_TABKEY_STR("google.protobuf.FieldOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[7]), NULL}, {UPB_TABKEY_STR("google.protobuf.FileOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[10]), NULL}, {UPB_TABKEY_STR("google.protobuf.EnumDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[2]), &strentries[233]}, {UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto.Label"), UPB_VALUE_INIT_CONSTPTR(&enums[0]), NULL}, {UPB_TABKEY_STR("google.protobuf.ServiceDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[14]), NULL}, {UPB_TABKEY_STR("google.protobuf.FieldOptions.CType"), UPB_VALUE_INIT_CONSTPTR(&enums[2]), &strentries[229]}, {UPB_TABKEY_STR("google.protobuf.FileDescriptorSet"), UPB_VALUE_INIT_CONSTPTR(&msgs[9]), &strentries[235]}, {UPB_TABKEY_STR("google.protobuf.EnumOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[3]), NULL}, {UPB_TABKEY_STR("google.protobuf.FieldDescriptorProto"), UPB_VALUE_INIT_CONSTPTR(&msgs[6]), NULL}, {UPB_TABKEY_STR("google.protobuf.FileOptions.OptimizeMode"), UPB_VALUE_INIT_CONSTPTR(&enums[3]), &strentries[221]}, {UPB_TABKEY_STR("google.protobuf.ServiceOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[15]), NULL}, {UPB_TABKEY_STR("google.protobuf.MessageOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[11]), NULL}, {UPB_TABKEY_STR("google.protobuf.MethodOptions"), UPB_VALUE_INIT_CONSTPTR(&msgs[13]), &strentries[226]}, {UPB_TABKEY_STR("google.protobuf.UninterpretedOption.NamePart"), UPB_VALUE_INIT_CONSTPTR(&msgs[19]), NULL}, }; static const upb_tabent intentries[14] = { {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[73]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[71]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[77]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[75]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[76]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[74]), NULL}, {UPB_TABKEY_NONE, UPB__VALUE_INIT_NONE, NULL}, {UPB_TABKEY_NUM(999), UPB_VALUE_INIT_CONSTPTR(&fields[72]), NULL}, }; static const _upb_value arrays[232] = { UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[38]), UPB_VALUE_INIT_CONSTPTR(&fields[16]), UPB_VALUE_INIT_CONSTPTR(&fields[44]), UPB_VALUE_INIT_CONSTPTR(&fields[9]), UPB_VALUE_INIT_CONSTPTR(&fields[15]), UPB_VALUE_INIT_CONSTPTR(&fields[14]), UPB_VALUE_INIT_CONSTPTR(&fields[49]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[66]), UPB_VALUE_INIT_CONSTPTR(&fields[8]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[40]), UPB_VALUE_INIT_CONSTPTR(&fields[78]), UPB_VALUE_INIT_CONSTPTR(&fields[50]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[1]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[37]), UPB_VALUE_INIT_CONSTPTR(&fields[47]), UPB_VALUE_INIT_CONSTPTR(&fields[52]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[41]), UPB_VALUE_INIT_CONSTPTR(&fields[12]), UPB_VALUE_INIT_CONSTPTR(&fields[46]), UPB_VALUE_INIT_CONSTPTR(&fields[27]), UPB_VALUE_INIT_CONSTPTR(&fields[69]), UPB_VALUE_INIT_CONSTPTR(&fields[70]), UPB_VALUE_INIT_CONSTPTR(&fields[4]), UPB_VALUE_INIT_CONSTPTR(&fields[51]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[3]), UPB_VALUE_INIT_CONSTPTR(&fields[58]), UPB_VALUE_INIT_CONSTPTR(&fields[6]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[28]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[11]), UPB_VALUE_INIT_CONSTPTR(&fields[79]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[34]), UPB_VALUE_INIT_CONSTPTR(&fields[57]), UPB_VALUE_INIT_CONSTPTR(&fields[5]), UPB_VALUE_INIT_CONSTPTR(&fields[32]), UPB_VALUE_INIT_CONSTPTR(&fields[10]), UPB_VALUE_INIT_CONSTPTR(&fields[63]), UPB_VALUE_INIT_CONSTPTR(&fields[13]), UPB_VALUE_INIT_CONSTPTR(&fields[53]), UPB_VALUE_INIT_CONSTPTR(&fields[64]), UPB_VALUE_INIT_CONSTPTR(&fields[61]), UPB_VALUE_INIT_CONSTPTR(&fields[80]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[17]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[26]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[25]), UPB_VALUE_INIT_CONSTPTR(&fields[48]), UPB_VALUE_INIT_CONSTPTR(&fields[24]), UPB_VALUE_INIT_CONSTPTR(&fields[18]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[2]), UPB_VALUE_INIT_CONSTPTR(&fields[23]), UPB_VALUE_INIT_CONSTPTR(&fields[62]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[22]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[31]), UPB_VALUE_INIT_CONSTPTR(&fields[45]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[39]), UPB_VALUE_INIT_CONSTPTR(&fields[20]), UPB_VALUE_INIT_CONSTPTR(&fields[56]), UPB_VALUE_INIT_CONSTPTR(&fields[55]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[35]), UPB_VALUE_INIT_CONSTPTR(&fields[33]), UPB_VALUE_INIT_CONSTPTR(&fields[54]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[30]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[59]), UPB_VALUE_INIT_CONSTPTR(&fields[65]), UPB_VALUE_INIT_CONSTPTR(&fields[29]), UPB_VALUE_INIT_CONSTPTR(&fields[68]), UPB_ARRAY_EMPTYENT, UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[36]), UPB_VALUE_INIT_CONSTPTR(&fields[19]), UPB_VALUE_INIT_CONSTPTR(&fields[60]), UPB_VALUE_INIT_CONSTPTR(&fields[43]), UPB_VALUE_INIT_CONSTPTR(&fields[7]), UPB_VALUE_INIT_CONSTPTR(&fields[67]), UPB_VALUE_INIT_CONSTPTR(&fields[0]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR(&fields[42]), UPB_VALUE_INIT_CONSTPTR(&fields[21]), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR("LABEL_OPTIONAL"), UPB_VALUE_INIT_CONSTPTR("LABEL_REQUIRED"), UPB_VALUE_INIT_CONSTPTR("LABEL_REPEATED"), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR("TYPE_DOUBLE"), UPB_VALUE_INIT_CONSTPTR("TYPE_FLOAT"), UPB_VALUE_INIT_CONSTPTR("TYPE_INT64"), UPB_VALUE_INIT_CONSTPTR("TYPE_UINT64"), UPB_VALUE_INIT_CONSTPTR("TYPE_INT32"), UPB_VALUE_INIT_CONSTPTR("TYPE_FIXED64"), UPB_VALUE_INIT_CONSTPTR("TYPE_FIXED32"), UPB_VALUE_INIT_CONSTPTR("TYPE_BOOL"), UPB_VALUE_INIT_CONSTPTR("TYPE_STRING"), UPB_VALUE_INIT_CONSTPTR("TYPE_GROUP"), UPB_VALUE_INIT_CONSTPTR("TYPE_MESSAGE"), UPB_VALUE_INIT_CONSTPTR("TYPE_BYTES"), UPB_VALUE_INIT_CONSTPTR("TYPE_UINT32"), UPB_VALUE_INIT_CONSTPTR("TYPE_ENUM"), UPB_VALUE_INIT_CONSTPTR("TYPE_SFIXED32"), UPB_VALUE_INIT_CONSTPTR("TYPE_SFIXED64"), UPB_VALUE_INIT_CONSTPTR("TYPE_SINT32"), UPB_VALUE_INIT_CONSTPTR("TYPE_SINT64"), UPB_VALUE_INIT_CONSTPTR("STRING"), UPB_VALUE_INIT_CONSTPTR("CORD"), UPB_VALUE_INIT_CONSTPTR("STRING_PIECE"), UPB_ARRAY_EMPTYENT, UPB_VALUE_INIT_CONSTPTR("SPEED"), UPB_VALUE_INIT_CONSTPTR("CODE_SIZE"), UPB_VALUE_INIT_CONSTPTR("LITE_RUNTIME"), }; static const upb_symtab symtab = UPB_SYMTAB_INIT(UPB_STRTABLE_INIT(24, 31, UPB_CTYPE_PTR, 5, &strentries[204]), &reftables[210], &reftables[211]); const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner) { upb_symtab_ref(&symtab, owner); return &symtab; } #ifdef UPB_DEBUG_REFS static upb_inttable reftables[212] = { UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), }; #endif /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2008-2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * XXX: The routines in this file that consume a string do not currently * support having the string span buffers. In the future, as upb_sink and * its buffering/sharing functionality evolve there should be an easy and * idiomatic way of correctly handling this case. For now, we accept this * limitation since we currently only parse descriptors from single strings. */ #include #include #include static char *upb_strndup(const char *buf, size_t n) { char *ret = malloc(n + 1); if (!ret) return NULL; memcpy(ret, buf, n); ret[n] = '\0'; return ret; } // Returns a newly allocated string that joins input strings together, for // example: // join("Foo.Bar", "Baz") -> "Foo.Bar.Baz" // join("", "Baz") -> "Baz" // Caller owns a ref on the returned string. static char *upb_join(const char *base, const char *name) { if (!base || strlen(base) == 0) { return upb_strdup(name); } else { char *ret = malloc(strlen(base) + strlen(name) + 2); ret[0] = '\0'; strcat(ret, base); strcat(ret, "."); strcat(ret, name); return ret; } } /* upb_deflist ****************************************************************/ void upb_deflist_init(upb_deflist *l) { l->size = 0; l->defs = NULL; l->len = 0; l->owned = true; } void upb_deflist_uninit(upb_deflist *l) { if (l->owned) for(size_t i = 0; i < l->len; i++) upb_def_unref(l->defs[i], l); free(l->defs); } bool upb_deflist_push(upb_deflist *l, upb_def *d) { if(++l->len >= l->size) { size_t new_size = UPB_MAX(l->size, 4); new_size *= 2; l->defs = realloc(l->defs, new_size * sizeof(void *)); if (!l->defs) return false; l->size = new_size; } l->defs[l->len - 1] = d; return true; } void upb_deflist_donaterefs(upb_deflist *l, void *owner) { assert(l->owned); for (size_t i = 0; i < l->len; i++) upb_def_donateref(l->defs[i], l, owner); l->owned = false; } static upb_def *upb_deflist_last(upb_deflist *l) { return l->defs[l->len-1]; } // Qualify the defname for all defs starting with offset "start" with "str". static void upb_deflist_qualify(upb_deflist *l, char *str, int32_t start) { for (uint32_t i = start; i < l->len; i++) { upb_def *def = l->defs[i]; char *name = upb_join(str, upb_def_fullname(def)); upb_def_setfullname(def, name, NULL); free(name); } } /* upb_descreader ************************************************************/ void upb_descreader_init(upb_descreader *r, const upb_handlers *handlers, upb_status *status) { UPB_UNUSED(status); upb_deflist_init(&r->defs); upb_sink_reset(upb_descreader_input(r), handlers, r); r->stack_len = 0; r->name = NULL; r->default_string = NULL; } void upb_descreader_uninit(upb_descreader *r) { free(r->name); upb_deflist_uninit(&r->defs); free(r->default_string); while (r->stack_len > 0) { upb_descreader_frame *f = &r->stack[--r->stack_len]; free(f->name); } } upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n) { *n = r->defs.len; upb_deflist_donaterefs(&r->defs, owner); return r->defs.defs; } upb_sink *upb_descreader_input(upb_descreader *r) { return &r->sink; } static upb_msgdef *upb_descreader_top(upb_descreader *r) { assert(r->stack_len > 1); int index = r->stack[r->stack_len-1].start - 1; assert(index >= 0); return upb_downcast_msgdef_mutable(r->defs.defs[index]); } static upb_def *upb_descreader_last(upb_descreader *r) { return upb_deflist_last(&r->defs); } // Start/end handlers for FileDescriptorProto and DescriptorProto (the two // entities that have names and can contain sub-definitions. void upb_descreader_startcontainer(upb_descreader *r) { upb_descreader_frame *f = &r->stack[r->stack_len++]; f->start = r->defs.len; f->name = NULL; } void upb_descreader_endcontainer(upb_descreader *r) { upb_descreader_frame *f = &r->stack[--r->stack_len]; upb_deflist_qualify(&r->defs, f->name, f->start); free(f->name); f->name = NULL; } void upb_descreader_setscopename(upb_descreader *r, char *str) { upb_descreader_frame *f = &r->stack[r->stack_len-1]; free(f->name); f->name = str; } // Handlers for google.protobuf.FileDescriptorProto. static bool file_startmsg(void *r, const void *hd) { UPB_UNUSED(hd); upb_descreader_startcontainer(r); return true; } static bool file_endmsg(void *closure, const void *hd, upb_status *status) { UPB_UNUSED(hd); UPB_UNUSED(status); upb_descreader *r = closure; upb_descreader_endcontainer(r); return true; } static size_t file_onpackage(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; // XXX: see comment at the top of the file. upb_descreader_setscopename(r, upb_strndup(buf, n)); return n; } // Handlers for google.protobuf.EnumValueDescriptorProto. static bool enumval_startmsg(void *closure, const void *hd) { UPB_UNUSED(hd); upb_descreader *r = closure; r->saw_number = false; r->saw_name = false; return true; } static size_t enumval_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; // XXX: see comment at the top of the file. free(r->name); r->name = upb_strndup(buf, n); r->saw_name = true; return n; } static bool enumval_onnumber(void *closure, const void *hd, int32_t val) { UPB_UNUSED(hd); upb_descreader *r = closure; r->number = val; r->saw_number = true; return true; } static bool enumval_endmsg(void *closure, const void *hd, upb_status *status) { UPB_UNUSED(hd); upb_descreader *r = closure; if(!r->saw_number || !r->saw_name) { upb_status_seterrmsg(status, "Enum value missing name or number."); return false; } upb_enumdef *e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); upb_enumdef_addval(e, r->name, r->number, status); free(r->name); r->name = NULL; return true; } // Handlers for google.protobuf.EnumDescriptorProto. static bool enum_startmsg(void *closure, const void *hd) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_deflist_push(&r->defs, UPB_UPCAST(upb_enumdef_new(&r->defs))); return true; } static bool enum_endmsg(void *closure, const void *hd, upb_status *status) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_enumdef *e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); if (upb_def_fullname(upb_descreader_last(r)) == NULL) { upb_status_seterrmsg(status, "Enum had no name."); return false; } if (upb_enumdef_numvals(e) == 0) { upb_status_seterrmsg(status, "Enum had no values."); return false; } return true; } static size_t enum_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; // XXX: see comment at the top of the file. char *fullname = upb_strndup(buf, n); upb_def_setfullname(upb_descreader_last(r), fullname, NULL); free(fullname); return n; } // Handlers for google.protobuf.FieldDescriptorProto static bool field_startmsg(void *closure, const void *hd) { UPB_UNUSED(hd); upb_descreader *r = closure; r->f = upb_fielddef_new(&r->defs); free(r->default_string); r->default_string = NULL; // fielddefs default to packed, but descriptors default to non-packed. upb_fielddef_setpacked(r->f, false); return true; } // Converts the default value in string "str" into "d". Passes a ref on str. // Returns true on success. static bool parse_default(char *str, upb_fielddef *f) { bool success = true; char *end; switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: { long val = strtol(str, &end, 0); if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultint32(f, val); break; } case UPB_TYPE_INT64: { long long val = strtoll(str, &end, 0); if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultint64(f, val); break; } case UPB_TYPE_UINT32: { long val = strtoul(str, &end, 0); if (val > UINT32_MAX || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultuint32(f, val); break; } case UPB_TYPE_UINT64: { unsigned long long val = strtoull(str, &end, 0); if (val > UINT64_MAX || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultuint64(f, val); break; } case UPB_TYPE_DOUBLE: { double val = strtod(str, &end); if (errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultdouble(f, val); break; } case UPB_TYPE_FLOAT: { float val = strtof(str, &end); if (errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultfloat(f, val); break; } case UPB_TYPE_BOOL: { if (strcmp(str, "false") == 0) upb_fielddef_setdefaultbool(f, false); else if (strcmp(str, "true") == 0) upb_fielddef_setdefaultbool(f, true); else success = false; break; } default: abort(); } return success; } static bool field_endmsg(void *closure, const void *hd, upb_status *status) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_fielddef *f = r->f; // TODO: verify that all required fields were present. assert(upb_fielddef_number(f) != 0); assert(upb_fielddef_name(f) != NULL); assert((upb_fielddef_subdefname(f) != NULL) == upb_fielddef_hassubdef(f)); if (r->default_string) { if (upb_fielddef_issubmsg(f)) { upb_status_seterrmsg(status, "Submessages cannot have defaults."); return false; } if (upb_fielddef_isstring(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM) { upb_fielddef_setdefaultcstr(f, r->default_string, NULL); } else { if (r->default_string && !parse_default(r->default_string, f)) { // We don't worry too much about giving a great error message since the // compiler should have ensured this was correct. upb_status_seterrmsg(status, "Error converting default value."); return false; } } } return true; } static bool field_onlazy(void *closure, const void *hd, bool val) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_fielddef_setlazy(r->f, val); return true; } static bool field_onpacked(void *closure, const void *hd, bool val) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_fielddef_setpacked(r->f, val); return true; } static bool field_ontype(void *closure, const void *hd, int32_t val) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_fielddef_setdescriptortype(r->f, val); return true; } static bool field_onlabel(void *closure, const void *hd, int32_t val) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_fielddef_setlabel(r->f, val); return true; } static bool field_onnumber(void *closure, const void *hd, int32_t val) { UPB_UNUSED(hd); upb_descreader *r = closure; bool ok = upb_fielddef_setnumber(r->f, val, NULL); UPB_ASSERT_VAR(ok, ok); return true; } static size_t field_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; // XXX: see comment at the top of