#region Copyright notice and license // Protocol Buffers - Google's data interchange format // Copyright 2015 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endregion using Google.Protobuf.Reflection; using Google.Protobuf.WellKnownTypes; using System; using System.Collections; using System.Collections.Generic; using System.Globalization; using System.IO; using System.Text; using System.Text.RegularExpressions; namespace Google.Protobuf { /// /// Reflection-based converter from JSON to messages. /// /// /// /// Instances of this class are thread-safe, with no mutable state. /// /// /// This is a simple start to get JSON parsing working. As it's reflection-based, /// it's not as quick as baking calls into generated messages - but is a simpler implementation. /// (This code is generally not heavily optimized.) /// /// public sealed class JsonParser { // Note: using 0-9 instead of \d to ensure no non-ASCII digits. // This regex isn't a complete validator, but will remove *most* invalid input. We rely on parsing to do the rest. private static readonly Regex TimestampRegex = new Regex(@"^(?[0-9]{4}-[01][0-9]-[0-3][0-9]T[012][0-9]:[0-5][0-9]:[0-5][0-9])(?\.[0-9]{1,9})?(?(Z|[+-][0-1][0-9]:[0-5][0-9]))$", FrameworkPortability.CompiledRegexWhereAvailable); private static readonly Regex DurationRegex = new Regex(@"^(?-)?(?[0-9]{1,12})(?\.[0-9]{1,9})?s$", FrameworkPortability.CompiledRegexWhereAvailable); private static readonly int[] SubsecondScalingFactors = { 0, 100000000, 100000000, 10000000, 1000000, 100000, 10000, 1000, 100, 10, 1 }; private static readonly char[] FieldMaskPathSeparators = new[] { ',' }; private static readonly JsonParser defaultInstance = new JsonParser(Settings.Default); // TODO: Consider introducing a class containing parse state of the parser, tokenizer and depth. That would simplify these handlers // and the signatures of various methods. private static readonly Dictionary> WellKnownTypeHandlers = new Dictionary> { { Timestamp.Descriptor.FullName, (parser, message, tokenizer) => MergeTimestamp(message, tokenizer.Next()) }, { Duration.Descriptor.FullName, (parser, message, tokenizer) => MergeDuration(message, tokenizer.Next()) }, { Value.Descriptor.FullName, (parser, message, tokenizer) => parser.MergeStructValue(message, tokenizer) }, { ListValue.Descriptor.FullName, (parser, message, tokenizer) => parser.MergeRepeatedField(message, message.Descriptor.Fields[ListValue.ValuesFieldNumber], tokenizer) }, { Struct.Descriptor.FullName, (parser, message, tokenizer) => parser.MergeStruct(message, tokenizer) }, { FieldMask.Descriptor.FullName, (parser, message, tokenizer) => MergeFieldMask(message, tokenizer.Next()) }, { Int32Value.Descriptor.FullName, MergeWrapperField }, { Int64Value.Descriptor.FullName, MergeWrapperField }, { UInt32Value.Descriptor.FullName, MergeWrapperField }, { UInt64Value.Descriptor.FullName, MergeWrapperField }, { FloatValue.Descriptor.FullName, MergeWrapperField }, { DoubleValue.Descriptor.FullName, MergeWrapperField }, { BytesValue.Descriptor.FullName, MergeWrapperField }, { StringValue.Descriptor.FullName, MergeWrapperField } }; // Convenience method to avoid having to repeat the same code multiple times in the above // dictionary initialization. private static void MergeWrapperField(JsonParser parser, IMessage message, JsonTokenizer tokenizer) { parser.MergeField(message, message.Descriptor.Fields[WrappersReflection.WrapperValueFieldNumber], tokenizer); } /// /// Returns a formatter using the default settings. /// public static JsonParser Default { get { return defaultInstance; } } private readonly Settings settings; /// /// Creates a new formatted with the given settings. /// /// The settings. public JsonParser(Settings settings) { this.settings = settings; } /// /// Parses and merges the information into the given message. /// /// The message to merge the JSON information into. /// The JSON to parse. internal void Merge(IMessage message, string json) { Merge(message, new StringReader(json)); } /// /// Parses JSON read from and merges the information into the given message. /// /// The message to merge the JSON information into. /// Reader providing the