#region Copyright notice and license // Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endregion using Google.Protobuf.Collections; using System; using System.IO; using System.Text; namespace Google.Protobuf { /// /// Encodes and writes protocol message fields. /// /// /// /// This class is generally used by generated code to write appropriate /// primitives to the stream. It effectively encapsulates the lowest /// levels of protocol buffer format. Unlike some other implementations, /// this does not include combined "write tag and value" methods. Generated /// code knows the exact byte representations of the tags they're going to write, /// so there's no need to re-encode them each time. Manually-written code calling /// this class should just call one of the WriteTag overloads before each value. /// /// /// Repeated fields and map fields are not handled by this class; use RepeatedField<T> /// and MapField<TKey, TValue> to serialize such fields. /// /// public sealed partial class CodedOutputStream : IDisposable { // "Local" copy of Encoding.UTF8, for efficiency. (Yes, it makes a difference.) internal static readonly Encoding Utf8Encoding = Encoding.UTF8; /// /// The buffer size used by CreateInstance(Stream). /// public static readonly int DefaultBufferSize = 4096; private readonly bool leaveOpen; private readonly byte[] buffer; private readonly int limit; private int position; private readonly Stream output; #region Construction /// /// Creates a new CodedOutputStream that writes directly to the given /// byte array. If more bytes are written than fit in the array, /// OutOfSpaceException will be thrown. /// public CodedOutputStream(byte[] flatArray) : this(flatArray, 0, flatArray.Length) { } /// /// Creates a new CodedOutputStream that writes directly to the given /// byte array slice. If more bytes are written than fit in the array, /// OutOfSpaceException will be thrown. /// private CodedOutputStream(byte[] buffer, int offset, int length) { this.output = null; this.buffer = buffer; this.position = offset; this.limit = offset + length; leaveOpen = true; // Simple way of avoiding trying to dispose of a null reference } private CodedOutputStream(Stream output, byte[] buffer, bool leaveOpen) { this.output = ProtoPreconditions.CheckNotNull(output, nameof(output)); this.buffer = buffer; this.position = 0; this.limit = buffer.Length; this.leaveOpen = leaveOpen; } /// /// Creates a new which write to the given stream, and disposes of that /// stream when the returned CodedOutputStream is disposed. /// /// The stream to write to. It will be disposed when the returned CodedOutputStream is disposed. public CodedOutputStream(Stream output) : this(output, DefaultBufferSize, false) { } /// /// Creates a new CodedOutputStream which write to the given stream and uses /// the specified buffer size. /// /// The stream to write to. It will be disposed when the returned CodedOutputStream is disposed. /// The size of buffer to use internally. public CodedOutputStream(Stream output, int bufferSize) : this(output, new byte[bufferSize], false) { } /// /// Creates a new CodedOutputStream which write to the given stream. /// /// The stream to write to. /// If true, is left open when the returned CodedOutputStream is disposed; /// if false, the provided stream is disposed as well. public CodedOutputStream(Stream output, bool leaveOpen) : this(output, DefaultBufferSize, leaveOpen) { } /// /// Creates a new CodedOutputStream which write to the given stream and uses /// the specified buffer size. /// /// The stream to write to. /// The size of buffer to use internally. /// If true, is left open when the returned CodedOutputStream is disposed; /// if false, the provided stream is disposed as well. public CodedOutputStream(Stream output, int bufferSize, bool leaveOpen) : this(output, new byte[bufferSize], leaveOpen) { } #endregion /// /// Returns the current position in the stream, or the position in the output buffer /// public long Position { get { if (output != null) { return output.Position + position; } return position; } } #region Writing of values (not including tags) /// /// Writes a double field value, without a tag, to the stream. /// /// The value to write public void WriteDouble(double value) { WriteRawLittleEndian64((ulong)BitConverter.DoubleToInt64Bits(value)); } /// /// Writes a float field value, without a tag, to the stream. /// /// The value to write public void WriteFloat(float value) { byte[] rawBytes = BitConverter.GetBytes(value); if (!BitConverter.IsLittleEndian) { ByteArray.Reverse(rawBytes); } if (limit - position >= 4) { buffer[position++] = rawBytes[0]; buffer[position++] = rawBytes[1]; buffer[position++] = rawBytes[2]; buffer[position++] = rawBytes[3]; } else { WriteRawBytes(rawBytes, 0, 4); } } /// /// Writes a uint64 field value, without a tag, to the stream. /// /// The value to write public void WriteUInt64(ulong value) { WriteRawVarint64(value); } /// /// Writes an int64 field value, without a tag, to the stream. /// /// The value to write public void WriteInt64(long value) { WriteRawVarint64((ulong) value); } /// /// Writes an int32 field value, without a tag, to the stream. /// /// The value to write public void WriteInt32(int value) { if (value >= 0) { WriteRawVarint32((uint) value); } else { // Must sign-extend. WriteRawVarint64((ulong) value); } } /// /// Writes a fixed64 field value, without a tag, to the stream. /// /// The value to write public void WriteFixed64(ulong value) { WriteRawLittleEndian64(value); } /// /// Writes a fixed32 field value, without a tag, to the stream. /// /// The value to write public void WriteFixed32(uint value) { WriteRawLittleEndian32(value); } /// /// Writes a bool field value, without a tag, to the stream. /// /// The value to write public void WriteBool(bool value) { WriteRawByte(value ? (byte) 1 : (byte) 0); } /// /// Writes a string field value, without a tag, to the stream. /// The data is length-prefixed. /// /// The value to write public void WriteString(string value) { // Optimise the case where we have enough space to write // the string directly to the buffer, which should be common. int length = Utf8Encoding.GetByteCount(value); WriteLength(length); if (limit - position >= length) { if (length == value.Length) // Must be all ASCII... { for (int i = 0; i < length; i++) { buffer[position + i] = (byte)value[i]; } } else { Utf8Encoding.GetBytes(value, 0, value.Length, buffer, position); } position += length; } else { byte[] bytes = Utf8Encoding.GetBytes(value); WriteRawBytes(bytes); } } /// /// Writes a message, without a tag, to the stream. /// The data is length-prefixed. /// /// The value to write public void WriteMessage(IMessage value) { WriteLength(value.CalculateSize()); value.WriteTo(this); } /// /// Write a byte string, without a tag, to the stream. /// The data is length-prefixed. /// /// The value to write public void WriteBytes(ByteString value) { WriteLength(value.Length); value.WriteRawBytesTo(this); } /// /// Writes a uint32 value, without a tag, to the stream. /// /// The value to write public void WriteUInt32(uint value) { WriteRawVarint32(value); } /// /// Writes an enum value, without a tag, to the stream. /// /// The value to write public void WriteEnum(int value) { WriteInt32(value); } /// /// Writes an sfixed32 value, without a tag, to the stream. /// /// The value to write. public void WriteSFixed32(int value) { WriteRawLittleEndian32((uint) value); } /// /// Writes an sfixed64 value, without a tag, to the stream. /// /// The value to write public void WriteSFixed64(long value) { WriteRawLittleEndian64((ulong) value); } /// /// Writes an sint32 value, without a tag, to the stream. /// /// The value to write public void WriteSInt32(int value) { WriteRawVarint32(EncodeZigZag32(value)); } /// /// Writes an sint64 value, without a tag, to the stream. /// /// The value to write public void WriteSInt64(long value) { WriteRawVarint64(EncodeZigZag64(value)); } /// /// Writes a length (in bytes) for length-delimited data. /// /// /// This method simply writes a rawint, but exists for clarity in calling code. /// /// Length value, in bytes. public void WriteLength(int