the file. char *name = upb_strndup(buf, n); upb_fielddef_setname(r->f, name, NULL); free(name); return n; } static size_t field_ontypename(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; // XXX: see comment at the top of the file. char *name = upb_strndup(buf, n); upb_fielddef_setsubdefname(r->f, name, NULL); free(name); return n; } static size_t field_onextendee(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; // XXX: see comment at the top of the file. char *name = upb_strndup(buf, n); upb_fielddef_setcontainingtypename(r->f, name, NULL); free(name); return n; } static size_t field_ondefaultval(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; // Have to convert from string to the correct type, but we might not know the // type yet, so we save it as a string until the end of the field. // XXX: see comment at the top of the file. free(r->default_string); r->default_string = upb_strndup(buf, n); return n; } // Handlers for google.protobuf.DescriptorProto (representing a message). static bool msg_startmsg(void *closure, const void *hd) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_deflist_push(&r->defs, UPB_UPCAST(upb_msgdef_new(&r->defs))); upb_descreader_startcontainer(r); return true; } static bool msg_endmsg(void *closure, const void *hd, upb_status *status) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_msgdef *m = upb_descreader_top(r); if(!upb_def_fullname(UPB_UPCAST(m))) { upb_status_seterrmsg(status, "Encountered message with no name."); return false; } upb_descreader_endcontainer(r); return true; } static size_t msg_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_descreader *r = closure; upb_msgdef *m = upb_descreader_top(r); // XXX: see comment at the top of the file. char *name = upb_strndup(buf, n); upb_def_setfullname(UPB_UPCAST(m), name, NULL); upb_descreader_setscopename(r, name); // Passes ownership of name. return n; } static bool msg_onendfield(void *closure, const void *hd) { UPB_UNUSED(hd); upb_descreader *r = closure; upb_msgdef *m = upb_descreader_top(r); upb_msgdef_addfield(m, r->f, &r->defs, NULL); r->f = NULL; return true; } static bool pushextension(void *closure, const void *hd) { UPB_UNUSED(hd); upb_descreader *r = closure; assert(upb_fielddef_containingtypename(r->f)); upb_fielddef_setisextension(r->f, true); upb_deflist_push(&r->defs, UPB_UPCAST(r->f)); r->f = NULL; return true; } #define D(name) upbdefs_google_protobuf_ ## name(s) static void reghandlers(const void *closure, upb_handlers *h) { const upb_symtab *s = closure; const upb_msgdef *m = upb_handlers_msgdef(h); if (m == D(DescriptorProto)) { upb_handlers_setstartmsg(h, &msg_startmsg, NULL); upb_handlers_setendmsg(h, &msg_endmsg, NULL); upb_handlers_setstring(h, D(DescriptorProto_name), &msg_onname, NULL); upb_handlers_setendsubmsg(h, D(DescriptorProto_field), &msg_onendfield, NULL); upb_handlers_setendsubmsg(h, D(DescriptorProto_extension), &pushextension, NULL); } else if (m == D(FileDescriptorProto)) { upb_handlers_setstartmsg(h, &file_startmsg, NULL); upb_handlers_setendmsg(h, &file_endmsg, NULL); upb_handlers_setstring(h, D(FileDescriptorProto_package), &file_onpackage, NULL); upb_handlers_setendsubmsg(h, D(FileDescriptorProto_extension), &pushextension, NULL); } else if (m == D(EnumValueDescriptorProto)) { upb_handlers_setstartmsg(h, &enumval_startmsg, NULL); upb_handlers_setendmsg(h, &enumval_endmsg, NULL); upb_handlers_setstring(h, D(EnumValueDescriptorProto_name), &enumval_onname, NULL); upb_handlers_setint32(h, D(EnumValueDescriptorProto_number), &enumval_onnumber, NULL); } else if (m == D(EnumDescriptorProto)) { upb_handlers_setstartmsg(h, &enum_startmsg, NULL); upb_handlers_setendmsg(h, &enum_endmsg, NULL); upb_handlers_setstring(h, D(EnumDescriptorProto_name), &enum_onname, NULL); } else if (m == D(FieldDescriptorProto)) { upb_handlers_setstartmsg(h, &field_startmsg, NULL); upb_handlers_setendmsg(h, &field_endmsg, NULL); upb_handlers_setint32(h, D(FieldDescriptorProto_type), &field_ontype, NULL); upb_handlers_setint32(h, D(FieldDescriptorProto_label), &field_onlabel, NULL); upb_handlers_setint32(h, D(FieldDescriptorProto_number), &field_onnumber, NULL); upb_handlers_setstring(h, D(FieldDescriptorProto_name), &field_onname, NULL); upb_handlers_setstring(h, D(FieldDescriptorProto_type_name), &field_ontypename, NULL); upb_handlers_setstring(h, D(FieldDescriptorProto_extendee), &field_onextendee, NULL); upb_handlers_setstring(h, D(FieldDescriptorProto_default_value), &field_ondefaultval, NULL); } else if (m == D(FieldOptions)) { upb_handlers_setbool(h, D(FieldOptions_lazy), &field_onlazy, NULL); upb_handlers_setbool(h, D(FieldOptions_packed), &field_onpacked, NULL); } } #undef D const upb_handlers *upb_descreader_newhandlers(const void *owner) { const upb_symtab *s = upbdefs_google_protobuf_descriptor(&s); const upb_handlers *h = upb_handlers_newfrozen( upbdefs_google_protobuf_FileDescriptorSet(s), owner, reghandlers, s); upb_symtab_unref(s, &s); return h; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2013 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Code to compile a upb::Handlers into bytecode for decoding a protobuf * according to that specific schema and destination handlers. * * Compiling to bytecode is always the first step. If we are using the * interpreted decoder we leave it as bytecode and interpret that. If we are * using a JIT decoder we use a code generator to turn the bytecode into native * code, LLVM IR, etc. * * Bytecode definition is in decoder.int.h. */ #include #ifdef UPB_DUMP_BYTECODE #include #endif #define MAXLABEL 5 #define EMPTYLABEL -1 /* mgroup *********************************************************************/ static void freegroup(upb_refcounted *r) { mgroup *g = (mgroup*)r; upb_inttable_uninit(&g->methods); #ifdef UPB_USE_JIT_X64 upb_pbdecoder_freejit(g); #endif free(g->bytecode); free(g); } static void visitgroup(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const mgroup *g = (const mgroup*)r; upb_inttable_iter i; upb_inttable_begin(&i, &g->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); visit(r, UPB_UPCAST(method), closure); } } mgroup *newgroup(const void *owner) { mgroup *g = malloc(sizeof(*g)); static const struct upb_refcounted_vtbl vtbl = {visitgroup, freegroup}; upb_refcounted_init(UPB_UPCAST(g), &vtbl, owner); upb_inttable_init(&g->methods, UPB_CTYPE_PTR); g->bytecode = NULL; g->bytecode_end = NULL; return g; } /* upb_pbdecodermethod ********************************************************/ static void freemethod(upb_refcounted *r) { upb_pbdecodermethod *method = (upb_pbdecodermethod*)r; upb_byteshandler_uninit(&method->input_handler_); if (method->dest_handlers_) { upb_handlers_unref(method->dest_handlers_, method); } upb_inttable_uninit(&method->dispatch); free(method); } static void visitmethod(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_pbdecodermethod *m = (const upb_pbdecodermethod*)r; visit(r, m->group, closure); } static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers, mgroup *group) { static const struct upb_refcounted_vtbl vtbl = {visitmethod, freemethod}; upb_pbdecodermethod *ret = malloc(sizeof(*ret)); upb_refcounted_init(UPB_UPCAST(ret), &vtbl, &ret); upb_byteshandler_init(&ret->input_handler_); // The method references the group and vice-versa, in a circular reference. upb_ref2(ret, group); upb_ref2(group, ret); upb_inttable_insertptr(&group->methods, dest_handlers, upb_value_ptr(ret)); upb_refcounted_unref(UPB_UPCAST(ret), &ret); ret->group = UPB_UPCAST(group); ret->dest_handlers_ = dest_handlers; ret->is_native_ = false; // If we JIT, it will update this later. upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64); if (ret->dest_handlers_) { upb_handlers_ref(ret->dest_handlers_, ret); } return ret; } void upb_pbdecodermethod_ref(const upb_pbdecodermethod *m, const void *owner) { upb_refcounted_ref(UPB_UPCAST(m), owner); } void upb_pbdecodermethod_unref(const upb_pbdecodermethod *m, const void *owner) { upb_refcounted_unref(UPB_UPCAST(m), owner); } void upb_pbdecodermethod_donateref(const upb_pbdecodermethod *m, const void *from, const void *to) { upb_refcounted_donateref(UPB_UPCAST(m), from, to); } void upb_pbdecodermethod_checkref(const upb_pbdecodermethod *m, const void *owner) { upb_refcounted_checkref(UPB_UPCAST(m), owner); } const upb_handlers *upb_pbdecodermethod_desthandlers( const upb_pbdecodermethod *m) { return m->dest_handlers_; } const upb_byteshandler *upb_pbdecodermethod_inputhandler( const upb_pbdecodermethod *m) { return &m->input_handler_; } bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) { return m->is_native_; } const upb_pbdecodermethod *upb_pbdecodermethod_new( const upb_pbdecodermethodopts *opts, const void *owner) { upb_pbcodecache cache; upb_pbcodecache_init(&cache); const upb_pbdecodermethod *ret = upb_pbcodecache_getdecodermethod(&cache, opts); upb_pbdecodermethod_ref(ret, owner); upb_pbcodecache_uninit(&cache); return ret; } /* bytecode compiler **********************************************************/ // Data used only at compilation time. typedef struct { mgroup *group; uint32_t *pc; int fwd_labels[MAXLABEL]; int back_labels[MAXLABEL]; // For fields marked "lazy", parse them lazily or eagerly? bool lazy; } compiler; static compiler *newcompiler(mgroup *group, bool lazy) { compiler *ret = malloc(sizeof(*ret)); ret->group = group; ret->lazy = lazy; for (int i = 0; i < MAXLABEL; i++) { ret->fwd_labels[i] = EMPTYLABEL; ret->back_labels[i] = EMPTYLABEL; } return ret; } static void freecompiler(compiler *c) { free(c); } const size_t ptr_words = sizeof(void*) / sizeof(uint32_t); // How many words an instruction is. static int instruction_len(uint32_t instr) { switch (getop(instr)) { case OP_SETDISPATCH: return 1 + ptr_words; case OP_TAGN: return 3; case OP_SETBIGGROUPNUM: return 2; default: return 1; } } bool op_has_longofs(int32_t instruction) { switch (getop(instruction)) { case OP_CALL: case OP_BRANCH: case OP_CHECKDELIM: return true; // The "tag" instructions only have 8 bytes available for the jump target, // but that is ok because these opcodes only require short jumps. case OP_TAG1: case OP_TAG2: case OP_TAGN: return false; default: assert(false); return false; } } static int32_t getofs(uint32_t instruction) { if (op_has_longofs(instruction)) { return (int32_t)instruction >> 8; } else { return (int8_t)(instruction >> 8); } } static void setofs(uint32_t *instruction, int32_t ofs) { if (op_has_longofs(*instruction)) { *instruction = getop(*instruction) | ofs << 8; } else { *instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8); } assert(getofs(*instruction) == ofs); // Would fail in cases of overflow. } static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; } // Defines a local label at the current PC location. All previous forward // references are updated to point to this location. The location is noted // for any future backward references. static void label(compiler *c, unsigned int label) { assert(label < MAXLABEL); int val = c->fwd_labels[label]; uint32_t *codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val; while (codep) { int ofs = getofs(*codep); setofs(codep, c->pc - codep - instruction_len(*codep)); codep = ofs ? codep + ofs : NULL; } c->fwd_labels[label] = EMPTYLABEL; c->back_labels[label] = pcofs(c); } // Creates a reference to a numbered label; either a forward reference // (positive arg) or backward reference (negative arg). For forward references // the value returned now is actually a "next" pointer into a linked list of all // instructions that use this label and will be patched later when the label is // defined with label(). // // The returned value is the offset that should be written into the instruction. static int32_t labelref(compiler *c, int label) { assert(label < MAXLABEL); if (label == LABEL_DISPATCH) { // No resolving required. return 0; } else if (label < 0) { // Backward local label. Relative to the next instruction. uint32_t from = (c->pc + 1) - c->group->bytecode; return c->back_labels[-label] - from; } else { // Forward local label: prepend to (possibly-empty) linked list. int *lptr = &c->fwd_labels[label]; int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c); *lptr = pcofs(c); return ret; } } static void put32(compiler *c, uint32_t v) { mgroup *g = c->group; if (c->pc == g->bytecode_end) { int ofs = pcofs(c); size_t oldsize = g->bytecode_end - g->bytecode; size_t newsize = UPB_MAX(oldsize * 2, 64); // TODO(haberman): handle OOM. g->bytecode = realloc(g->bytecode, newsize * sizeof(uint32_t)); g->bytecode_end = g->bytecode + newsize; c->pc = g->bytecode + ofs; } *c->pc++ = v; } static void putop(compiler *c, opcode op, ...) { va_list ap; va_start(ap, op); switch (op) { case OP_SETDISPATCH: { uintptr_t ptr = (uintptr_t)va_arg(ap, void*); put32(c, OP_SETDISPATCH); put32(c, ptr); if (sizeof(uintptr_t) > sizeof(uint32_t)) put32(c, (uint64_t)ptr >> 32); break; } case OP_STARTMSG: case OP_ENDMSG: case OP_PUSHLENDELIM: case OP_POP: case OP_SETDELIM: case OP_HALT: case OP_RET: put32(c, op); break; case OP_PARSE_DOUBLE: case OP_PARSE_FLOAT: case OP_PARSE_INT64: case OP_PARSE_UINT64: case OP_PARSE_INT32: case OP_PARSE_FIXED64: case OP_PARSE_FIXED32: case OP_PARSE_BOOL: case OP_PARSE_UINT32: case OP_PARSE_SFIXED32: case OP_PARSE_SFIXED64: case OP_PARSE_SINT32: case OP_PARSE_SINT64: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_STRING: case OP_ENDSTR: case OP_PUSHTAGDELIM: put32(c, op | va_arg(ap, upb_selector_t) << 8); break; case OP_SETBIGGROUPNUM: put32(c, op); put32(c, va_arg(ap, int)); break; case OP_CALL: { const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *); put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8); break; } case OP_CHECKDELIM: case OP_BRANCH: { uint32_t instruction = op; int label = va_arg(ap, int); setofs(&instruction, labelref(c, label)); put32(c, instruction); break; } case OP_TAG1: case OP_TAG2: { int label = va_arg(ap, int); uint64_t tag = va_arg(ap, uint64_t); uint32_t instruction = op | (tag << 16); assert(tag <= 0xffff); setofs(&instruction, labelref(c, label)); put32(c, instruction); break; } case OP_TAGN: { int label = va_arg(ap, int); uint64_t tag = va_arg(ap, uint64_t); uint32_t instruction = op | (upb_value_size(tag) << 16); setofs(&instruction, labelref(c, label)); put32(c, instruction); put32(c, tag); put32(c, tag >> 32); break; } } va_end(ap); } #if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE) const char *upb_pbdecoder_getopname(unsigned int op) { #define OP(op) [OP_ ## op] = "OP_" #op #define T(op) OP(PARSE_##op) static const char *names[] = { "", T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32), T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64), OP(STARTMSG), OP(ENDMSG), OP(STARTSEQ), OP(ENDSEQ), OP(STARTSUBMSG), OP(ENDSUBMSG), OP(STARTSTR), OP(STRING), OP(ENDSTR), OP(CALL), OP(RET), OP(PUSHLENDELIM), OP(PUSHTAGDELIM), OP(SETDELIM), OP(CHECKDELIM), OP(BRANCH), OP(TAG1), OP(TAG2), OP(TAGN), OP(SETDISPATCH), OP(POP), OP(SETBIGGROUPNUM), OP(HALT), }; return op > OP_HALT ? names[0] : names[op]; #undef OP #undef T } #endif #ifdef UPB_DUMP_BYTECODE static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) { uint32_t *begin = p; while (p < end) { fprintf(f, "%p %8tx", p, p - begin); uint32_t instr = *p++; uint8_t op = getop(instr); fprintf(f, " %s", upb_pbdecoder_getopname(op)); switch ((opcode)op) { case OP_SETDISPATCH: { const upb_inttable *dispatch; memcpy(&dispatch, p, sizeof(void*)); p += ptr_words; const upb_pbdecodermethod *method = (void *)((char *)dispatch - offsetof(upb_pbdecodermethod, dispatch)); fprintf(f, " %s", upb_msgdef_fullname( upb_handlers_msgdef(method->dest_handlers_))); break; } case OP_STARTMSG: case OP_ENDMSG: case OP_PUSHLENDELIM: case OP_POP: case OP_SETDELIM: case OP_HALT: case OP_RET: break; case OP_PARSE_DOUBLE: case OP_PARSE_FLOAT: case OP_PARSE_INT64: case OP_PARSE_UINT64: case OP_PARSE_INT32: case OP_PARSE_FIXED64: case OP_PARSE_FIXED32: case OP_PARSE_BOOL: case OP_PARSE_UINT32: case OP_PARSE_SFIXED32: case OP_PARSE_SFIXED64: case OP_PARSE_SINT32: case OP_PARSE_SINT64: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_STRING: case OP_ENDSTR: case OP_PUSHTAGDELIM: fprintf(f, " %d", instr >> 8); break; case OP_SETBIGGROUPNUM: fprintf(f, " %d", *p++); break; case OP_CHECKDELIM: case OP_CALL: case OP_BRANCH: fprintf(f, " =>0x%tx", p + getofs(instr) - begin); break; case OP_TAG1: case OP_TAG2: { fprintf(f, " tag:0x%x", instr >> 16); if (getofs(instr)) { fprintf(f, " =>0x%tx", p + getofs(instr) - begin); } break; } case OP_TAGN: { uint64_t tag = *p++; tag |= (uint64_t)*p++ << 32; fprintf(f, " tag:0x%llx", (long long)tag); fprintf(f, " n:%d", instr >> 16); if (getofs(instr)) { fprintf(f, " =>0x%tx", p + getofs(instr) - begin); } break; } } fputs("\n", f); } } #endif static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) { uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type; uint64_t encoded_tag = upb_vencode32(tag); // No tag should be greater than 