JSON to parse. internal void Merge(IMessage message, TextReader jsonReader) { var tokenizer = new JsonTokenizer(jsonReader); Merge(message, tokenizer); var lastToken = tokenizer.Next(); if (lastToken != JsonToken.EndDocument) { throw new InvalidProtocolBufferException("Expected end of JSON after object"); } } /// /// Merges the given message using data from the given tokenizer. In most cases, the next /// token should be a "start object" token, but wrapper types and nullity can invalidate /// that assumption. This is implemented as an LL(1) recursive descent parser over the stream /// of tokens provided by the tokenizer. This token stream is assumed to be valid JSON, with the /// tokenizer performing that validation - but not every token stream is valid "protobuf JSON". /// private void Merge(IMessage message, JsonTokenizer tokenizer) { if (tokenizer.ObjectDepth > settings.RecursionLimit) { throw InvalidProtocolBufferException.JsonRecursionLimitExceeded(); } if (message.Descriptor.IsWellKnownType) { Action handler; if (WellKnownTypeHandlers.TryGetValue(message.Descriptor.FullName, out handler)) { handler(this, message, tokenizer); return; } // Well-known types with no special handling continue in the normal way. } var token = tokenizer.Next(); if (token.Type != JsonToken.TokenType.StartObject) { throw new InvalidProtocolBufferException("Expected an object"); } var descriptor = message.Descriptor; var jsonFieldMap = descriptor.Fields.ByJsonName(); while (true) { token = tokenizer.Next(); if (token.Type == JsonToken.TokenType.EndObject) { return; } if (token.Type != JsonToken.TokenType.Name) { throw new InvalidOperationException("Unexpected token type " + token.Type); } string name = token.StringValue; FieldDescriptor field; if (jsonFieldMap.TryGetValue(name, out field)) { MergeField(message, field, tokenizer); } else { // TODO: Is this what we want to do? If not, we'll need to skip the value, // which may be an object or array. (We might want to put code in the tokenizer // to do that.) throw new InvalidProtocolBufferException("Unknown field: " + name); } } } private void MergeField(IMessage message, FieldDescriptor field, JsonTokenizer tokenizer) { var token = tokenizer.Next(); if (token.Type == JsonToken.TokenType.Null) { // Note: different from Java API, which just ignores it. // TODO: Bring it more in line? Discuss... field.Accessor.Clear(message); return; } tokenizer.PushBack(token); if (field.IsMap) { MergeMapField(message, field, tokenizer); } else if (field.IsRepeated) { MergeRepeatedField(message, field, tokenizer); } else { var value = ParseSingleValue(field, tokenizer); field.Accessor.SetValue(message, value); } } private void MergeRepeatedField(IMessage message, FieldDescriptor field, JsonTokenizer tokenizer) { var token = tokenizer.Next(); if (token.Type != JsonToken.TokenType.StartArray) { throw new InvalidProtocolBufferException("Repeated field value was not an array. Token type: " + token.Type); } IList list = (IList) field.Accessor.GetValue(message); while (true) { token = tokenizer.Next(); if (token.Type == JsonToken.TokenType.EndArray) { return; } tokenizer.PushBack(token); list.Add(ParseSingleValue(field, tokenizer)); } } private void MergeMapField(IMessage message, FieldDescriptor field, JsonTokenizer tokenizer) { // Map fields are always objects, even if the values are well-known types: ParseSingleValue handles those. var token = tokenizer.Next(); if (token.Type != JsonToken.TokenType.StartObject) { throw new InvalidProtocolBufferException("Expected an object to populate a map"); } var type = field.MessageType; var keyField = type.FindFieldByNumber(1); var valueField = type.FindFieldByNumber(2); if (keyField == null || valueField == null) { throw new InvalidProtocolBufferException("Invalid map field: " + field.FullName); } IDictionary dictionary = (IDictionary) field.Accessor.GetValue(message); while (true) { token = tokenizer.Next(); if (token.Type == JsonToken.TokenType.EndObject) { return; } object key = ParseMapKey(keyField, token.StringValue); object value = ParseSingleValue(valueField, tokenizer); // TODO: Null handling dictionary[key] = value; } } private object