length) { WriteRawVarint32((uint) length); } #endregion #region Raw tag writing /// /// Encodes and writes a tag. /// /// The number of the field to write the tag for /// The wire format type of the tag to write public void WriteTag(int fieldNumber, WireFormat.WireType type) { WriteRawVarint32(WireFormat.MakeTag(fieldNumber, type)); } /// /// Writes an already-encoded tag. /// /// The encoded tag public void WriteTag(uint tag) { WriteRawVarint32(tag); } /// /// Writes the given single-byte tag directly to the stream. /// /// The encoded tag public void WriteRawTag(byte b1) { WriteRawByte(b1); } /// /// Writes the given two-byte tag directly to the stream. /// /// The first byte of the encoded tag /// The second byte of the encoded tag public void WriteRawTag(byte b1, byte b2) { WriteRawByte(b1); WriteRawByte(b2); } /// /// Writes the given three-byte tag directly to the stream. /// /// The first byte of the encoded tag /// The second byte of the encoded tag /// The third byte of the encoded tag public void WriteRawTag(byte b1, byte b2, byte b3) { WriteRawByte(b1); WriteRawByte(b2); WriteRawByte(b3); } /// /// Writes the given four-byte tag directly to the stream. /// /// The first byte of the encoded tag /// The second byte of the encoded tag /// The third byte of the encoded tag /// The fourth byte of the encoded tag public void WriteRawTag(byte b1, byte b2, byte b3, byte b4) { WriteRawByte(b1); WriteRawByte(b2); WriteRawByte(b3); WriteRawByte(b4); } /// /// Writes the given five-byte tag directly to the stream. /// /// The first byte of the encoded tag /// The second byte of the encoded tag /// The third byte of the encoded tag /// The fourth byte of the encoded tag /// The fifth byte of the encoded tag public void WriteRawTag(byte b1, byte b2, byte b3, byte b4, byte b5) { WriteRawByte(b1); WriteRawByte(b2); WriteRawByte(b3); WriteRawByte(b4); WriteRawByte(b5); } #endregion #region Underlying writing primitives /// /// Writes a 32 bit value as a varint. The fast route is taken when /// there's enough buffer space left to whizz through without checking /// for each byte; otherwise, we resort to calling WriteRawByte each time. /// internal void WriteRawVarint32(uint value) { // Optimize for the common case of a single byte value if (value < 128 && position < limit) { buffer[position++] = (byte)value; return; } while (value > 127 && position < limit) { buffer[position++] = (byte) ((value & 0x7F) | 0x80); value >>= 7; } while (value > 127) { WriteRawByte((byte) ((value & 0x7F) | 0x80)); value >>= 7; } if (position < limit) { buffer[position++] = (byte) value; } else { WriteRawByte((byte) value); } } internal void WriteRawVarint64(ulong value) { while (value > 127 && position < limit) { buffer[position++] = (byte) ((value & 0x7F) | 0x80); value >>= 7; } while (value > 127) { WriteRawByte((byte) ((value & 0x7F) | 0x80)); value >>= 7; } if (position < limit) { buffer[position++] = (byte) value; } else { WriteRawByte((byte) value); } } internal void WriteRawLittleEndian32(uint value) { if (position + 4 > limit) { WriteRawByte((byte) value); WriteRawByte((byte) (value >> 8)); WriteRawByte((byte) (value >> 16)); WriteRawByte((byte) (value >> 24)); } else { buffer[position++] = ((byte) value); buffer[position++] = ((byte) (value >> 8)); buffer[position++] = ((byte) (value >> 16)); buffer[position++] = ((byte) (value >> 24)); } } internal void WriteRawLittleEndian64(ulong value) { if (position + 8 > limit) { WriteRawByte((byte) value); WriteRawByte((byte) (value >> 8)); WriteRawByte((byte) (value >> 16)); WriteRawByte((byte) (value >> 24)); WriteRawByte((byte) (value >> 32)); WriteRawByte((byte) (value >> 40)); WriteRawByte((byte) (value >> 48)); WriteRawByte((byte) (value >> 56)); } else { buffer[position++] = ((byte) value); buffer[position++] = ((byte) (value >> 8)); buffer[position++] = ((byte) (value >> 16)); buffer[position++] = ((byte) (value >> 24)); buffer[position++] = ((byte) (value >> 32)); buffer[position++] = ((byte) (value >> 40)); buffer[position++] = ((byte) (value >> 48)); buffer[position++] = ((byte) (value >> 56)); } } internal void