5 bytes. assert(encoded_tag <= 0xffffffffff); return encoded_tag; } static void putchecktag(compiler *c, const upb_fielddef *f, int wire_type, int dest) { uint64_t tag = get_encoded_tag(f, wire_type); switch (upb_value_size(tag)) { case 1: putop(c, OP_TAG1, dest, tag); break; case 2: putop(c, OP_TAG2, dest, tag); break; default: putop(c, OP_TAGN, dest, tag); break; } } static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t selector; bool ok = upb_handlers_getselector(f, type, &selector); UPB_ASSERT_VAR(ok, ok); return selector; } // Takes an existing, primary dispatch table entry and repacks it with a // different alternate wire type. Called when we are inserting a secondary // dispatch table entry for an alternate wire type. static uint64_t repack(uint64_t dispatch, int new_wt2) { uint64_t ofs; uint8_t wt1; uint8_t old_wt2; upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2); assert(old_wt2 == NO_WIRE_TYPE); // wt2 should not be set yet. return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2); } // Marks the current bytecode position as the dispatch target for this message, // field, and wire type. static void dispatchtarget(compiler *c, upb_pbdecodermethod *method, const upb_fielddef *f, int wire_type) { // Offset is relative to msg base. uint64_t ofs = pcofs(c) - method->code_base.ofs; uint32_t fn = upb_fielddef_number(f); upb_inttable *d = &method->dispatch; upb_value v; if (upb_inttable_remove(d, fn, &v)) { // TODO: prioritize based on packed setting in .proto file. uint64_t repacked = repack(upb_value_getuint64(v), wire_type); upb_inttable_insert(d, fn, upb_value_uint64(repacked)); upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs)); } else { uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE); upb_inttable_insert(d, fn, upb_value_uint64(val)); } } static void putpush(compiler *c, const upb_fielddef *f) { if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) { putop(c, OP_PUSHLENDELIM); } else { uint32_t fn = upb_fielddef_number(f); if (fn >= 1 << 24) { putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_SETBIGGROUPNUM, fn); } else { putop(c, OP_PUSHTAGDELIM, fn); } } } static upb_pbdecodermethod *find_submethod(const compiler *c, const upb_pbdecodermethod *method, const upb_fielddef *f) { const upb_handlers *sub = upb_handlers_getsubhandlers(method->dest_handlers_, f); upb_value v; return upb_inttable_lookupptr(&c->group->methods, sub, &v) ? upb_value_getptr(v) : NULL; } static void putsel(compiler *c, opcode op, upb_selector_t sel, const upb_handlers *h) { if (upb_handlers_gethandler(h, sel)) { putop(c, op, sel); } } // Puts an opcode to call a callback, but only if a callback actually exists for // this field and handler type. static void maybeput(compiler *c, opcode op, const upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { putsel(c, op, getsel(f, type), h); } static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) { if (!upb_fielddef_lazy(f)) return false; return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR)) || upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING)) || upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR)); } /* bytecode compiler code generation ******************************************/ // Symbolic names for our local labels. #define LABEL_LOOPSTART 1 // Top of a repeated field loop. #define LABEL_LOOPBREAK 2 // To jump out of a repeated loop #define LABEL_FIELD 3 // Jump backward to find the most recent field. #define LABEL_ENDMSG 4 // To reach the OP_ENDMSG instr for this msg. // Generates bytecode to parse a single non-lazy message field. static void generate_msgfield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); const upb_pbdecodermethod *sub_m = find_submethod(c, method, f); if (!sub_m) { // Don't emit any code for this field at all; it will be parsed as an // unknown field. return; } label(c, LABEL_FIELD); int wire_type = (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) ? UPB_WIRE_TYPE_DELIMITED : UPB_WIRE_TYPE_START_GROUP; if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); label(c, LABEL_LOOPSTART); putpush(c, f); putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); putop(c, OP_CALL, sub_m); putop(c, OP_POP); maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); if (wire_type == UPB_WIRE_TYPE_DELIMITED) { putop(c, OP_SETDELIM); } putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, wire_type, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putpush(c, f); putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); putop(c, OP_CALL, sub_m); putop(c, OP_POP); maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); if (wire_type == UPB_WIRE_TYPE_DELIMITED) { putop(c, OP_SETDELIM); } } } // Generates bytecode to parse a single string or lazy submessage field. static void generate_delimfield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); label(c, LABEL_FIELD); if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); label(c, LABEL_LOOPSTART); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); // Need to emit even if no handler to skip past the string. putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); putop(c, OP_POP); maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); putop(c, OP_SETDELIM); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); putop(c, OP_POP); maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); putop(c, OP_SETDELIM); } } // Generates bytecode to parse a single primitive field. static void generate_primitivefield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { label(c, LABEL_FIELD); const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f); // From a decoding perspective, ENUM is the same as INT32. if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM) descriptor_type = UPB_DESCRIPTOR_TYPE_INT32; opcode parse_type = (opcode)descriptor_type; // TODO(haberman): generate packed or non-packed first depending on "packed" // setting in the fielddef. This will favor (in speed) whichever was // specified. assert((int)parse_type >= 0 && parse_type <= OP_MAX); upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); int wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); // Packed label(c, LABEL_LOOPSTART); putop(c, parse_type, sel); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); dispatchtarget(c, method, f, wire_type); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); // Non-packed label(c, LABEL_LOOPSTART); putop(c, parse_type, sel); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, wire_type, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); // Packed and non-packed join. maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); putop(c, OP_SETDELIM); // Could remove for non-packed by dup ENDSEQ. } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putop(c, parse_type, sel); } } // Adds bytecode for parsing the given message to the given decoderplan, // while adding all dispatch targets to this message's dispatch table. static void compile_method(compiler *c, upb_pbdecodermethod *method) { assert(method); // Clear all entries in the dispatch table. upb_inttable_uninit(&method->dispatch); upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64); const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); const upb_msgdef *md = upb_handlers_msgdef(h); method->code_base.ofs = pcofs(c); putop(c, OP_SETDISPATCH, &method->dispatch); putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h); label(c, LABEL_FIELD); upb_msg_iter i; for(upb_msg_begin(&i, md); !upb_msg_done(&i); upb_msg_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); upb_fieldtype_t type = upb_fielddef_type(f); if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) { generate_msgfield(c, f, method); } else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES || type == UPB_TYPE_MESSAGE) { generate_delimfield(c, f, method); } else { generate_primitivefield(c, f, method); } } // For now we just loop back to the last field of the message (or if none, // the DISPATCH opcode for the message. putop(c, OP_BRANCH, -LABEL_FIELD); // Insert both a label and a dispatch table entry for this end-of-msg. label(c, LABEL_ENDMSG); upb_value val = upb_value_uint64(pcofs(c) - method->code_base.ofs); upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val); putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h); putop(c, OP_RET); upb_inttable_compact(&method->dispatch); } // Populate "methods" with new upb_pbdecodermethod objects reachable from "h". // Returns the method for these handlers. // // Generates a new method for every destination handlers reachable from "h". static void find_methods(compiler *c, const upb_handlers *h) { upb_value v; if (upb_inttable_lookupptr(&c->group->methods, h, &v)) return; newmethod(h, c->group); // Find submethods. upb_msg_iter i; const upb_msgdef *md = upb_handlers_msgdef(h); for(upb_msg_begin(&i, md); !upb_msg_done(&i); upb_msg_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); const upb_handlers *sub_h; if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && (sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) { // We only generate a decoder method for submessages with handlers. // Others will be parsed as unknown fields. find_methods(c, sub_h); } } } // (Re-)compile bytecode for all messages in "msgs." // Overwrites any existing bytecode in "c". static void compile_methods(compiler *c) { // Start over at the beginning of the bytecode. c->pc = c->group->bytecode; upb_inttable_iter i; upb_inttable_begin(&i, &c->group->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); compile_method(c, method); } } static void set_bytecode_handlers(mgroup *g) { upb_inttable_iter i; upb_inttable_begin(&i, &g->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i)); m->code_base.ptr = g->bytecode + m->code_base.ofs; upb_byteshandler *h = &m->input_handler_; upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr); upb_byteshandler_setstring(h, upb_pbdecoder_decode, g); upb_byteshandler_setendstr(h, upb_pbdecoder_end, m); } } /* JIT setup. ******************************************************************/ #ifdef UPB_USE_JIT_X64 static void sethandlers(mgroup *g, bool allowjit) { g->jit_code = NULL; if (allowjit) { // Compile byte-code into machine code, create handlers. upb_pbdecoder_jit(g); } else { set_bytecode_handlers(g); } } #else // UPB_USE_JIT_X64 static void sethandlers(mgroup *g, bool allowjit) { // No JIT compiled in; use bytecode handlers unconditionally. UPB_UNUSED(allowjit); set_bytecode_handlers(g); } #endif // UPB_USE_JIT_X64 // TODO(haberman): allow this to be constructed for an arbitrary set of dest // handlers and other mgroups (but verify we have a transitive closure). const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy, const void *owner) { UPB_UNUSED(allowjit); assert(upb_handlers_isfrozen(dest)); mgroup *g = newgroup(owner); compiler *c = newcompiler(g, lazy); find_methods(c, dest); // We compile in two passes: // 1. all messages are assigned relative offsets from the beginning of the // bytecode (saved in method->code_base). // 2. forwards OP_CALL instructions can be correctly linked since message // offsets have been previously assigned. // // Could avoid the second pass by linking OP_CALL instructions somehow. compile_methods(c); compile_methods(c); g->bytecode_end = c->pc; freecompiler(c); #ifdef UPB_DUMP_BYTECODE FILE *f = fopen("/tmp/upb-bytecode", "wb"); assert(f); dumpbc(g->bytecode, g->bytecode_end, stderr); dumpbc(g->bytecode, g->bytecode_end, f); fclose(f); #endif sethandlers(g, allowjit); return g; } /* upb_pbcodecache ************************************************************/ void upb_pbcodecache_init(upb_pbcodecache *c) { upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR); c->allow_jit_ = true; } void upb_pbcodecache_uninit(upb_pbcodecache *c) { upb_inttable_iter i; upb_inttable_begin(&i, &c->groups); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { const mgroup *group = upb_value_getconstptr(upb_inttable_iter_value(&i)); upb_refcounted_unref(UPB_UPCAST(group), c); } upb_inttable_uninit(&c->groups); } bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) { return c->allow_jit_; } bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) { if (upb_inttable_count(&c->groups) > 0) return false; c->allow_jit_ = allow; return true; } const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod( upb_pbcodecache *c, const upb_pbdecodermethodopts *opts) { // Right now we build a new DecoderMethod every time. // TODO(haberman): properly cache methods by their true key. const mgroup *g = mgroup_new(opts->handlers, c->allow_jit_, opts->lazy, c); upb_inttable_push(&c->groups, upb_value_constptr(g)); upb_value v; bool ok = upb_inttable_lookupptr(&g->methods, opts->handlers, &v); UPB_ASSERT_VAR(ok, ok); return upb_value_getptr(v); } /* upb_pbdecodermethodopts ****************************************************/ void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts, const upb_handlers *h) { opts->handlers = h; opts->lazy = false; } void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy) { opts->lazy = lazy; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2008-2013 Google Inc. See LICENSE for details. * Author: Josh Haberman * * This file implements a VM for the interpreted (bytecode) decoder. * * Bytecode must previously have been generated using the bytecode compiler in * compile_decoder.c. This decoder then walks through the bytecode op-by-op to * parse the input. * * Decoding is fully resumable; we just keep a pointer to the current bytecode * instruction and resume from there. A fair amount of the logic here is to * handle the fact that values can span buffer seams and we have to be able to * be capable of suspending/resuming from any byte in the stream. This * sometimes requires keeping a few trailing bytes from the last buffer around * in the "residual" buffer. */ #include #include #include #include #include #ifdef UPB_DUMP_BYTECODE #include #endif #define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d); // Error messages that are shared between the bytecode and JIT decoders. const char *kPbDecoderStackOverflow = "Nesting too deep."; // Error messages shared within this file. static const char *kUnterminatedVarint = "Unterminated varint."; /* upb_pbdecoder **************************************************************/ static opcode halt = OP_HALT; // Whether an op consumes any of the input buffer. static bool consumes_input(opcode op) { switch (op) { case OP_SETDISPATCH: case OP_STARTMSG: case OP_ENDMSG: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_ENDSTR: case OP_PUSHTAGDELIM: case OP_POP: case OP_SETDELIM: case OP_SETBIGGROUPNUM: case OP_CHECKDELIM: case OP_CALL: case OP_RET: case OP_BRANCH: return false; default: return true; } } static bool in_residual_buf(const upb_pbdecoder *d, const char *p); // It's unfortunate that we have to micro-manage the compiler this way, // especially since this tuning is necessarily specific to one hardware // configuration. But emperically on a Core i7, performance increases 30-50% // with these annotations. Every instance where these appear, gcc 4.2.1 made // the wrong decision and degraded performance in benchmarks. #define FORCEINLINE static inline __attribute__((always_inline)) #define NOINLINE __attribute__((noinline)) static void seterr(upb_pbdecoder *d, const char *msg) { // TODO(haberman): encapsulate this access to pipeline->status, but not sure // exactly what that interface should look like. upb_status_seterrmsg(d->status, msg); } void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) { seterr(d, msg); } /* Buffering ******************************************************************/ // We operate on one buffer at a time, which is either the user's buffer passed // to our "decode" callback or some residual bytes from the previous buffer. // How many bytes can be safely read from d->ptr without reading past end-of-buf // or past the current delimited end. static size_t curbufleft(const upb_pbdecoder *d) { assert(d->data_end >= d->ptr); return d->data_end - d->ptr; } // Overall stream offset of d->ptr. uint64_t offset(const upb_pbdecoder *d) { return d->bufstart_ofs + (d->ptr - d->buf); } // Advances d->ptr. static void advance(upb_pbdecoder *d, size_t len) { assert(curbufleft(d) >= len); d->ptr += len; } static bool in_buf(const char *p, const char *buf, const char *end) { return p >= buf && p <= end; } static bool in_residual_buf(const upb_pbdecoder *d, const char *p) { return in_buf(p, d->residual, d->residual_end); } // Calculates the delim_end value, which is affected by both the current buffer // and the parsing stack, so must be called whenever either is updated. static void set_delim_end(upb_pbdecoder *d) { size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs; if (delim_ofs <= (d->end - d->buf)) { d->delim_end = d->buf + delim_ofs; d->data_end = d->delim_end; } else { d->data_end = d->end; d->delim_end = NULL; } } static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) { d->ptr = buf; d->buf = buf; d->end = end; set_delim_end(d); } static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) { assert(curbufleft(d) == 0); d->bufstart_ofs += (d->end - d->buf); switchtobuf(d, buf, buf + len); } static void checkpoint(upb_pbdecoder *d) { // The assertion here is in the interests of efficiency, not correctness. // We are trying to ensure that we don't checkpoint() more often than // necessary. assert(d->checkpoint != d->ptr); d->checkpoint = d->ptr; } // Resumes the decoder from an initial state or from a previous suspend. int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, size_t size, const upb_bufhandle *handle) { UPB_UNUSED(p); // Useless; just for the benefit of the JIT. d->buf_param = buf; d->size_param = size; d->handle = handle; if (d->residual_end > d->residual) { // We have residual bytes from the last buffer. assert(d->ptr == d->residual); } else { switchtobuf(d, buf, buf + size); } d->checkpoint = d->ptr; if (d->top->groupnum < 0) { CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0)); d->checkpoint = d->ptr; } return DECODE_OK; } // Suspends the decoder at the last checkpoint, without saving any residual // bytes. If there are any unconsumed bytes, returns a short byte count. size_t upb_pbdecoder_suspend(upb_pbdecoder *d) { d->pc = d->last; if (d->checkpoint == d->residual) { // Checkpoint was in residual buf; no user bytes were consumed. d->ptr = d->residual; return 0; } else { assert(!in_residual_buf(d, d->checkpoint)); assert(d->buf == d->buf_param); size_t consumed = d->checkpoint - d->buf; d->bufstart_ofs += consumed; d->residual_end = d->residual; switchtobuf(d, d->residual, d->residual_end); return consumed; } } // Suspends the decoder at the last checkpoint, and saves any unconsumed // bytes in our residual buffer. This is necessary if we need more user // bytes to form a complete value, which might not be contiguous in the // user's buffers. Always consumes all user bytes. static size_t suspend_save(upb_pbdecoder *d) { // We hit end-of-buffer before we could parse a full value. // Save any unconsumed bytes (if any) to the residual buffer. d->pc = d->last; if (d->checkpoint == d->residual) { // Checkpoint was in residual buf; append user byte(s) to residual buf. assert((d->residual_end - d->residual) + d->size_param <= sizeof(d->residual)); if (!in_residual_buf(d, d->ptr)) { d->bufstart_ofs -= (d->residual_end - d->residual); } memcpy(d->residual_end, d->buf_param, d->size_param); d->residual_end += d->size_param; } else { // Checkpoint was in user buf; old residual bytes not needed. assert(!in_residual_buf(d, d->checkpoint)); d->ptr = d->checkpoint; size_t save = curbufleft(d); assert(save <= sizeof(d->residual)); memcpy(d->residual, d->ptr, save); d->residual_end = d->residual + save; d->bufstart_ofs = offset(d); } switchtobuf(d, d->residual, d->residual_end); return d->size_param; } // Skips "bytes" bytes in the stream, which may be more than available. If we // skip more bytes than are available, we return a long read count to the caller // indicating how many bytes the caller should skip before passing a new buffer. static int32_t skip(upb_pbdecoder *d, size_t bytes) { assert(!in_residual_buf(d, d->ptr) || d->size_param == 0); if (curbufleft(d) >= bytes) { // Skipped data is all in current buffer. advance(d, bytes); return DECODE_OK; } else { // Skipped data extends beyond currently available buffers. d->pc = d->last; size_t skip = bytes - curbufleft(d); d->bufstart_ofs += (d->end - d->buf) + skip; d->residual_end = d->residual; switchtobuf(d, d->residual, d->residual_end); return d->size_param + skip; } } // Copies the next "bytes" bytes into "buf" and advances the stream. // Requires that this many bytes are available in the current buffer. FORCEINLINE void consumebytes(upb_pbdecoder *d, void *buf, size_t bytes) { assert(bytes <= curbufleft(d)); memcpy(buf, d->ptr, bytes); advance(d, bytes); } // Slow path for getting the next "bytes" bytes, regardless of whether they are // available in the current buffer or not. Returns a status code as described // in decoder.int.h. static NOINLINE int32_t getbytes_slow(upb_pbdecoder *d, void *buf, size_t bytes) { const size_t avail = curbufleft(d); consumebytes(d, buf, avail); bytes -= avail; assert(bytes > 0); if (in_residual_buf(d, d->ptr)) { advancetobuf(d, d->buf_param, d->size_param); } if (curbufleft(d) >= bytes) { consumebytes(d, buf + avail, bytes); return DECODE_OK; } else if (d->data_end == d->delim_end) { seterr(d, "Submessage ended in the middle of a value or group"); return upb_pbdecoder_suspend(d); } else { return suspend_save(d); } } // Gets the next "bytes" bytes, regardless of whether they are available in the // current buffer or not. Returns a status code as described in decoder.int.h. FORCEINLINE int32_t getbytes(upb_pbdecoder *d, void *buf, size_t bytes) { if (curbufleft(d) >= bytes) { // Buffer has enough data to satisfy. consumebytes(d, buf, bytes); return DECODE_OK; } else { return getbytes_slow(d, buf, bytes); } } static NOINLINE size_t peekbytes_slow(upb_pbdecoder *d, void *buf, size_t bytes) { size_t ret = curbufleft(d); memcpy(buf, d->ptr, ret); if (in_residual_buf(d, d->ptr)) { size_t copy = UPB_MIN(bytes - ret, d->size_param); memcpy(buf + ret, d->buf_param, copy); ret += copy; } return ret; } FORCEINLINE size_t peekbytes(upb_pbdecoder *d, void *buf, size_t bytes) { if (curbufleft(d) >= bytes) { memcpy(buf, d->ptr, bytes); return bytes; } else { return peekbytes_slow(d, buf, bytes); } } /* Decoding of wire types *****************************************************/ // Slow path for decoding a varint from the current buffer position. // Returns a status code as described in decoder.int.h. NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64) { *u64 = 0; uint8_t byte = 0x80; int bitpos; for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) { int32_t ret = getbytes(d, &byte, 1); if (ret >= 0) return ret; *u64 |= (uint64_t)(byte & 0x7F) << bitpos; } if(bitpos == 70 && (byte & 0x80)) { seterr(d, kUnterminatedVarint); return upb_pbdecoder_suspend(d); } return DECODE_OK; } // Decodes a varint from the current buffer position. // Returns a status code as described in decoder.int.h. FORCEINLINE int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) { if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) { *u64 = *d->ptr; advance(d, 1); return DECODE_OK; } else if (curbufleft(d) >= 10) { // Fast case. upb_decoderet r = upb_vdecode_fast(d->ptr); if (r.p == NULL) { seterr(d, kUnterminatedVarint); return upb_pbdecoder_suspend(d); } advance(d, r.p - d->ptr); *u64 = r.val; return DECODE_OK; } else { // Slow case -- varint spans buffer seam. return upb_pbdecoder_decode_varint_slow(d, u64); } } // Decodes a 32-bit varint from the current buffer position. // Returns a status code as described in decoder.int.h. FORCEINLINE int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) { uint64_t u64; int32_t ret = decode_varint(d, &u64); if (ret >= 0) return ret; if (u64 > UINT32_MAX) { seterr(d, "Unterminated 32-bit varint"); // TODO(haberman) guarantee that this function return is >= 0 somehow, // so we know this path will always be treated as error by our caller. // Right now the size_t -> int32_t can overflow and produce negative values. *u32 = 0; return upb_pbdecoder_suspend(d); } *u32 = u64; return DECODE_OK; } // Decodes a fixed32 from the current buffer position. // Returns a status code as described in decoder.int.h. // TODO: proper byte swapping for big-endian machines. FORCEINLINE int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) { return getbytes(d, u32, 4); } // Decodes a fixed64 from the current buffer position. // Returns a status code as described in decoder.int.h. // TODO: proper byte swapping for big-endian machines. FORCEINLINE int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) { return getbytes(d, u64, 8); } // Non-static versions of the above functions. // These are called by the JIT for fallback paths. int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) { return decode_fixed32(d, u32); } int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) { return decode_fixed64(d, u64); } static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; } static float as_float(uint32_t n) { float f; memcpy(&f, &n, 4); return f; } // Pushes a frame onto the decoder stack. static bool decoder_push(upb_pbdecoder *d, uint64_t end) { upb_pbdecoder_frame *fr = d->top; if (end > fr->end_ofs) { seterr(d, "Submessage end extends past enclosing submessage."); return false; } else if ((fr + 1) == d->limit) { seterr(d, kPbDecoderStackOverflow); return false; } fr++; fr->end_ofs = end; fr->dispatch = NULL; fr->groupnum = 0; d->top = fr; return true; } static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) { // While we expect to see an "end" tag (either ENDGROUP or a non-sequence // field number) prior to hitting any enclosing submessage end, pushing our // existing delim end prevents us from continuing to parse values from a // corrupt proto that doesn't give us an END tag in time. if (!decoder_push(d, d->top->end_ofs)) return false; d->top->groupnum = arg; return true; } // Pops a frame from the decoder stack. static void decoder_pop(upb_pbdecoder *d) { d->top--; } NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected) { uint64_t data = 0; size_t bytes = upb_value_size(expected); size_t read = peekbytes(d, &data, bytes); if (read == bytes && data == expected) { // Advance past matched bytes. int32_t ok = getbytes(d, &data, read); UPB_ASSERT_VAR(ok, ok < 0); return DECODE_OK; } else if (read < bytes && memcmp(&data, &expected, read) == 0) { return suspend_save(d); } else { return DECODE_MISMATCH; } } int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, uint8_t wire_type) { if (fieldnum >= 0) goto have_tag; while (true) { uint32_t tag; CHECK_RETURN(decode_v32(d, &tag)); wire_type = tag & 0x7; fieldnum = tag >> 3; have_tag: if (fieldnum == 0) { seterr(d, "Saw invalid field number (0)"); return upb_pbdecoder_suspend(d); } // TODO: deliver to unknown field callback. switch (wire_type) { case UPB_WIRE_TYPE_32BIT: CHECK_RETURN(skip(d, 4)); break; case UPB_WIRE_TYPE_64BIT: CHECK_RETURN(skip(d, 8)); break; case UPB_WIRE_TYPE_VARINT: { uint64_t u64; CHECK_RETURN(decode_varint(d, &u64)); break; } case UPB_WIRE_TYPE_DELIMITED: { uint32_t len; CHECK_RETURN(decode_v32(d, &len)); CHECK_RETURN(skip(d, len)); break; } case UPB_WIRE_TYPE_START_GROUP: CHECK_SUSPEND(pushtagdelim(d, -fieldnum)); break; case UPB_WIRE_TYPE_END_GROUP: if (fieldnum == -d->top->groupnum) { decoder_pop(d); } else if (fieldnum == d->top->groupnum) { return DECODE_ENDGROUP; } else { seterr(d, "Unmatched ENDGROUP tag."); return upb_pbdecoder_suspend(d); } break; default: seterr(d, "Invalid wire type"); return upb_pbdecoder_suspend(d); } if (d->top->groupnum >= 0) { return DECODE_OK; } if (d->ptr == d->delim_end) { seterr(d, "Enclosing submessage ended in the middle of value or group"); // Unlike most errors we notice during parsing, right now we have consumed // all of the user's input. // // There are three different options for how to handle this case: // // 1. decode() = short count, error = set // 2. decode() = full count, error = set // 3. decode() = full count, error NOT set, short count and error will // be reported on next call to decode() (or end()) // // (1) and (3) have the advantage that they preserve the invariant that an // error occurs iff decode() returns a short count. // // (2) and (3) have the advantage of reflecting the fact that all of the // bytes were in fact parsed (and possibly delivered to the unknown field // handler, in the future when that is supported). // // (3) requires extra state in the decode (a place to store the "permanent // error" that we should return for all subsequent attempts to decode). // But we likely want this anyway. // // Right now we do (1), thanks to the fact that we checkpoint *after* this // check. (3) may be a better choice long term; unclear at the moment. return upb_pbdecoder_suspend(d); } checkpoint(d); } } static void goto_endmsg(upb_pbdecoder *d) { upb_value v; bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v); UPB_ASSERT_VAR(found, found); d->pc = d->top->base + upb_value_getuint64(v); } // Parses a tag and jumps to the corresponding bytecode instruction for this // field. // // If the tag is unknown (or the wire type doesn't match), parses the field as // unknown. If the tag is a valid ENDGROUP tag, jumps to the bytecode // instruction for the end of message. static int32_t dispatch(upb_pbdecoder *d) { upb_inttable *dispatch = d->top->dispatch; // Decode tag. uint32_t tag; CHECK_RETURN(decode_v32(d, &tag)); uint8_t wire_type = tag & 0x7; uint32_t fieldnum = tag >> 3; // Lookup tag. Because of packed/non-packed compatibility, we have to // check the wire type against two possibilities. upb_value val; if (fieldnum != DISPATCH_ENDMSG && upb_inttable_lookup32(dispatch, fieldnum, &val)) { uint64_t v = upb_value_getuint64(val); if (wire_type == (v & 0xff)) { d->pc = d->top->base + (v >> 16); return DECODE_OK; } else if (wire_type == ((v >> 8) & 0xff)) { bool found = upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val); UPB_ASSERT_VAR(found, found); d->pc = d->top->base + upb_value_getuint64(val); return DECODE_OK; } } // Unknown field or ENDGROUP. int32_t ret = upb_pbdecoder_skipunknown(d, fieldnum, wire_type); if (ret == DECODE_ENDGROUP) { goto_endmsg(d); return DECODE_OK; } else { d->pc = d->last - 1; // Rewind to CHECKDELIM. return ret; } } // Callers know that the stack is more than one deep because the opcodes that // call this only occur after PUSH operations. upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) { assert(d->top != d->stack); return d->top - 1; } /* The main decoding loop *****************************************************/ // The main decoder VM function. Uses traditional bytecode dispatch loop with a // switch() statement. size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle) { upb_pbdecoder *d = closure; const mgroup *group = hd; assert(buf); int32_t result = upb_pbdecoder_resume(d, NULL, buf, size, handle); if (result == DECODE_ENDGROUP) { goto_endmsg(d); } CHECK_RETURN(result); UPB_UNUSED(group); #define VMCASE(op, code) \ case op: { code; if (consumes_input(op)) checkpoint(d); break; } #define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \ VMCASE(OP_PARSE_ ## type, { \ ctype val; \ CHECK_RETURN(decode_ ## wt(d, &val)); \ upb_sink_put ## name(&d->top->sink, arg, (convfunc)(val)); \ }) while(1) { d->last = d->pc; int32_t instruction = *d->pc++; opcode op = getop(instruction); uint32_t arg = instruction >> 8; int32_t longofs = arg; assert(d->ptr != d->residual_end); #ifdef UPB_DUMP_BYTECODE fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d " "%x %s (%d)\n", (int)offset(d), (int)(d->ptr - d->buf), (int)(d->data_end - d->ptr), (int)(d->end - d->ptr), (int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)), (int)(d->pc - 1 - group->bytecode), upb_pbdecoder_getopname(op), arg); #endif switch (op) { // Technically, we are losing data if we see a 32-bit varint that is not // properly sign-extended. We could detect this and error about the data // loss, but proto2 does not do this, so we pass. PRIMITIVE_OP(INT32, varint, int32, int32_t, uint64_t) PRIMITIVE_OP(INT64, varint, int64, int64_t, uint64_t) PRIMITIVE_OP(UINT32, varint, uint32, uint32_t, uint64_t) PRIMITIVE_OP(UINT64, varint, uint64, uint64_t, uint64_t) PRIMITIVE_OP(FIXED32, fixed32, uint32, uint32_t, uint32_t) PRIMITIVE_OP(FIXED64, fixed64, uint64, uint64_t, uint64_t) PRIMITIVE_OP(SFIXED32, fixed32, int32, int32_t, uint32_t) PRIMITIVE_OP(SFIXED64, fixed64, int64, int64_t, uint64_t) PRIMITIVE_OP(BOOL, varint, bool, bool, uint64_t) PRIMITIVE_OP(DOUBLE, fixed64, double, as_double, uint64_t) PRIMITIVE_OP(FLOAT, fixed32, float, as_float, uint32_t) PRIMITIVE_OP(SINT32, varint, int32, upb_zzdec_32, uint64_t) PRIMITIVE_OP(SINT64, varint, int64, upb_zzdec_64, uint64_t) VMCASE(OP_SETDISPATCH, d->top->base = d->pc - 1; memcpy(&d->top->dispatch, d->pc, sizeof(void*)); d->pc += sizeof(void*) / sizeof(uint32_t); ) VMCASE(OP_STARTMSG, CHECK_SUSPEND(upb_sink_startmsg(&d->top->sink)); ) VMCASE(OP_ENDMSG, CHECK_SUSPEND(upb_sink_endmsg(&d->top->sink, d->status)); ) VMCASE(OP_STARTSEQ, upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startseq(&outer->sink, arg, &d->top->sink)); ) VMCASE(OP_ENDSEQ, CHECK_SUSPEND(upb_sink_endseq(&d->top->sink, arg)); ) VMCASE(OP_STARTSUBMSG, upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startsubmsg(&outer->sink, arg, &d->top->sink)); ) VMCASE(OP_ENDSUBMSG, CHECK_SUSPEND(upb_sink_endsubmsg(&d->top->sink, arg)); ) VMCASE(OP_STARTSTR, uint32_t len = d->top->end_ofs - offset(d); upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startstr(&outer->sink, arg, len, &d->top->sink)); if (len == 0) { d->pc++; // Skip OP_STRING. } ) VMCASE(OP_STRING, uint32_t len = curbufleft(d); size_t n = upb_sink_putstring(&d->top->sink, arg, d->ptr, len, handle); if (n > len) { if (n > d->top->end_ofs - offset(d)) { seterr(d, "Tried to skip past end of string."); return upb_pbdecoder_suspend(d); } else { int32_t ret = skip(d, n); // This shouldn't return DECODE_OK, because n > len. assert(ret >= 0); return ret; } } advance(d, n); if (n < len || d->delim_end == NULL) { // We aren't finished with this string yet. d->pc--; // Repeat OP_STRING. if (n > 0) checkpoint(d); return upb_pbdecoder_suspend(d); } ) VMCASE(OP_ENDSTR, CHECK_SUSPEND(upb_sink_endstr(&d->top->sink, arg)); ) VMCASE(OP_PUSHTAGDELIM, CHECK_SUSPEND(pushtagdelim(d, arg)); ) VMCASE(OP_SETBIGGROUPNUM, d->top->groupnum = *d->pc++; ) VMCASE(OP_POP, assert(d->top > d->stack); decoder_pop(d); ) VMCASE(OP_PUSHLENDELIM, uint32_t len; CHECK_RETURN(decode_v32(d, &len)); CHECK_SUSPEND(decoder_push(d, offset(d) + len)); set_delim_end(d); ) VMCASE(OP_SETDELIM, set_delim_end(d); ) VMCASE(OP_CHECKDELIM, // We are guaranteed of this assert because we never allow ourselves to // consume bytes beyond data_end, which covers delim_end when non-NULL. assert(!