ParseSingleValue(FieldDescriptor field, JsonTokenizer tokenizer) { var token = tokenizer.Next(); if (token.Type == JsonToken.TokenType.Null) { if (field.FieldType == FieldType.Message && field.MessageType.FullName == Value.Descriptor.FullName) { return new Value { NullValue = NullValue.NULL_VALUE }; } return null; } var fieldType = field.FieldType; if (fieldType == FieldType.Message) { // Parse wrapper types as their constituent types. // TODO: What does this mean for null? if (field.MessageType.IsWrapperType) { field = field.MessageType.Fields[WrappersReflection.WrapperValueFieldNumber]; fieldType = field.FieldType; } else { // TODO: Merge the current value in message? (Public API currently doesn't make this relevant as we don't expose merging.) tokenizer.PushBack(token); IMessage subMessage = NewMessageForField(field); Merge(subMessage, tokenizer); return subMessage; } } switch (token.Type) { case JsonToken.TokenType.True: case JsonToken.TokenType.False: if (fieldType == FieldType.Bool) { return token.Type == JsonToken.TokenType.True; } // Fall through to "we don't support this type for this case"; could duplicate the behaviour of the default // case instead, but this way we'd only need to change one place. goto default; case JsonToken.TokenType.StringValue: return ParseSingleStringValue(field, token.StringValue); // Note: not passing the number value itself here, as we may end up storing the string value in the token too. case JsonToken.TokenType.Number: return ParseSingleNumberValue(field, token); case JsonToken.TokenType.Null: throw new NotImplementedException("Haven't worked out what to do for null yet"); default: throw new InvalidProtocolBufferException("Unsupported JSON token type " + token.Type + " for field type " + fieldType); } } /// /// Parses into a new message. /// /// The type of message to create. /// The JSON to parse. /// The JSON does not comply with RFC 7159 /// The JSON does not represent a Protocol Buffers message correctly public T Parse(string json) where T : IMessage, new() { return Parse(new StringReader(json)); } /// /// Parses JSON read from into a new message. /// /// The type of message to create. /// Reader providing the JSON to parse. /// The JSON does not comply with RFC 7159 /// The JSON does not represent a Protocol Buffers message correctly public T Parse(TextReader jsonReader) where T : IMessage, new() { T message = new T(); Merge(message, jsonReader); return message; } private void MergeStructValue(IMessage message, JsonTokenizer tokenizer) { var firstToken = tokenizer.Next(); var fields = message.Descriptor.Fields; switch (firstToken.Type) { case JsonToken.TokenType.Null: fields[Value.NullValueFieldNumber].Accessor.SetValue(message, 0); return; case JsonToken.TokenType.StringValue: fields[Value.StringValueFieldNumber].Accessor.SetValue(message, firstToken.StringValue); return; case JsonToken.TokenType.Number: fields[Value.NumberValueFieldNumber].Accessor.SetValue(message, firstToken.NumberValue); return; case JsonToken.TokenType.False: case JsonToken.TokenType.True: fields[Value.BoolValueFieldNumber].Accessor.SetValue(message, firstToken.Type == JsonToken.TokenType.True); return; case JsonToken.TokenType.StartObject: { var field = fields[Value.StructValueFieldNumber]; var structMessage = NewMessageForField(field); tokenizer.PushBack(firstToken); Merge(structMessage, tokenizer); field.Accessor.SetValue(message, structMessage); return; } case JsonToken.TokenType.StartArray: { var field = fields[Value.ListValueFieldNumber]; var list = NewMessageForField(field); tokenizer.PushBack(firstToken); Merge(list, tokenizer); field.Accessor.SetValue(message, list); return; } default: throw new InvalidOperationException("Unexpected token type: " + firstToken.Type); } } private void MergeStruct(IMessage message, JsonTokenizer tokenizer) { var token = tokenizer.Next(); if (token.Type != JsonToken.TokenType.StartObject) { throw new InvalidProtocolBufferException("Expected object value for Struct"); } tokenizer.PushBack(token); var field = message.Descriptor.Fields[Struct.FieldsFieldNumber]; MergeMapField(message, field, tokenizer); } #region Utility methods which don't depend on the state (or settings) of the parser. private static object ParseMapKey(FieldDescriptor field, string keyText) { switch (field.FieldType) { case FieldType.Bool: if (keyText == "true") { return true; } if (keyText == "false") { return false; } throw new InvalidProtocolBufferException("Invalid string for bool map key: " + keyText); case FieldType.String: return keyText; case FieldType.Int32: case FieldType.SInt32: case FieldType.SFixed32: return ParseNumericString(keyText, int.Parse, false); case FieldType.UInt32: case FieldType.Fixed32: return ParseNumericString(keyText, uint.Parse, false); case FieldType.Int64: case FieldType.SInt64: case FieldType.SFixed64: return ParseNumericString(keyText, long.Parse, false); case FieldType.UInt64: case FieldType.Fixed64: return ParseNumericString(keyText, ulong.Parse, false); default: throw new InvalidProtocolBufferException("Invalid field type for map: " + field.FieldType); } } private static object ParseSingleNumberValue(FieldDescriptor field, JsonToken token) { double value = token.NumberValue; checked { // TODO: Validate that it's actually an integer, possibly in terms of the textual representation? try { switch (field.FieldType) { case FieldType.Int32: case FieldType.SInt32: case FieldType.SFixed32: return (int) value; case FieldType.UInt32: case FieldType.Fixed32: return (uint) value; case FieldType.Int64: case FieldType.SInt64: case FieldType.SFixed64: return (long) value; case FieldType.UInt64: case FieldType.Fixed64: return (ulong) value; case FieldType.Double: return value; case FieldType.Float: if (double.IsNaN(value)) { return float.NaN; } if (value > float.MaxValue || value < float.MinValue) { if (double.IsPositiveInfinity(value)) { return float.PositiveInfinity; } if (double.IsNegativeInfinity(value)) { return float.NegativeInfinity; } throw new InvalidProtocolBufferException("Value out of range: " + value); } return (float) value; default: throw new InvalidProtocolBufferException("Unsupported conversion from JSON number for field type " + field.FieldType); } } catch (OverflowException) { throw new InvalidProtocolBufferException("Value out of range: " + value); } } } private static object ParseSingleStringValue(FieldDescriptor field, string text) { switch (field.FieldType) { case FieldType.String: return text; case FieldType.Bytes: return ByteString.FromBase64(text); case FieldType.Int32: case FieldType.SInt32: case FieldType.SFixed32: return ParseNumericString(text, int.Parse, false); case FieldType.UInt32: case FieldType.Fixed32: return ParseNumericString(text, uint.Parse, false); case FieldType.Int64: case FieldType.SInt64: case FieldType.SFixed64: return ParseNumericString(text, long.Parse, false); case FieldType.UInt64: case FieldType.Fixed64: return ParseNumericString(text, ulong.Parse, false); case FieldType.Double: double d = ParseNumericString(text, double.Parse, true); // double.Parse can return +/- infinity on Mono for non-infinite values which are out of range for double. if (double.IsInfinity(d) && !text.Contains("Infinity")) { throw new InvalidProtocolBufferException("Invalid numeric value: " + text); } return d; case FieldType.Float: float f = ParseNumericString(text, float.Parse, true); // float.Parse can return +/- infinity on Mono for non-infinite values which are out of range for float. if (float.IsInfinity(f) && !text.Contains("Infinity")) { throw new InvalidProtocolBufferException("Invalid numeric value: " + text); } return f; case FieldType.Enum: var enumValue = field.EnumType.FindValueByName(text); if (enumValue == null) { throw new InvalidProtocolBufferException("Invalid enum value: " + text + " for enum type: " + field.EnumType.FullName); } // Just return it as an int, and let the CLR convert it. return enumValue.Number; default: throw new InvalidProtocolBufferException("Unsupported conversion from JSON string for field type " + field.FieldType); } } /// /// Creates a new instance of the message type for the given field. /// private static IMessage NewMessageForField(FieldDescriptor field) { return field.MessageType.Parser.CreateTemplate(); } private static T ParseNumericString(string text, Func parser, bool floatingPoint) { // TODO: Prohibit leading zeroes (but allow 0!) // TODO: Validate handling of "Infinity" etc. (Should be case sensitive, no leading whitespace etc) // Can't prohibit this with NumberStyles. if (text.StartsWith("+")) { throw new InvalidProtocolBufferException("Invalid numeric value: " + text); } if (text.StartsWith("0") && text.Length > 1) { if (text[1] >= '0' && text[1] <= '9') { throw new InvalidProtocolBufferException("Invalid numeric value: " + text); } } else if (text.StartsWith("-0") && text.Length > 2) { if (text[2] >= '0' && text[2] <= '9') { throw new InvalidProtocolBufferException("Invalid numeric value: " + text); } } try { var styles = floatingPoint ? NumberStyles.AllowLeadingSign | NumberStyles.AllowDecimalPoint | NumberStyles.AllowExponent : NumberStyles.AllowLeadingSign; return parser(text, styles, CultureInfo.InvariantCulture); } catch (FormatException) { throw new InvalidProtocolBufferException("Invalid numeric value for type: " + text); } catch (OverflowException) { throw new InvalidProtocolBufferException("Value out of range: " + text); } } private static void MergeTimestamp(IMessage message, JsonToken token) { if (token.Type != JsonToken.TokenType.StringValue) { throw new InvalidProtocolBufferException("Expected string value for Timestamp"); } var match = TimestampRegex.Match(token.StringValue); if (!match.Success) { throw new InvalidProtocolBufferException("Invalid Timestamp value: " + token.StringValue); } var dateTime = match.Groups["datetime"].Value; var subseconds = match.Groups["subseconds"].Value; var offset = match.Groups["offset"].Value; try { DateTime parsed = DateTime.ParseExact( dateTime, "yyyy-MM-dd'T'HH:mm:ss", CultureInfo.InvariantCulture, DateTimeStyles.AssumeUniversal | DateTimeStyles.AdjustToUniversal); // TODO: It would be nice not to have to create all these objects... easy to optimize later though. Timestamp timestamp = Timestamp.FromDateTime(parsed); int nanosToAdd = 0; if (subseconds != "") { // This should always work, as we've got 1-9 digits. int parsedFraction = int.Parse(subseconds.Substring(1), CultureInfo.InvariantCulture); nanosToAdd = parsedFraction * SubsecondScalingFactors[subseconds.Length]; } int secondsToAdd = 0; if (offset != "Z") { // This is the amount we need to *subtract* from the local time to get to UTC - hence - => +1 and vice versa. int sign = offset[0] == '-' ? 1 : -1; int hours = int.Parse(offset.Substring(1, 2), CultureInfo.InvariantCulture); int minutes = int.Parse(offset.Substring(4, 2)); int totalMinutes = hours * 60 + minutes; if (totalMinutes > 18 * 60) { throw new InvalidProtocolBufferException("Invalid Timestamp value: " + token.StringValue); } if (totalMinutes == 0 && sign == 1) { // This is an offset of -00:00, which means "unknown local offset". It makes no sense for a timestamp. throw new InvalidProtocolBufferException("Invalid Timestamp value: " + token.StringValue); } // We need to *subtract* the offset from local time to get UTC. secondsToAdd = sign * totalMinutes * 60; } // Ensure we've got the right signs. Currently unnecessary, but easy to do. if (secondsToAdd < 0 && nanosToAdd > 0) { secondsToAdd++; nanosToAdd = nanosToAdd - Duration.NanosecondsPerSecond; } if (secondsToAdd != 0 || nanosToAdd != 0) { timestamp += new Duration { Nanos = nanosToAdd, Seconds = secondsToAdd }; // The resulting timestamp after offset change would be out of our expected range. Currently the Timestamp message doesn't validate this // anywhere, but we shouldn't parse it. if (timestamp.Seconds < Timestamp.UnixSecondsAtBclMinValue || timestamp.Seconds > Timestamp.UnixSecondsAtBclMaxValue) { throw new InvalidProtocolBufferException("Invalid Timestamp value: " + token.StringValue); } } message.Descriptor.Fields[Timestamp.SecondsFieldNumber].Accessor.SetValue(message, timestamp.Seconds); message.Descriptor.Fields[Timestamp.NanosFieldNumber].Accessor.SetValue(message, timestamp.Nanos); } catch (FormatException) { throw new InvalidProtocolBufferException("Invalid Timestamp value: " + token.StringValue); } } private static void MergeDuration(IMessage message, JsonToken token) { if (token.Type != JsonToken.TokenType.StringValue) { throw new