WriteRawByte(byte value) { if (position == limit) { RefreshBuffer(); } buffer[position++] = value; } internal void WriteRawByte(uint value) { WriteRawByte((byte) value); } /// /// Writes out an array of bytes. /// internal void WriteRawBytes(byte[] value) { WriteRawBytes(value, 0, value.Length); } /// /// Writes out part of an array of bytes. /// internal void WriteRawBytes(byte[] value, int offset, int length) { if (limit - position >= length) { ByteArray.Copy(value, offset, buffer, position, length); // We have room in the current buffer. position += length; } else { // Write extends past current buffer. Fill the rest of this buffer and // flush. int bytesWritten = limit - position; ByteArray.Copy(value, offset, buffer, position, bytesWritten); offset += bytesWritten; length -= bytesWritten; position = limit; RefreshBuffer(); // Now deal with the rest. // Since we have an output stream, this is our buffer // and buffer offset == 0 if (length <= limit) { // Fits in new buffer. ByteArray.Copy(value, offset, buffer, 0, length); position = length; } else { // Write is very big. Let's do it all at once. output.Write(value, offset, length); } } } #endregion /// /// Encode a 32-bit value with ZigZag encoding. /// /// /// ZigZag encodes signed integers into values that can be efficiently /// encoded with varint. (Otherwise, negative values must be /// sign-extended to 64 bits to be varint encoded, thus always taking /// 10 bytes on the wire.) /// internal static uint EncodeZigZag32(int n) { // Note: the right-shift must be arithmetic return (uint) ((n << 1) ^ (n >> 31)); } /// /// Encode a 64-bit value with ZigZag encoding. /// /// /// ZigZag encodes signed integers into values that can be efficiently /// encoded with varint. (Otherwise, negative values must be /// sign-extended to 64 bits to be varint encoded, thus always taking /// 10 bytes on the wire.) /// internal static ulong EncodeZigZag64(long n) { return (ulong) ((n << 1) ^ (n >> 63)); } private void RefreshBuffer() { if (output == null) { // We're writing to a single buffer. throw new OutOfSpaceException(); } // Since we have an output stream, this is our buffer // and buffer offset == 0 output.Write(buffer, 0, position); position = 0; } /// /// Indicates that a CodedOutputStream wrapping a flat byte array /// ran out of space. /// public sealed class OutOfSpaceException : IOException { internal OutOfSpaceException() : base("CodedOutputStream was writing to a flat byte array and ran out of space.") { } } /// /// Flushes any buffered data and optionally closes the underlying stream, if any. /// /// /// /// By default, any underlying stream is closed by this method. To configure this behaviour, /// use a constructor overload with a leaveOpen parameter. If this instance does not /// have an underlying stream, this method does nothing. /// /// /// For the sake of efficiency, calling this method does not prevent future write calls - but /// if a later write ends up writing to a stream which has been disposed, that is likely to /// fail. It is recommend that you not call any other methods after this. /// /// public void Dispose() { Flush(); if (!leaveOpen) { output.Dispose(); } } /// /// Flushes any buffered data to the underlying stream (if there is one). /// public void Flush() { if (output != null) { RefreshBuffer(); } } /// /// Verifies that SpaceLeft returns zero. It's common to create a byte array /// that is exactly big enough to hold a message, then write to it with /// a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that /// the message was actually as big as expected, which can help bugs. /// public void CheckNoSpaceLeft() { if (SpaceLeft != 0) { throw new InvalidOperationException("Did not write as much data as expected."); } } /// /// If writing to a flat array, returns the space left in the array. Otherwise, /// throws an InvalidOperationException. /// public int SpaceLeft { get { if (output == null) { return limit - position; } else { throw new InvalidOperationException( "SpaceLeft can only be called on CodedOutputStreams that are " + "writing to a flat array."); } } } } }