(d->delim_end && d->ptr > d->delim_end)); if (d->ptr == d->delim_end) d->pc += longofs; ) VMCASE(OP_CALL, d->callstack[d->call_len++] = d->pc; d->pc += longofs; ) VMCASE(OP_RET, assert(d->call_len > 0); d->pc = d->callstack[--d->call_len]; ) VMCASE(OP_BRANCH, d->pc += longofs; ) VMCASE(OP_TAG1, CHECK_SUSPEND(curbufleft(d) > 0); uint8_t expected = (arg >> 8) & 0xff; if (*d->ptr == expected) { advance(d, 1); } else { int8_t shortofs; badtag: shortofs = arg; if (shortofs == LABEL_DISPATCH) { CHECK_RETURN(dispatch(d)); } else { d->pc += shortofs; break; // Avoid checkpoint(). } } ) VMCASE(OP_TAG2, CHECK_SUSPEND(curbufleft(d) > 0); uint16_t expected = (arg >> 8) & 0xffff; if (curbufleft(d) >= 2) { uint16_t actual; memcpy(&actual, d->ptr, 2); if (expected == actual) { advance(d, 2); } else { goto badtag; } } else { int32_t result = upb_pbdecoder_checktag_slow(d, expected); if (result == DECODE_MISMATCH) goto badtag; if (result >= 0) return result; } ) VMCASE(OP_TAGN, { uint64_t expected; memcpy(&expected, d->pc, 8); d->pc += 2; int32_t result = upb_pbdecoder_checktag_slow(d, expected); if (result == DECODE_MISMATCH) goto badtag; if (result >= 0) return result; }) VMCASE(OP_HALT, { return size; }) } } } void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) { upb_pbdecoder *d = closure; UPB_UNUSED(size_hint); d->call_len = 1; d->pc = pc; return d; } void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint) { UPB_UNUSED(hd); UPB_UNUSED(size_hint); upb_pbdecoder *d = closure; d->call_len = 0; return d; } bool upb_pbdecoder_end(void *closure, const void *handler_data) { upb_pbdecoder *d = closure; const upb_pbdecodermethod *method = handler_data; if (d->residual_end > d->residual) { seterr(d, "Unexpected EOF"); return false; } if (d->top->end_ofs != UINT64_MAX) { seterr(d, "Unexpected EOF inside delimited string"); return false; } // Message ends here. uint64_t end = offset(d); d->top->end_ofs = end; char dummy; #ifdef UPB_USE_JIT_X64 const mgroup *group = (const mgroup*)method->group; if (group->jit_code) { if (d->top != d->stack) d->stack->end_ofs = 0; group->jit_code(closure, method->code_base.ptr, &dummy, 0, NULL); } else { #endif d->stack->end_ofs = end; const uint32_t *p = d->pc; // Check the previous bytecode, but guard against beginning. if (p != method->code_base.ptr) p--; if (getop(*p) == OP_CHECKDELIM) { // Rewind from OP_TAG* to OP_CHECKDELIM. assert(getop(*d->pc) == OP_TAG1 || getop(*d->pc) == OP_TAG2 || getop(*d->pc) == OP_TAGN); d->pc = p; } upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL); #ifdef UPB_USE_JIT_X64 } #endif if (d->call_len != 0) { seterr(d, "Unexpected EOF"); return false; } return true; } void upb_pbdecoder_init(upb_pbdecoder *d, const upb_pbdecodermethod *m, upb_status *s) { d->limit = &d->stack[UPB_DECODER_MAX_NESTING]; upb_bytessink_reset(&d->input_, &m->input_handler_, d); d->method_ = m; d->callstack[0] = &halt; d->status = s; upb_pbdecoder_reset(d); } void upb_pbdecoder_reset(upb_pbdecoder *d) { d->top = d->stack; d->top->end_ofs = UINT64_MAX; d->top->groupnum = 0; d->bufstart_ofs = 0; d->ptr = d->residual; d->buf = d->residual; d->end = d->residual; d->residual_end = d->residual; d->call_len = 1; } uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) { return offset(d); } // Not currently required, but to support outgrowing the static stack we need // this. void upb_pbdecoder_uninit(upb_pbdecoder *d) { UPB_UNUSED(d); } const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) { return d->method_; } bool upb_pbdecoder_resetoutput(upb_pbdecoder *d, upb_sink* sink) { // TODO(haberman): do we need to test whether the decoder is already on the // stack (like calling this from within a callback)? Should we support // rebinding the output at all? assert(sink); if (d->method_->dest_handlers_) { if (sink->handlers != d->method_->dest_handlers_) return false; } upb_sink_reset(&d->top->sink, sink->handlers, sink->closure); return true; } upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d) { return &d->input_; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * Since we are implementing pure handlers (ie. without any out-of-band access * to pre-computed lengths), we have to buffer all submessages before we can * emit even their first byte. * * Not knowing the size of submessages also means we can't write a perfect * zero-copy implementation, even with buffering. Lengths are stored as * varints, which means that we don't know how many bytes to reserve for the * length until we know what the length is. * * This leaves us with three main choices: * * 1. buffer all submessage data in a temporary buffer, then copy it exactly * once into the output buffer. * * 2. attempt to buffer data directly into the output buffer, estimating how * many bytes each length will take. When our guesses are wrong, use * memmove() to grow or shrink the allotted space. * * 3. buffer directly into the output buffer, allocating a max length * ahead-of-time for each submessage length. If we overallocated, we waste * space, but no memcpy() or memmove() is required. This approach requires * defining a maximum size for submessages and rejecting submessages that * exceed that size. * * (2) and (3) have the potential to have better performance, but they are more * complicated and subtle to implement: * * (3) requires making an arbitrary choice of the maximum message size; it * wastes space when submessages are shorter than this and fails * completely when they are longer. This makes it more finicky and * requires configuration based on the input. It also makes it impossible * to perfectly match the output of reference encoders that always use the * optimal amount of space for each length. * * (2) requires guessing the the size upfront, and if multiple lengths are * guessed wrong the minimum required number of memmove() operations may * be complicated to compute correctly. Implemented properly, it may have * a useful amortized or average cost, but more investigation is required * to determine this and what the optimal algorithm is to achieve it. * * (1) makes you always pay for exactly one copy, but its implementation is * the simplest and its performance is predictable. * * So for now, we implement (1) only. If we wish to optimize later, we should * be able to do it without affecting users. * * The strategy is to buffer the segments of data that do *not* depend on * unknown lengths in one buffer, and keep a separate buffer of segment pointers * and lengths. When the top-level submessage ends, we can go beginning to end, * alternating the writing of lengths with memcpy() of the rest of the data. * At the top level though, no buffering is required. */ #include /* low-level buffering ********************************************************/ // Low-level functions for interacting with the output buffer. // TODO(haberman): handle pushback static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) { size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL); UPB_ASSERT_VAR(n, n == len); } static upb_pb_encoder_segment *top(upb_pb_encoder *e) { return &e->segbuf[*e->top]; } // Call to ensure that at least "bytes" bytes are available for writing at // e->ptr. Returns false if the bytes could not be allocated. static bool reserve(upb_pb_encoder *e, size_t bytes) { if ((e->limit - e->ptr) < bytes) { size_t needed = bytes + (e->ptr - e->buf); size_t old_size = e->limit - e->buf; size_t new_size = old_size; while (new_size < needed) { new_size *= 2; } char *realloc_from = (e->buf == e->initbuf) ? NULL : e->buf; char *new_buf = realloc(realloc_from, new_size); if (new_buf == NULL) { return false; } if (realloc_from == NULL) { memcpy(new_buf, e->initbuf, old_size); } e->ptr = new_buf + (e->ptr - e->buf); e->runbegin = new_buf + (e->runbegin - e->buf); e->limit = new_buf + new_size; e->buf = new_buf; } return true; } // Call when "bytes" bytes have been writte at e->ptr. The caller *must* have // previously called reserve() with at least this many bytes. static void encoder_advance(upb_pb_encoder *e, size_t bytes) { assert((e->limit - e->ptr) >= bytes); e->ptr += bytes; } // Call when all of the bytes for a handler have been written. Flushes the // bytes if possible and necessary, returning false if this failed. static bool commit(upb_pb_encoder *e) { if (!e->top) { // We aren't inside a delimited region. Flush our accumulated bytes to // the output. // // TODO(haberman): in the future we may want to delay flushing for // efficiency reasons. putbuf(e, e->buf, e->ptr - e->buf); e->ptr = e->buf; } return true; } // Writes the given bytes to the buffer, handling reserve/advance. static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) { if (!reserve(e, len)) { return false; } memcpy(e->ptr, data, len); encoder_advance(e, len); return true; } // Finish the current run by adding the run totals to the segment and message // length. static void accumulate(upb_pb_encoder *e) { assert(e->ptr >= e->runbegin); size_t run_len = e->ptr - e->runbegin; e->segptr->seglen += run_len; top(e)->msglen += run_len; e->runbegin = e->ptr; } // Call to indicate the start of delimited region for which the full length is // not yet known. All data will be buffered until the length is known. // Delimited regions may be nested; their lengths will all be tracked properly. static bool start_delim(upb_pb_encoder *e) { if (e->top) { // We are already buffering, advance to the next segment and push it on the // stack. accumulate(e); if (++e->top == e->stacklimit) { // TODO(haberman): grow stack? return false; } if (++e->segptr == e->seglimit) { upb_pb_encoder_segment *realloc_from = (e->segbuf == e->seginitbuf) ? NULL : e->segbuf; size_t old_size = (e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment); size_t new_size = old_size * 2; upb_pb_encoder_segment *new_buf = realloc(realloc_from, new_size); if (new_buf == NULL) { return false; } if (realloc_from == NULL) { memcpy(new_buf, e->seginitbuf, old_size); } e->segptr = new_buf + (e->segptr - e->segbuf); e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment)); e->segbuf = new_buf; } } else { // We were previously at the top level, start buffering. e->segptr = e->segbuf; e->top = e->stack; e->runbegin = e->ptr; } *e->top = e->segptr - e->segbuf; e->segptr->seglen = 0; e->segptr->msglen = 0; return true; } // Call to indicate the end of a delimited region. We now know the length of // the delimited region. If we are not nested inside any other delimited // regions, we can now emit all of the buffered data we accumulated. static bool end_delim(upb_pb_encoder *e) { accumulate(e); size_t msglen = top(e)->msglen; if (e->top == e->stack) { // All lengths are now available, emit all buffered data. char buf[UPB_PB_VARINT_MAX_LEN]; upb_pb_encoder_segment *s; const char *ptr = e->buf; for (s = e->segbuf; s <= e->segptr; s++) { size_t lenbytes = upb_vencode64(s->msglen, buf); putbuf(e, buf, lenbytes); putbuf(e, ptr, s->seglen); ptr += s->seglen; } e->ptr = e->buf; e->top = NULL; } else { // Need to keep buffering; propagate length info into enclosing submessages. --e->top; top(e)->msglen += msglen + upb_varint_size(msglen); } return true; } /* tag_t **********************************************************************/ // A precomputed (pre-encoded) tag and length. typedef struct { uint8_t bytes; char tag[7]; } tag_t; // Allocates a new tag for this field, and sets it in these handlerattr. static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt, upb_handlerattr *attr) { uint32_t n = upb_fielddef_number(f); tag_t *tag = malloc(sizeof(tag_t)); tag->bytes = upb_vencode64((n << 3) | wt, tag->tag); upb_handlerattr_init(attr); upb_handlerattr_sethandlerdata(attr, tag); upb_handlers_addcleanup(h, tag, free); } static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) { return encode_bytes(e, tag->tag, tag->bytes); } /* encoding of wire types *****************************************************/ static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) { // TODO(haberman): byte-swap for big endian. return encode_bytes(e, &val, sizeof(uint64_t)); } static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) { // TODO(haberman): byte-swap for big endian. return encode_bytes(e, &val, sizeof(uint32_t)); } static bool encode_varint(upb_pb_encoder *e, uint64_t val) { if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) { return false; } encoder_advance(e, upb_vencode64(val, e->ptr)); return true; } static uint64_t dbl2uint64(double d) { uint64_t ret; memcpy(&ret, &d, sizeof(uint64_t)); return ret; } static uint32_t flt2uint32(float d) { uint32_t ret; memcpy(&ret, &d, sizeof(uint32_t)); return ret; } /* encoding of proto types ****************************************************/ static bool startmsg(void *c, const void *hd) { upb_pb_encoder *e = c; UPB_UNUSED(hd); if (e->depth++ == 0) { upb_bytessink_start(e->output_, 0, &e->subc); } return true; } static bool endmsg(void *c, const void *hd, upb_status *status) { upb_pb_encoder *e = c; UPB_UNUSED(hd); UPB_UNUSED(status); if (--e->depth == 0) { upb_bytessink_end(e->output_); } return true; } static void *encode_startdelimfield(void *c, const void *hd) { bool ok = encode_tag(c, hd) && commit(c) && start_delim(c); return ok ? c : UPB_BREAK; } static bool encode_enddelimfield(void *c, const void *hd) { UPB_UNUSED(hd); return end_delim(c); } static void *encode_startgroup(void *c, const void *hd) { return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK; } static bool encode_endgroup(void *c, const void *hd) { return encode_tag(c, hd) && commit(c); } static void *encode_startstr(void *c, const void *hd, size_t size_hint) { UPB_UNUSED(size_hint); return encode_startdelimfield(c, hd); } static size_t encode_strbuf(void *c, const void *hd, const char *buf, size_t len, const upb_bufhandle *h) { UPB_UNUSED(hd); UPB_UNUSED(h); return encode_bytes(c, buf, len) ? len : 0; } #define T(type, ctype, convert, encode) \ static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \ return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \ } \ static bool encode_packed_##type(void *e, const void *hd, ctype val) { \ UPB_UNUSED(hd); \ return encode(e, (convert)(val)); \ } T(double, double, dbl2uint64, encode_fixed64) T(float, float, flt2uint32, encode_fixed32); T(int64, int64_t, uint64_t, encode_varint); T(int32, int32_t, uint32_t, encode_varint); T(fixed64, uint64_t, uint64_t, encode_fixed64); T(fixed32, uint32_t, uint32_t, encode_fixed32); T(bool, bool, bool, encode_varint); T(uint32, uint32_t, uint32_t, encode_varint); T(uint64, uint64_t, uint64_t, encode_varint); T(enum, int32_t, uint32_t, encode_varint); T(sfixed32, int32_t, uint32_t, encode_fixed32); T(sfixed64, int64_t, uint64_t, encode_fixed64); T(sint32, int32_t, upb_zzenc_32, encode_varint); T(sint64, int64_t, upb_zzenc_64, encode_varint); #undef T /* code to build the handlers *************************************************/ static void newhandlers_callback(const void *closure, upb_handlers *h) { UPB_UNUSED(closure); upb_handlers_setstartmsg(h, startmsg, NULL); upb_handlers_setendmsg(h, endmsg, NULL); const upb_msgdef *m = upb_handlers_msgdef(h); upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) && upb_fielddef_packed(f); upb_handlerattr attr; upb_wiretype_t wt = packed ? UPB_WIRE_TYPE_DELIMITED : upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; // Pre-encode the tag for this field. new_tag(h, f, wt, &attr); if (packed) { upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr); upb_handlers_setendseq(h, f, encode_enddelimfield, &attr); } #define T(upper, lower, upbtype) \ case UPB_DESCRIPTOR_TYPE_##upper: \ if (packed) { \ upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \ } else { \ upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \ } \ break; switch (upb_fielddef_descriptortype(f)) { T(DOUBLE, double, double); T(FLOAT, float, float); T(INT64, int64, int64); T(INT32, int32, int32); T(FIXED64, fixed64, uint64); T(FIXED32, fixed32, uint32); T(BOOL, bool, bool); T(UINT32, uint32, uint32); T(UINT64, uint64, uint64); T(ENUM, enum, int32); T(SFIXED32, sfixed32, int32); T(SFIXED64, sfixed64, int64); T(SINT32, sint32, int32); T(SINT64, sint64, int64); case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: upb_handlers_setstartstr(h, f, encode_startstr, &attr); upb_handlers_setendstr(h, f, encode_enddelimfield, &attr); upb_handlers_setstring(h, f, encode_strbuf, &attr); break; case UPB_DESCRIPTOR_TYPE_MESSAGE: upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr); upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr); break; case UPB_DESCRIPTOR_TYPE_GROUP: { // Endgroup takes a different tag (wire_type = END_GROUP). upb_handlerattr attr2; new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2); upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr); upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2); upb_handlerattr_uninit(&attr2); break; } } #undef T upb_handlerattr_uninit(&attr); } } /* public API *****************************************************************/ const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, const void *owner) { return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL); } #define ARRAYSIZE(x) (sizeof(x) / sizeof(x[0])) void upb_pb_encoder_init(upb_pb_encoder *e, const upb_handlers *h) { e->output_ = NULL; e->subc = NULL; e->buf = e->initbuf; e->ptr = e->buf; e->limit = e->buf + ARRAYSIZE(e->initbuf); e->segbuf = e->seginitbuf; e->seglimit = e->segbuf + ARRAYSIZE(e->seginitbuf); e->stacklimit = e->stack + ARRAYSIZE(e->stack); upb_sink_reset(&e->input_, h, e); } void upb_pb_encoder_uninit(upb_pb_encoder *e) { if (e->buf != e->initbuf) { free(e->buf); } if (e->segbuf != e->seginitbuf) { free(e->segbuf); } } void upb_pb_encoder_resetoutput(upb_pb_encoder *e, upb_bytessink *output) { upb_pb_encoder_reset(e); e->output_ = output; e->subc = output->closure; } void upb_pb_encoder_reset(upb_pb_encoder *e) { e->segptr = NULL; e->top = NULL; e->depth = 0; } upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2010-2012 Google Inc. See LICENSE for details. * Author: Josh Haberman */ #include #include #include upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n, void *owner, upb_status *status) { // Create handlers. const upb_handlers *reader_h = upb_descreader_newhandlers(&reader_h); upb_pbdecodermethodopts opts; upb_pbdecodermethodopts_init(&opts, reader_h); const upb_pbdecodermethod *decoder_m = upb_pbdecodermethod_new(&opts, &decoder_m); upb_pbdecoder decoder; upb_descreader reader; upb_pbdecoder_init(&decoder, decoder_m, status); upb_descreader_init(&reader, reader_h, status); upb_pbdecoder_resetoutput(&decoder, upb_descreader_input(&reader)); // Push input data. bool ok = upb_bufsrc_putbuf(str, len, upb_pbdecoder_input(&decoder)); upb_def **ret = NULL; if (!ok) goto cleanup; upb_def **defs = upb_descreader_getdefs(&reader, owner, n); ret = malloc(sizeof(upb_def*) * (*n)); memcpy(ret, defs, sizeof(upb_def*) * (*n)); cleanup: upb_pbdecoder_uninit(&decoder); upb_descreader_uninit(&reader); upb_handlers_unref(reader_h, &reader_h); upb_pbdecodermethod_unref(decoder_m, &decoder_m); return ret; } bool upb_load_descriptor_into_symtab(upb_symtab *s, const char *str, size_t len, upb_status *status) { int n; upb_def **defs = upb_load_defs_from_descriptor(str, len, &n, &defs, status); if (!defs) return false; bool success = upb_symtab_add(s, defs, n, &defs, status); free(defs); return success; } char *upb_readfile(const char *filename, size_t *len) { FILE *f = fopen(filename, "rb"); if(!f) return NULL; if(fseek(f, 0, SEEK_END) != 0) goto error; long size = ftell(f); if(size < 0) goto error; if(fseek(f, 0, SEEK_SET) != 0) goto error; char *buf = malloc(size + 1); if(size && fread(buf, size, 1, f) != 1) goto error; fclose(f); if (len) *len = size; return buf; error: fclose(f); return NULL; } bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname, upb_status *status) { size_t len; char *data = upb_readfile(fname, &len); if (!data) { if (status) upb_status_seterrf(status, "Couldn't read file: %s", fname); return false; } bool success = upb_load_descriptor_into_symtab(symtab, data, len, status); free(data); return success; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2009 Google Inc. See LICENSE for details. * Author: Josh Haberman * * OPT: This is not optimized at all. It uses printf() which parses the format * string every time, and it allocates memory for every put. */ #include #include #include #include #include #include #define CHECK(x) if ((x) < 0) goto err; static const char *shortname(const char *longname) { const char *last = strrchr(longname, '.'); return last ? last + 1 : longname; } static int indent(upb_textprinter *p) { int i; if (!p->single_line_) for (i = 0; i < p->indent_depth_; i++) upb_bytessink_putbuf(p->output_, p->subc, " ", 2, NULL); return 0; } static int endfield(upb_textprinter *p) { const char ch = (p->single_line_ ? ' ' : '\n'); upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL); return 0; } static int putescaped(upb_textprinter *p, const char *buf, size_t len, bool preserve_utf8) { // Based on CEscapeInternal() from Google's protobuf release. char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf); const char *end = buf + len; // I think hex is prettier and more useful, but proto2 uses octal; should // investigate whether it can parse hex also. const bool use_hex = false; bool last_hex_escape = false; // true if last output char was \xNN for (; buf < end; buf++) { if (dstend - dst < 4) { upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); dst = dstbuf; } bool is_hex_escape = false; switch (*buf) { case '\n': *(dst++) = '\\'; *(dst++) = 'n'; break; case '\r': *(dst++) = '\\'; *(dst++) = 'r'; break; case '\t': *(dst++) = '\\'; *(dst++) = 't'; break; case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break; case '\'': *(dst++) = '\\'; *(dst++) = '\''; break; case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break; default: // Note that if we emit \xNN and the buf character after that is a hex // digit then that digit must be escaped too to prevent it being // interpreted as part of the character code by C. if ((!preserve_utf8 || (uint8_t)*buf < 0x80) && (!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) { sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf); is_hex_escape = use_hex; dst += 4; } else { *(dst++) = *buf; break; } } last_hex_escape = is_hex_escape; } // Flush remaining data. upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); return 0; } bool putf(upb_textprinter *p, const char *fmt, ...) { va_list args; va_start(args, fmt); // Run once to get the length of the string. va_list args_copy; va_copy(args_copy, args); int len = vsnprintf(NULL, 0, fmt, args_copy); va_end(args_copy); // + 1 for NULL terminator (vsnprintf() requires it even if we don't). char *str = malloc(len + 1); if (!str) return false; int written = vsnprintf(str, len + 1, fmt, args); va_end(args); UPB_ASSERT_VAR(written, written == len); bool ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL); free(str); return ok; } /* handlers *******************************************************************/ static bool textprinter_startmsg(void *c, const void *hd) { UPB_UNUSED(hd); upb_textprinter *p = c; if (p->indent_depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc); } return true; } static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) { UPB_UNUSED(hd); UPB_UNUSED(s); upb_textprinter *p = c; if (p->indent_depth_ == 0) { upb_bytessink_end(p->output_); } return true; } #define TYPE(name, ctype, fmt) \ static bool textprinter_put ## name(void *closure, const void *handler_data, \ ctype val) { \ upb_textprinter *p = closure; \ const upb_fielddef *f = handler_data; \ CHECK(indent(p)); \ putf(p, "%s: " fmt, upb_fielddef_name(f), val); \ CHECK(endfield(p)); \ return true; \ err: \ return false; \ } static bool textprinter_putbool(void *closure, const void *handler_data, bool val) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; CHECK(indent(p)); putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false"); CHECK(endfield(p)); return true; err: return false; } #define STRINGIFY_HELPER(x) #x #define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x) TYPE(int32, int32_t, "%" PRId32) TYPE(int64, int64_t, "%" PRId64) TYPE(uint32, uint32_t, "%" PRIu32); TYPE(uint64, uint64_t, "%" PRIu64) TYPE(float, float, "%." STRINGIFY_MACROVAL(FLT_DIG) "g") TYPE(double, double, "%." STRINGIFY_MACROVAL(DBL_DIG) "g") #undef TYPE // Output a symbolic value from the enum if found, else just print as int32. static bool textprinter_putenum(void *closure, const void *handler_data, int32_t val) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; const upb_enumdef *enum_def = upb_downcast_enumdef(upb_fielddef_subdef(f)); const char *label = upb_enumdef_iton(enum_def, val); if (label) { indent(p); putf(p, "%s: %s", upb_fielddef_name(f), label); endfield(p); } else { if (!textprinter_putint32(closure, handler_data, val)) return false; } return true; } static void *textprinter_startstr(void *closure, const void *handler_data, size_t size_hint) { const upb_fielddef *f = handler_data; UPB_UNUSED(size_hint); upb_textprinter *p = closure; indent(p); putf(p, "%s: \"", upb_fielddef_name(f)); return p; } static bool textprinter_endstr(void *closure, const void *handler_data) { UPB_UNUSED(handler_data); upb_textprinter *p = closure; putf(p, "\""); endfield(p); return true; } static size_t textprinter_putstr(void *closure, const void *hd, const char *buf, size_t len, const upb_bufhandle *handle) { UPB_UNUSED(handle); upb_textprinter *p = closure; const upb_fielddef *f = hd; CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING)); return len; err: return 0; } static void *textprinter_startsubmsg(void *closure, const void *handler_data) { upb_textprinter *p = closure; const char *name = handler_data; CHECK(indent(p)); putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n'); p->indent_depth_++; return p; err: return UPB_BREAK; } static bool textprinter_endsubmsg(void *closure, const void *handler_data) { UPB_UNUSED(handler_data); upb_textprinter *p = closure; p->indent_depth_--; CHECK(indent(p)); upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL); CHECK(endfield(p)); return true; err: return false; } /* Public API *****************************************************************/ void upb_textprinter_init(upb_textprinter *p, const upb_handlers *h) { p->single_line_ = false; p->indent_depth_ = 0; upb_sink_reset(&p->input_, h, p); } void upb_textprinter_uninit(upb_textprinter *p) { UPB_UNUSED(p); } void upb_textprinter_reset(upb_textprinter *p, bool single_line) { p->single_line_ = single_line; p->indent_depth_ = 0; } static void onmreg(const void *c, upb_handlers *h) { UPB_UNUSED(c); const upb_msgdef *m = upb_handlers_msgdef(h); upb_handlers_setstartmsg(h, textprinter_startmsg, NULL); upb_handlers_setendmsg(h, textprinter_endmsg, NULL); upb_msg_iter i; for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, f); switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: upb_handlers_setint32(h, f, textprinter_putint32, &attr); break; case UPB_TYPE_INT64: upb_handlers_setint64(h, f, textprinter_putint64, &attr); break; case UPB_TYPE_UINT32: upb_handlers_setuint32(h, f, textprinter_putuint32, &attr); break; case UPB_TYPE_UINT64: upb_handlers_setuint64(h, f, textprinter_putuint64, &attr); break; case UPB_TYPE_FLOAT: upb_handlers_setfloat(h, f, textprinter_putfloat, &attr); break; case UPB_TYPE_DOUBLE: upb_handlers_setdouble(h, f, textprinter_putdouble, &attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, f, textprinter_putbool, &attr); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: upb_handlers_setstartstr(h, f, textprinter_startstr, &attr); upb_handlers_setstring(h, f, textprinter_putstr, &attr); upb_handlers_setendstr(h, f, textprinter_endstr, &attr); break; case UPB_TYPE_MESSAGE: { const char *name = upb_fielddef_istagdelim(f) ? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f))) : upb_fielddef_name(f); upb_handlerattr_sethandlerdata(&attr, name); upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr); upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr); break; } case UPB_TYPE_ENUM: upb_handlers_setint32(h, f, textprinter_putenum, &attr); break; } } } const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m, const void *owner) { return upb_handlers_newfrozen(m, owner, &onmreg, NULL); } upb_sink *upb_textprinter_input(upb_textprinter *p) { return &p->input_; } bool upb_textprinter_resetoutput(upb_textprinter *p, upb_bytessink *output) { p->output_ = output; return true; } void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) { p->single_line_ = single_line; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2011 Google Inc. See LICENSE for details. * Author: Josh Haberman */ // Index is descriptor type. const uint8_t upb_pb_native_wire_types[] = { UPB_WIRE_TYPE_END_GROUP, // ENDGROUP UPB_WIRE_TYPE_64BIT, // DOUBLE UPB_WIRE_TYPE_32BIT, // FLOAT UPB_WIRE_TYPE_VARINT, // INT64 UPB_WIRE_TYPE_VARINT, // UINT64 UPB_WIRE_TYPE_VARINT, // INT32 UPB_WIRE_TYPE_64BIT, // FIXED64 UPB_WIRE_TYPE_32BIT, // FIXED32 UPB_WIRE_TYPE_VARINT, // BOOL UPB_WIRE_TYPE_DELIMITED, // STRING UPB_WIRE_TYPE_START_GROUP, // GROUP UPB_WIRE_TYPE_DELIMITED, // MESSAGE UPB_WIRE_TYPE_DELIMITED, // BYTES UPB_WIRE_TYPE_VARINT, // UINT32 UPB_WIRE_TYPE_VARINT, // ENUM UPB_WIRE_TYPE_32BIT, // SFIXED32 UPB_WIRE_TYPE_64BIT, // SFIXED64 UPB_WIRE_TYPE_VARINT, // SINT32 UPB_WIRE_TYPE_VARINT, // SINT64 }; // A basic branch-based decoder, uses 32-bit values to get good performance // on 32-bit architectures (but performs well on 64-bits also). // This scheme comes from the original Google Protobuf implementation (proto2). upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) { upb_decoderet err = {NULL, 0}; const char *p = r.p; uint32_t low = (uint32_t)r.val; uint32_t high = 0; uint32_t b; b = *(p++); low |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; b = *(p++); low |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; b = *(p++); low |= (b & 0x7fU) << 28; high = (b & 0x7fU) >> 4; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 3; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done; return err; done: r.val = ((uint64_t)high << 32) | low; r.p = p; return r; } // Like the previous, but uses 64-bit values. upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) { const char *p = r.p; uint64_t val = r.val; uint64_t b; upb_decoderet err = {NULL, 0}; b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done; return err; done: r.val = val; r.p = p; return r; } // Given an encoded varint v, returns an integer with a single bit set that // indicates the end of the varint. Subtracting one from this value will // yield a mask that leaves only bits that are part of the varint. Returns // 0 if the varint is unterminated. static uint64_t upb_get_vstopbit(uint64_t v) { uint64_t cbits = v | 0x7f7f7f7f7f7f7f7fULL; return ~cbits & (cbits+1); } // A branchless decoder. Credit to Pascal Massimino for the bit-twiddling. upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r) { uint64_t b; memcpy(&b, r.p, sizeof(b)); uint64_t stop_bit = upb_get_vstopbit(b); b = (b & 0x7f7f7f7f7f7f7f7fULL) & (stop_bit - 1); b += b & 0x007f007f007f007fULL; b += 3 * (b & 0x0000ffff0000ffffULL); b += 15 * (b & 0x00000000ffffffffULL); if (stop_bit == 0) { // Error: unterminated varint. upb_decoderet err_r = {(void*)0, 0}; return err_r; } upb_decoderet my_r = {r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), r.val | (b << 7)}; return my_r; } // A branchless decoder. Credit to Daniel Wright for the bit-twiddling. upb_decoderet upb_vdecode_max8_wright(upb_decoderet r) { uint64_t b; memcpy(&b, r.p, sizeof(b)); uint64_t stop_bit = upb_get_vstopbit(b); b &= (stop_bit - 1); b = ((b & 0x7f007f007f007f00ULL) >> 1) | (b & 0x007f007f007f007fULL); b = ((b & 0xffff0000ffff0000ULL) >> 2) | (b & 0x0000ffff0000ffffULL); b = ((b & 0xffffffff00000000ULL) >> 4) | (b & 0x00000000ffffffffULL); if (stop_bit == 0) { // Error: unterminated varint. upb_decoderet err_r = {(void*)0, 0}; return err_r; } upb_decoderet my_r = {r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), r.val | (b << 14)}; return my_r; } #line 1 "upb/json/parser.rl" /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * A parser that uses the Ragel State Machine Compiler to generate * the finite automata. * * Ragel only natively handles regular languages, but we can manually * program it a bit to handle context-free languages like JSON, by using * the "fcall" and "fret" constructs. * * This parser can handle the basics, but needs several things to be fleshed * out: * * - handling of unicode escape sequences (including high surrogate pairs). * - properly check and report errors for unknown fields, stack overflow, * improper array nesting (or lack of nesting). * - handling of base64 sequences with padding characters. * - handling of push-back (non-success returns from sink functions). * - handling of keys/escape-sequences/etc that span input buffers. */ #include #include #include #include #include #include #define PARSER_CHECK_RETURN(x) if (!