InvalidProtocolBufferException("Expected string value for Duration"); } var match = DurationRegex.Match(token.StringValue); if (!match.Success) { throw new InvalidProtocolBufferException("Invalid Duration value: " + token.StringValue); } var sign = match.Groups["sign"].Value; var secondsText = match.Groups["int"].Value; // Prohibit leading insignficant zeroes if (secondsText[0] == '0' && secondsText.Length > 1) { throw new InvalidProtocolBufferException("Invalid Duration value: " + token.StringValue); } var subseconds = match.Groups["subseconds"].Value; var multiplier = sign == "-" ? -1 : 1; try { long seconds = long.Parse(secondsText, CultureInfo.InvariantCulture); int nanos = 0; if (subseconds != "") { // This should always work, as we've got 1-9 digits. int parsedFraction = int.Parse(subseconds.Substring(1)); nanos = parsedFraction * SubsecondScalingFactors[subseconds.Length]; } if (seconds >= Duration.MaxSeconds) { // Allow precisely 315576000000 seconds, but prohibit even 1ns more. if (seconds > Duration.MaxSeconds || nanos > 0) { throw new InvalidProtocolBufferException("Invalid Duration value: " + token.StringValue); } } message.Descriptor.Fields[Duration.SecondsFieldNumber].Accessor.SetValue(message, seconds * multiplier); message.Descriptor.Fields[Duration.NanosFieldNumber].Accessor.SetValue(message, nanos * multiplier); } catch (FormatException) { throw new InvalidProtocolBufferException("Invalid Duration value: " + token.StringValue); } } private static void MergeFieldMask(IMessage message, JsonToken token) { if (token.Type != JsonToken.TokenType.StringValue) { throw new InvalidProtocolBufferException("Expected string value for FieldMask"); } // TODO: Do we *want* to remove empty entries? Probably okay to treat "" as "no paths", but "foo,,bar"? string[] jsonPaths = token.StringValue.Split(FieldMaskPathSeparators, StringSplitOptions.RemoveEmptyEntries); IList messagePaths = (IList) message.Descriptor.Fields[FieldMask.PathsFieldNumber].Accessor.GetValue(message); foreach (var path in jsonPaths) { messagePaths.Add(ToSnakeCase(path)); } } // Ported from src/google/protobuf/util/internal/utility.cc private static string ToSnakeCase(string text) { var builder = new StringBuilder(text.Length * 2); bool wasNotUnderscore = false; // Initialize to false for case 1 (below) bool wasNotCap = false; for (int i = 0; i < text.Length; i++) { char c = text[i]; if (c >= 'A' && c <= 'Z') // ascii_isupper { // Consider when the current character B is capitalized: // 1) At beginning of input: "B..." => "b..." // (e.g. "Biscuit" => "biscuit") // 2) Following a lowercase: "...aB..." => "...a_b..." // (e.g. "gBike" => "g_bike") // 3) At the end of input: "...AB" => "...ab" // (e.g. "GoogleLAB" => "google_lab") // 4) Followed by a lowercase: "...ABc..." => "...a_bc..." // (e.g. "GBike" => "g_bike") if (wasNotUnderscore && // case 1 out (wasNotCap || // case 2 in, case 3 out (i + 1 < text.Length && // case 3 out (text[i + 1] >= 'a' && text[i + 1] <= 'z')))) // ascii_islower(text[i + 1]) { // case 4 in // We add an underscore for case 2 and case 4. builder.Append('_'); } // ascii_tolower, but we already know that c *is* an upper case ASCII character... builder.Append((char) (c + 'a' - 'A')); wasNotUnderscore = true; wasNotCap = false; } else { builder.Append(c); wasNotUnderscore = c != '_'; wasNotCap = true; } } return builder.ToString(); } #endregion /// /// Settings controlling JSON parsing. /// public sealed class Settings { private static readonly Settings defaultInstance = new Settings(CodedInputStream.DefaultRecursionLimit); private readonly int recursionLimit; /// /// Default settings, as used by /// public static Settings Default { get { return defaultInstance; } } /// /// The maximum depth of messages to parse. Note that this limit only applies to parsing /// messages, not collections - so a message within a collection within a message only counts as /// depth 2, not 3. /// public int RecursionLimit { get { return recursionLimit; } } /// /// Creates a new object with the specified recursion limit. /// /// The maximum depth of messages to parse public Settings(int recursionLimit) { this.recursionLimit = recursionLimit; } } } }