(x)) return false static upb_selector_t getsel_for_handlertype(upb_json_parser *p, upb_handlertype_t type) { upb_selector_t sel; bool ok = upb_handlers_getselector(p->top->f, type, &sel); UPB_ASSERT_VAR(ok, ok); return sel; } static upb_selector_t parser_getsel(upb_json_parser *p) { return getsel_for_handlertype( p, upb_handlers_getprimitivehandlertype(p->top->f)); } static void start_member(upb_json_parser *p) { assert(!p->top->f); assert(!p->accumulated); p->accumulated_len = 0; } static bool end_member(upb_json_parser *p) { // TODO(haberman): support keys that span buffers or have escape sequences. assert(!p->top->f); assert(p->accumulated); const upb_fielddef *f = upb_msgdef_ntof(p->top->m, p->accumulated, p->accumulated_len); if (!f) { // TODO(haberman): Ignore unknown fields if requested/configured to do so. upb_status_seterrf(p->status, "No such field: %.*s\n", (int)p->accumulated_len, p->accumulated); return false; } p->top->f = f; p->accumulated = NULL; return true; } static void start_object(upb_json_parser *p) { upb_sink_startmsg(&p->top->sink); } static void end_object(upb_json_parser *p) { upb_status status; upb_sink_endmsg(&p->top->sink, &status); } static bool check_stack(upb_json_parser *p) { if ((p->top + 1) == p->limit) { upb_status_seterrmsg(p->status, "Nesting too deep"); return false; } return true; } static bool start_subobject(upb_json_parser *p) { assert(p->top->f); if (!upb_fielddef_issubmsg(p->top->f)) { upb_status_seterrf(p->status, "Object specified for non-message/group field: %s", upb_fielddef_name(p->top->f)); return false; } if (!check_stack(p)) return false; upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); inner->m = upb_fielddef_msgsubdef(p->top->f); inner->f = NULL; p->top = inner; return true; } static void end_subobject(upb_json_parser *p) { p->top--; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); upb_sink_endsubmsg(&p->top->sink, sel); } static bool start_array(upb_json_parser *p) { assert(p->top->f); if (!upb_fielddef_isseq(p->top->f)) { upb_status_seterrf(p->status, "Array specified for non-repeated field: %s", upb_fielddef_name(p->top->f)); return false; } if (!check_stack(p)) return false; upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); upb_sink_startseq(&p->top->sink, sel, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; return true; } static void end_array(upb_json_parser *p) { assert(p->top > p->stack); p->top--; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); upb_sink_endseq(&p->top->sink, sel); } static void clear_member(upb_json_parser *p) { p->top->f = NULL; } static bool parser_putbool(upb_json_parser *p, bool val) { if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { upb_status_seterrf(p->status, "Boolean value specified for non-bool field: %s", upb_fielddef_name(p->top->f)); return false; } bool ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val); UPB_ASSERT_VAR(ok, ok); return true; } static void start_text(upb_json_parser *p, const char *ptr) { p->text_begin = ptr; } static const signed char b64table[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; // Returns the table value sign-extended to 32 bits. Knowing that the upper // bits will be 1 for unrecognized characters makes it easier to check for // this error condition later (see below). int32_t b64lookup(unsigned char ch) { return b64table[ch]; } // Returns true if the given character is not a valid base64 character or // padding. bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, size_t len) { const char *limit = ptr + len; for (; ptr < limit; ptr += 4) { if (limit - ptr < 4) { upb_status_seterrf(p->status, "Base64 input for bytes field not a multiple of 4: %s", upb_fielddef_name(p->top->f)); return false; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6 | b64lookup(ptr[3]); // Test the upper bit; returns true if any of the characters returned -1. if (val & 0x80000000) { goto otherchar; } char output[3]; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; output[2] = val & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 3, NULL); } return true; otherchar: if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || nonbase64(ptr[3]) ) { upb_status_seterrf(p->status, "Non-base64 characters in bytes field: %s", upb_fielddef_name(p->top->f)); return false; } if (ptr[2] == '=') { // Last group contains only two input bytes, one output byte. if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { goto badpadding; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12; assert(!(val & 0x80000000)); char output = val >> 16; upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL); return true; } else { // Last group contains only three input bytes, two output bytes. if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { goto badpadding; } uint32_t val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6; char output[2]; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 2, NULL); return true; } badpadding: upb_status_seterrf(p->status, "Incorrect base64 padding for field: %s (%.*s)", upb_fielddef_name(p->top->f), 4, ptr); return false; } static bool end_text(upb_json_parser *p, const char *ptr, bool is_num) { assert(!p->accumulated); // TODO: handle this case. p->accumulated = p->text_begin; p->accumulated_len = ptr - p->text_begin; if (p->top->f && upb_fielddef_isstring(p->top->f)) { // This is a string field (as opposed to a member name). upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); if (upb_fielddef_type(p->top->f) == UPB_TYPE_BYTES) { PARSER_CHECK_RETURN(base64_push(p, sel, p->accumulated, p->accumulated_len)); } else { upb_sink_putstring(&p->top->sink, sel, p->accumulated, p->accumulated_len, NULL); } p->accumulated = NULL; } else if (p->top->f && upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM && !is_num) { // Enum case: resolve enum symbolic name to integer value. const upb_enumdef *enumdef = (const upb_enumdef*)upb_fielddef_subdef(p->top->f); int32_t int_val = 0; if (upb_enumdef_ntoi(enumdef, p->accumulated, p->accumulated_len, &int_val)) { upb_selector_t sel = parser_getsel(p); upb_sink_putint32(&p->top->sink, sel, int_val); } else { upb_status_seterrmsg(p->status, "Enum value name unknown"); return false; } p->accumulated = NULL; } return true; } static bool start_stringval(upb_json_parser *p) { assert(p->top->f); if (upb_fielddef_isstring(p->top->f)) { if (!check_stack(p)) return false; // Start a new parser frame: parser frames correspond one-to-one with // handler frames, and string events occur in a sub-frame. upb_jsonparser_frame *inner = p->top + 1; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; p->top = inner; return true; } else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) { // Do nothing -- symbolic enum names in quotes remain in the // current parser frame. return true; } else { upb_status_seterrf(p->status, "String specified for non-string/non-enum field: %s", upb_fielddef_name(p->top->f)); return false; } } static void end_stringval(upb_json_parser *p) { if (upb_fielddef_isstring(p->top->f)) { upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(&p->top->sink, sel); p->top--; } } static void start_number(upb_json_parser *p, const char *ptr) { start_text(p, ptr); assert(p->accumulated == NULL); } static void end_number(upb_json_parser *p, const char *ptr) { end_text(p, ptr, true); const char *myend = p->accumulated + p->accumulated_len; char *end; switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_ENUM: case UPB_TYPE_INT32: { long val = strtol(p->accumulated, &end, 0); if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend) assert(false); else upb_sink_putint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_INT64: { long long val = strtoll(p->accumulated, &end, 0); if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend) assert(false); else upb_sink_putint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT32: { unsigned long val = strtoul(p->accumulated, &end, 0); if (val > UINT32_MAX || errno == ERANGE || end != myend) assert(false); else upb_sink_putuint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT64: { unsigned long long val = strtoull(p->accumulated, &end, 0); if (val > UINT64_MAX || errno == ERANGE || end != myend) assert(false); else upb_sink_putuint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_DOUBLE: { double val = strtod(p->accumulated, &end); if (errno == ERANGE || end != myend) assert(false); else upb_sink_putdouble(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_FLOAT: { float val = strtof(p->accumulated, &end); if (errno == ERANGE || end != myend) assert(false); else upb_sink_putfloat(&p->top->sink, parser_getsel(p), val); break; } default: assert(false); } p->accumulated = NULL; } static char escape_char(char in) { switch (in) { case 'r': return '\r'; case 't': return '\t'; case 'n': return '\n'; case 'f': return '\f'; case 'b': return '\b'; case '/': return '/'; case '"': return '"'; case '\\': return '\\'; default: assert(0); return 'x'; } } static void escape(upb_json_parser *p, const char *ptr) { char ch = escape_char(*ptr); upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(&p->top->sink, sel, &ch, 1, NULL); } static uint8_t hexdigit(char ch) { if (ch >= '0' && ch <= '9') { return ch - '0'; } else if (ch >= 'a' && ch <= 'f') { return ch - 'a' + 10; } else { assert(ch >= 'A' && ch <= 'F'); return ch - 'A' + 10; } } static void start_hex(upb_json_parser *p, const char *ptr) { start_text(p, ptr); } static void hex(upb_json_parser *p, const char *end) { const char *start = p->text_begin; UPB_ASSERT_VAR(end, end - start == 4); uint16_t codepoint = (hexdigit(start[0]) << 12) | (hexdigit(start[1]) << 8) | (hexdigit(start[2]) << 4) | hexdigit(start[3]); // emit the codepoint as UTF-8. char utf8[3]; // support \u0000 -- \uFFFF -- need only three bytes. int length = 0; if (codepoint <= 0x7F) { utf8[0] = codepoint; length = 1; } else if (codepoint <= 0x07FF) { utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x1F) | 0xC0; length = 2; } else /* codepoint <= 0xFFFF */ { utf8[2] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x0F) | 0xE0; length = 3; } // TODO(haberman): Handle high surrogates: if codepoint is a high surrogate // we have to wait for the next escape to get the full code point). upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(&p->top->sink, sel, utf8, length, NULL); } #define CHECK_RETURN_TOP(x) if (!(x)) goto error // What follows is the Ragel parser itself. The language is specified in Ragel // and the actions call our C functions above. #line 596 "upb/json/parser.rl" #line 514 "upb/json/parser.c" static const char _json_actions[] = { 0, 1, 0, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 9, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 24, 1, 26, 2, 3, 7, 2, 5, 2, 2, 5, 7, 2, 10, 8, 2, 12, 14, 2, 13, 14, 2, 17, 1, 2, 18, 26, 2, 19, 8, 2, 20, 26, 2, 21, 26, 2, 22, 26, 2, 23, 26, 2, 25, 26, 3, 13, 10, 8 }; static const unsigned char _json_key_offsets[] = { 0, 0, 4, 9, 14, 18, 22, 27, 32, 37, 41, 45, 48, 51, 53, 57, 61, 63, 65, 70, 72, 74, 83, 89, 95, 101, 107, 109, 118, 118, 118, 123, 128, 133, 133, 134, 135, 136, 137, 137, 138, 139, 140, 140, 141, 142, 143, 143, 148, 153, 157, 161, 166, 171, 176, 180, 180, 183, 183, 183 }; static const char _json_trans_keys[] = { 32, 123, 9, 13, 32, 34, 125, 9, 13, 32, 34, 125, 9, 13, 32, 58, 9, 13, 32, 58, 9, 13, 32, 93, 125, 9, 13, 32, 44, 125, 9, 13, 32, 44, 125, 9, 13, 32, 34, 9, 13, 45, 48, 49, 57, 48, 49, 57, 46, 69, 101, 48, 57, 69, 101, 48, 57, 43, 45, 48, 57, 48, 57, 48, 57, 46, 69, 101, 48, 57, 34, 92, 34, 92, 34, 47, 92, 98, 102, 110, 114, 116, 117, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 34, 92, 34, 45, 91, 102, 110, 116, 123, 48, 57, 32, 93, 125, 9, 13, 32, 44, 93, 9, 13, 32, 93, 125, 9, 13, 97, 108, 115, 101, 117, 108, 108, 114, 117, 101, 32, 34, 125, 9, 13, 32, 34, 125, 9, 13, 32, 58, 9, 13, 32, 58, 9, 13, 32, 93, 125, 9, 13, 32, 44, 125, 9, 13, 32, 44, 125, 9, 13, 32, 34, 9, 13, 32, 9, 13, 0 }; static const char _json_single_lengths[] = { 0, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 1, 3, 0, 2, 2, 0, 0, 3, 2, 2, 9, 0, 0, 0, 0, 2, 7, 0, 0, 3, 3, 3, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 3, 3, 2, 2, 3, 3, 3, 2, 0, 1, 0, 0, 0 }; static const char _json_range_lengths[] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 3, 3, 3, 3, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0 }; static const short _json_index_offsets[] = { 0, 0, 4, 9, 14, 18, 22, 27, 32, 37, 41, 45, 48, 52, 54, 58, 62, 64, 66, 71, 74, 77, 87, 91, 95, 99, 103, 106, 115, 116, 117, 122, 127, 132, 133, 135, 137, 139, 141, 142, 144, 146, 148, 149, 151, 153, 155, 156, 161, 166, 170, 174, 179, 184, 189, 193, 194, 197, 198, 199 }; static const char _json_indicies[] = { 0, 2, 0, 1, 3, 4, 5, 3, 1, 6, 7, 8, 6, 1, 9, 10, 9, 1, 11, 12, 11, 1, 12, 1, 1, 12, 13, 14, 15, 16, 14, 1, 17, 18, 8, 17, 1, 18, 7, 18, 1, 19, 20, 21, 1, 20, 21, 1, 23, 24, 24, 22, 25, 1, 24, 24, 25, 22, 26, 26, 27, 1, 27, 1, 27, 22, 23, 24, 24, 21, 22, 29, 30, 28, 32, 33, 31, 34, 34, 34, 34, 34, 34, 34, 34, 35, 1, 36, 36, 36, 1, 37, 37, 37, 1, 38, 38, 38, 1, 39, 39, 39, 1, 41, 42, 40, 43, 44, 45, 46, 47, 48, 49, 44, 1, 50, 51, 53, 54, 1, 53, 52, 55, 56, 54, 55, 1, 56, 1, 1, 56, 52, 57, 58, 1, 59, 1, 60, 1, 61, 1, 62, 63, 1, 64, 1, 65, 1, 66, 67, 1, 68, 1, 69, 1, 70, 71, 72, 73, 71, 1, 74, 75, 76, 74, 1, 77, 78, 77, 1, 79, 80, 79, 1, 80, 1, 1, 80, 81, 82, 83, 84, 82, 1, 85, 86, 76, 85, 1, 86, 75, 86, 1, 87, 88, 88, 1, 1, 1, 1, 0 }; static const char _json_trans_targs[] = { 1, 0, 2, 3, 4, 56, 3, 4, 56, 5, 6, 5, 6, 7, 8, 9, 56, 8, 9, 11, 12, 18, 57, 13, 15, 14, 16, 17, 20, 58, 21, 20, 58, 21, 19, 22, 23, 24, 25, 26, 20, 58, 21, 28, 29, 30, 34, 39, 43, 47, 59, 59, 31, 30, 33, 31, 32, 59, 35, 36, 37, 38, 59, 40, 41, 42, 59, 44, 45, 46, 59, 48, 49, 55, 48, 49, 55, 50, 51, 50, 51, 52, 53, 54, 55, 53, 54, 59, 56 }; static const char _json_trans_actions[] = { 0, 0, 0, 21, 75, 48, 0, 42, 23, 17, 17, 0, 0, 15, 19, 19, 45, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 13, 0, 0, 33, 5, 11, 0, 7, 0, 0, 0, 36, 39, 9, 57, 51, 25, 0, 0, 0, 29, 60, 54, 15, 0, 27, 0, 0, 31, 0, 0, 0, 0, 66, 0, 0, 0, 69, 0, 0, 0, 63, 21, 75, 48, 0, 42, 23, 17, 17, 0, 0, 15, 19, 19, 45, 0, 0, 72, 0 }; static const int json_start = 1; static const int json_first_final = 56; static const int json_error = 0; static const int json_en_number_machine = 10; static const int json_en_string_machine = 19; static const int json_en_value_machine = 27; static const int json_en_main = 1; #line 599 "upb/json/parser.rl" size_t parse(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); upb_json_parser *parser = closure; // Variables used by Ragel's generated code. int cs = parser->current_state; int *stack = parser->parser_stack; int top = parser->parser_top; const char *p = buf; const char *pe = buf + size; #line 684 "upb/json/parser.c" { int _klen; unsigned int _trans; const char *_acts; unsigned int _nacts; const char *_keys; if ( p == pe ) goto _test_eof; if ( cs == 0 ) goto _out; _resume: _keys = _json_trans_keys + _json_key_offsets[cs]; _trans = _json_index_offsets[cs]; _klen = _json_single_lengths[cs]; if ( _klen > 0 ) { const char *_lower = _keys; const char *_mid; const char *_upper = _keys + _klen - 1; while (1) { if ( _upper < _lower ) break; _mid = _lower + ((_upper-_lower) >> 1); if ( (*p) < *_mid ) _upper = _mid - 1; else if ( (*p) > *_mid ) _lower = _mid + 1; else { _trans += (unsigned int)(_mid - _keys); goto _match; } } _keys += _klen; _trans += _klen; } _klen = _json_range_lengths[cs]; if ( _klen > 0 ) { const char *_lower = _keys; const char *_mid; const char *_upper = _keys + (_klen<<1) - 2; while (1) { if ( _upper < _lower ) break; _mid = _lower + (((_upper-_lower) >> 1) & ~1); if ( (*p) < _mid[0] ) _upper = _mid - 2; else if ( (*p) > _mid[1] ) _lower = _mid + 2; else { _trans += (unsigned int)((_mid - _keys)>>1); goto _match; } } _trans += _klen; } _match: _trans = _json_indicies[_trans]; cs = _json_trans_targs[_trans]; if ( _json_trans_actions[_trans] == 0 ) goto _again; _acts = _json_actions + _json_trans_actions[_trans]; _nacts = (unsigned int) *_acts++; while ( _nacts-- > 0 ) { switch ( *_acts++ ) { case 0: #line 517 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 1: #line 518 "upb/json/parser.rl" { p--; {stack[top++] = cs; cs = 10; goto _again;} } break; case 2: #line 522 "upb/json/parser.rl" { start_text(parser, p); } break; case 3: #line 523 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_text(parser, p, false)); } break; case 4: #line 529 "upb/json/parser.rl" { start_hex(parser, p); } break; case 5: #line 530 "upb/json/parser.rl" { hex(parser, p); } break; case 6: #line 536 "upb/json/parser.rl" { escape(parser, p); } break; case 7: #line 539 "upb/json/parser.rl" { {cs = stack[--top]; goto _again;} } break; case 8: #line 540 "upb/json/parser.rl" { {stack[top++] = cs; cs = 19; goto _again;} } break; case 9: #line 542 "upb/json/parser.rl" { p--; {stack[top++] = cs; cs = 27; goto _again;} } break; case 10: #line 547 "upb/json/parser.rl" { start_member(parser); } break; case 11: #line 548 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_member(parser)); } break; case 12: #line 551 "upb/json/parser.rl" { clear_member(parser); } break; case 13: #line 557 "upb/json/parser.rl" { start_object(parser); } break; case 14: #line 560 "upb/json/parser.rl" { end_object(parser); } break; case 15: #line 566 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_array(parser)); } break; case 16: #line 570 "upb/json/parser.rl" { end_array(parser); } break; case 17: #line 575 "upb/json/parser.rl" { start_number(parser, p); } break; case 18: #line 576 "upb/json/parser.rl" { end_number(parser, p); } break; case 19: #line 578 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_stringval(parser)); } break; case 20: #line 579 "upb/json/parser.rl" { end_stringval(parser); } break; case 21: #line 581 "upb/json/parser.rl" { CHECK_RETURN_TOP(parser_putbool(parser, true)); } break; case 22: #line 583 "upb/json/parser.rl" { CHECK_RETURN_TOP(parser_putbool(parser, false)); } break; case 23: #line 585 "upb/json/parser.rl" { /* null value */ } break; case 24: #line 587 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_subobject(parser)); } break; case 25: #line 588 "upb/json/parser.rl" { end_subobject(parser); } break; case 26: #line 593 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; #line 866 "upb/json/parser.c" } } _again: if ( cs == 0 ) goto _out; if ( ++p != pe ) goto _resume; _test_eof: {} _out: {} } #line 615 "upb/json/parser.rl" if (p != pe) { upb_status_seterrf(parser->status, "Parse error at %s\n", p); } error: // Save parsing state back to parser. parser->current_state = cs; parser->parser_top = top; return p - buf; } bool end(void *closure, const void *hd) { UPB_UNUSED(closure); UPB_UNUSED(hd); return true; } void upb_json_parser_init(upb_json_parser *p, upb_status *status) { p->limit = p->stack + UPB_JSON_MAX_DEPTH; upb_byteshandler_init(&p->input_handler_); upb_byteshandler_setstring(&p->input_handler_, parse, NULL); upb_byteshandler_setendstr(&p->input_handler_, end, NULL); upb_bytessink_reset(&p->input_, &p->input_handler_, p); p->status = status; } void upb_json_parser_uninit(upb_json_parser *p) { upb_byteshandler_uninit(&p->input_handler_); } void upb_json_parser_reset(upb_json_parser *p) { p->top = p->stack; p->top->f = NULL; int cs; int top; // Emit Ragel initialization of the parser. #line 920 "upb/json/parser.c" { cs = json_start; top = 0; } #line 655 "upb/json/parser.rl" p->current_state = cs; p->parser_top = top; p->text_begin = NULL; p->accumulated = NULL; p->accumulated_len = 0; } void upb_json_parser_resetoutput(upb_json_parser *p, upb_sink *sink) { upb_json_parser_reset(p); upb_sink_reset(&p->top->sink, sink->handlers, sink->closure); p->top->m = upb_handlers_msgdef(sink->handlers); p->accumulated = NULL; } upb_bytessink *upb_json_parser_input(upb_json_parser *p) { return &p->input_; } /* * upb - a minimalist implementation of protocol buffers. * * Copyright (c) 2014 Google Inc. See LICENSE for details. * Author: Josh Haberman * * This currently uses snprintf() to format primitives, and could be optimized * further. */ #include #include #include #include // StringPiece; a pointer plus a length. typedef struct { const char *ptr; size_t len; } strpc; strpc *newstrpc(upb_handlers *h, const upb_fielddef *f) { strpc *ret = malloc(sizeof(*ret)); ret->ptr = upb_fielddef_name(f); ret->len = strlen(ret->ptr); upb_handlers_addcleanup(h, ret, free); return ret; } // ------------ JSON string printing: values, maps, arrays -------------------- static void print_data( upb_json_printer *p, const char *buf, unsigned int len) { // TODO: Will need to change if we support pushback from the sink. size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL); UPB_ASSERT_VAR(n, n == len); } static void print_comma(upb_json_printer *p) { if (!p->first_elem_[p->depth_]) { print_data(p, ",", 1); } p->first_elem_[p->depth_] = false; } // Helpers that print properly formatted elements to the JSON output stream. // Used for escaping control chars in strings. static const char kControlCharLimit = 0x20; static inline bool is_json_escaped(char c) { // See RFC 4627. unsigned char uc = (unsigned char)c; return uc < kControlCharLimit || uc == '"' || uc == '\\'; } static inline char* json_nice_escape(char c) { switch (c) { case '"': return "\\\""; case '\\': return "\\\\"; case '\b': return "\\b"; case '\f': return "\\f"; case '\n': return "\\n"; case '\r': return "\\r"; case '\t': return "\\t"; default: return NULL; } } // Write a properly escaped string chunk. The surrounding quotes are *not* // printed; this is so that the caller has the option of emitting the string // content in chunks. static void putstring(upb_json_printer *p, const char *buf, unsigned int len) { const char* unescaped_run = NULL; for (unsigned int i = 0; i < len; i++) { char c = buf[i]; // Handle escaping. if (is_json_escaped(c)) { // Use a "nice" escape, like \n, if one exists for this character. const char* escape = json_nice_escape(c); // If we don't have a specific 'nice' escape code, use a \uXXXX-style // escape. char escape_buf[8]; if (!escape) { unsigned char byte = (unsigned char)c; snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte); escape = escape_buf; } // N.B. that we assume that the input encoding is equal to the output // encoding (both UTF-8 for now), so for chars >= 0x20 and != \, ", we // can simply pass the bytes through. // If there's a current run of unescaped chars, print that run first. if (unescaped_run) { print_data(p, unescaped_run, &buf[i] - unescaped_run); unescaped_run = NULL; } // Then print the escape code. print_data(p, escape, strlen(escape)); } else { // Add to the current unescaped run of characters. if (unescaped_run == NULL) { unescaped_run = &buf[i]; } } } // If the string ended in a run of unescaped characters, print that last run. if (unescaped_run) { print_data(p, unescaped_run, &buf[len] - unescaped_run); } } #define CHKLENGTH(x) if (!(x)) return -1; // Helpers that format floating point values according to our custom formats. // Right now we use %.8g and %.17g for float/double, respectively, to match // proto2::util::JsonFormat's defaults. May want to change this later. static size_t fmt_double(double val, char* buf, size_t length) { size_t n = snprintf(buf, length, "%.17g", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_float(float val, char* buf, size_t length) { size_t n = snprintf(buf, length, "%.8g", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_bool(bool val, char* buf, size_t length) { size_t n = snprintf(buf, length, "%s", (val ? "true" : "false")); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_int64(long val, char* buf, size_t length) { size_t n = snprintf(buf, length, "%ld", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_uint64(unsigned long long val, char* buf, size_t length) { size_t n = snprintf(buf, length, "%llu", val); CHKLENGTH(n > 0 && n < length); return n; } // Print a map key given a field name. Called by scalar field handlers and by // startseq for repeated fields. static bool putkey(void *closure, const void *handler_data) { upb_json_printer *p = closure; const strpc *key = handler_data; print_comma(p); print_data(p, "\"", 1); putstring(p, key->ptr, key->len); print_data(p, "\":", 2); return true; } #define CHKFMT(val) if ((val) == -1) return false; #define CHK(val) if (!(val)) return false; #define TYPE_HANDLERS(type, fmt_func) \ static bool put##type(void *closure, const void *handler_data, type val) { \ upb_json_printer *p = closure; \ UPB_UNUSED(handler_data); \ char data[64]; \ size_t length = fmt_func(val, data, sizeof(data)); \ CHKFMT(length); \ print_data(p, data, length); \ return true; \ } \ static bool scalar_##type(void *closure, const void *handler_data, \ type val) { \ CHK(putkey(closure, handler_data)); \ CHK(put##type(closure, handler_data, val)); \ return true; \ } \ static bool repeated_##type(void *closure, const void *handler_data, \ type val) { \ upb_json_printer *p = closure; \ print_comma(p); \ CHK(put##type(closure, handler_data, val)); \ return true; \ } TYPE_HANDLERS(double, fmt_double); TYPE_HANDLERS(float, fmt_float); TYPE_HANDLERS(bool, fmt_bool); TYPE_HANDLERS(int32_t, fmt_int64); TYPE_HANDLERS(uint32_t, fmt_int64); TYPE_HANDLERS(int64_t, fmt_int64); TYPE_HANDLERS(uint64_t, fmt_uint64); #undef TYPE_HANDLERS typedef struct { void *keyname; const upb_enumdef *enumdef; } EnumHandlerData; static bool scalar_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; CHK(putkey(closure, hd->keyname)); const char *symbolic_name = upb_enumdef_iton(hd->enumdef, val); if (symbolic_name) { print_data(p, "\"", 1); putstring(p, symbolic_name, strlen(symbolic_name)); print_data(p, "\"", 1); } else { putint32_t(closure, NULL, val); } return true; } static bool repeated_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; print_comma(p); const char *symbolic_name = upb_enumdef_iton(hd->enumdef, val); if (symbolic_name) { print_data(p, "\"", 1); putstring(p, symbolic_name, strlen(symbolic_name)); print_data(p, "\"", 1); } else { putint32_t(closure, NULL, val); } return true; } static void *scalar_startsubmsg(void *closure, const void *handler_data) { return putkey(closure, handler_data) ? closure : UPB_BREAK; } static void *repeated_startsubmsg(void *closure, const void *handler_data) { UPB_UNUSED(handler_data); upb_json_printer *p = closure; print_comma(p); return closure; } static bool startmap(void *closure, const void *handler_data) { UPB_UNUSED(handler_data); upb_json_printer *p = closure; if (p->depth_++ == 0) { upb_bytessink_start(p->output_, 0, &p->subc_); } p->first_elem_[p->depth_] = true; print_data(p, "{", 1); return true; } static bool endmap(void *closure, const void *handler_data, upb_status *s) { UPB_UNUSED(handler_data); UPB_UNUSED(s); upb_json_printer *p = closure; if (--p->depth_ == 0) { upb_bytessink_end(p->output_); } print_data(p, "}", 1); return true; } static void *startseq(void *closure, const void *handler_data) { upb_json_printer *p = closure; CHK(putkey(closure, handler_data)); p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "[", 1); return closure; } static bool endseq(void *closure, const void *handler_data) { UPB_UNUSED(handler_data); upb_json_printer *p = closure; print_data(p, "]", 1); p->depth_--; return true; } static size_t putstr(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { UPB_UNUSED(handler_data); UPB_UNUSED(handle); upb_json_printer *p = closure; putstring(p, str, len); return len; } // This has to Base64 encode the bytes, because JSON has no "bytes" type. static size_t putbytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { UPB_UNUSED(handler_data); UPB_UNUSED(handle); upb_json_printer *p = closure; // This is the regular base64, not the "web-safe" version. static const char base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; // Base64-encode. char data[16000]; const char *limit = data + sizeof(data); const unsigned char *from = (const unsigned char*)str; char *to = data; size_t remaining = len; while (remaining > 2) { // TODO(haberman): handle encoded lengths > sizeof(data) UPB_ASSERT_VAR(limit, (limit - to) >= 4); to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)]; to[3] = base64[from[2] & 0x3f]; remaining -= 3; to += 4; from += 3; } switch (remaining) { case 2: to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; to[2] = base64[(from[1] & 0xf) << 2]; to[3] = '='; to += 4; from += 2; break; case 1: to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4)]; to[2] = '='; to[3] = '='; to += 4; from += 1; break; } size_t bytes = to - data; print_data(p, "\"", 1); putstring(p, data, bytes); print_data(p, "\"", 1); return len; } static void *scalar_startstr(void *closure, const void *handler_data, size_t size_hint) { UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); upb_json_printer *p = closure; CHK(putkey(closure, handler_data)); print_data(p, "\"", 1); return p; } static size_t scalar_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool scalar_endstr(void *closure, const void *handler_data) { UPB_UNUSED(handler_data); upb_json_printer *p = closure; print_data(p, "\"", 1); return true; } static void *repeated_startstr(void *closure, const void *handler_data, size_t size_hint) { UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); upb_json_printer *p = closure; print_comma(p); print_data(p, "\"", 1); return p; } static size_t repeated_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool repeated_endstr(void *closure, const void *handler_data) { UPB_UNUSED(handler_data); upb_json_printer *p = closure; print_data(p, "\"", 1); return true; } static size_t scalar_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putkey(closure, handler_data)); CHK(putbytes(closure, handler_data, str, len, handle)); return len; } static size_t repeated_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; print_comma(p); CHK(putbytes(closure, handler_data, str, len, handle)); return len; } void printer_sethandlers(const void *closure, upb_handlers *h) { UPB_UNUSED(closure); upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER; upb_handlers_setstartmsg(h, startmap, &empty_attr); upb_handlers_setendmsg(h, endmap, &empty_attr); #define TYPE(type, name, ctype) \ case type: \ if (upb_fielddef_isseq(f)) { \ upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr); \ } else { \ upb_handlers_set##name(h, f, scalar_##ctype, &name_attr); \ } \ break; upb_msg_iter i; upb_msg_begin(&i, upb_handlers_msgdef(h)); for(; !upb_msg_done(&i); upb_msg_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); upb_handlerattr name_attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&name_attr, newstrpc(h, f)); if (upb_fielddef_isseq(f)) { upb_handlers_setstartseq(h, f, startseq, &name_attr); upb_handlers_setendseq(h, f, endseq, &empty_attr); } switch (upb_fielddef_type(f)) { TYPE(UPB_TYPE_FLOAT, float, float); TYPE(UPB_TYPE_DOUBLE, double, double); TYPE(UPB_TYPE_BOOL, bool, bool); TYPE(UPB_TYPE_INT32, int32, int32_t); TYPE(UPB_TYPE_UINT32, uint32, uint32_t); TYPE(UPB_TYPE_INT64, int64, int64_t); TYPE(UPB_TYPE_UINT64, uint64, uint64_t); case UPB_TYPE_ENUM: { // For now, we always emit symbolic names for enums. We may want an // option later to control this behavior, but we will wait for a real // need first. EnumHandlerData *hd = malloc(sizeof(EnumHandlerData)); hd->enumdef = (const upb_enumdef *)upb_fielddef_subdef(f); hd->keyname = newstrpc(h, f); upb_handlers_addcleanup(h, hd, free); upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&enum_attr, hd); if (upb_fielddef_isseq(f)) { upb_handlers_setint32(h, f, repeated_enum, &enum_attr); } else { upb_handlers_setint32(h, f, scalar_enum, &enum_attr); } upb_handlerattr_uninit(&enum_attr); break; } case UPB_TYPE_STRING: if (upb_fielddef_isseq(f)) { upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr); upb_handlers_setstring(h, f, repeated_str, &empty_attr); upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr); } else { upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr); upb_handlers_setstring(h, f, scalar_str, &empty_attr); upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr); } break; case UPB_TYPE_BYTES: // XXX: this doesn't support strings that span buffers yet. The base64 // encoder will need to be made resumable for this to work properly. if (upb_fielddef_isseq(f)) { upb_handlers_setstring(h, f, repeated_bytes, &empty_attr); } else { upb_handlers_setstring(h, f, scalar_bytes, &name_attr); } break; case UPB_TYPE_MESSAGE: if (upb_fielddef_isseq(f)) { upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr); } else { upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr); } break; } upb_handlerattr_uninit(&name_attr); } upb_handlerattr_uninit(&empty_attr); #undef TYPE } /* Public API *****************************************************************/ void upb_json_printer_init(upb_json_printer *p, const upb_handlers *h) { p->output_ = NULL; p->depth_ = 0; upb_sink_reset(&p->input_, h, p); } void upb_json_printer_uninit(upb_json_printer *p) { UPB_UNUSED(p); } void upb_json_printer_reset(upb_json_printer *p) { p->depth_ = 0; } void upb_json_printer_resetoutput(upb_json_printer *p, upb_bytessink *output) { upb_json_printer_reset(p); p->output_ = output; } upb_sink *upb_json_printer_input(upb_json_printer *p) { return &p->input_; } const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md, const void *owner) { return upb_handlers_newfrozen(md, owner, printer_sethandlers, NULL); }