// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include "conformance.pb.h" #include #include using conformance::ConformanceRequest; using conformance::ConformanceResponse; using conformance::TestAllTypes; using google::protobuf::Descriptor; using google::protobuf::FieldDescriptor; using google::protobuf::internal::WireFormatLite; using std::string; int write_fd; int read_fd; int successes; int failures; bool verbose = false; string Escape(const string& str) { // TODO. return str; } #define STRINGIFY(x) #x #define TOSTRING(x) STRINGIFY(x) #define CHECK_SYSCALL(call) \ if (call < 0) { \ perror(#call " " __FILE__ ":" TOSTRING(__LINE__)); \ exit(1); \ } // TODO(haberman): make this work on Windows, instead of using these // UNIX-specific APIs. // // There is a platform-agnostic API in // src/google/protobuf/compiler/subprocess.h // // However that API only supports sending a single message to the subprocess. // We really want to be able to send messages and receive responses one at a // time: // // 1. Spawning a new process for each test would take way too long for thousands // of tests and subprocesses like java that can take 100ms or more to start // up. // // 2. Sending all the tests in one big message and receiving all results in one // big message would take away our visibility about which test(s) caused a // crash or other fatal error. It would also give us only a single failure // instead of all of them. void SpawnTestProgram(char *executable) { int toproc_pipe_fd[2]; int fromproc_pipe_fd[2]; if (pipe(toproc_pipe_fd) < 0 || pipe(fromproc_pipe_fd) < 0) { perror("pipe"); exit(1); } pid_t pid = fork(); if (pid < 0) { perror("fork"); exit(1); } if (pid) { // Parent. CHECK_SYSCALL(close(toproc_pipe_fd[0])); CHECK_SYSCALL(close(fromproc_pipe_fd[1])); write_fd = toproc_pipe_fd[1]; read_fd = fromproc_pipe_fd[0]; } else { // Child. CHECK_SYSCALL(close(STDIN_FILENO)); CHECK_SYSCALL(close(STDOUT_FILENO)); CHECK_SYSCALL(dup2(toproc_pipe_fd[0], STDIN_FILENO)); CHECK_SYSCALL(dup2(fromproc_pipe_fd[1], STDOUT_FILENO)); CHECK_SYSCALL(close(toproc_pipe_fd[0])); CHECK_SYSCALL(close(fromproc_pipe_fd[1])); CHECK_SYSCALL(close(toproc_pipe_fd[1])); CHECK_SYSCALL(close(fromproc_pipe_fd[0])); char *const argv[] = {executable, NULL}; CHECK_SYSCALL(execv(executable, argv)); // Never returns. } } /* Invoking of tests **********************************************************/ void ReportSuccess() { successes++; } void ReportFailure(const char *fmt, ...) { va_list args; va_start(args, fmt); vfprintf(stderr, fmt, args); va_end(args); failures++; } void CheckedWrite(int fd, const void *buf, size_t len) { if (write(fd, buf, len) != len) { GOOGLE_LOG(FATAL) << "Error writing to test program: " << strerror(errno); } } void CheckedRead(int fd, void *buf, size_t len) { size_t ofs = 0; while (len > 0) { ssize_t bytes_read = read(fd, (char*)buf + ofs, len); if (bytes_read == 0) { GOOGLE_LOG(FATAL) << "Unexpected EOF from test program"; } else if (bytes_read < 0) { GOOGLE_LOG(FATAL) << "Error reading from test program: " << strerror(errno); } len -= bytes_read; ofs += bytes_read; } } void RunTest(const ConformanceRequest& request, ConformanceResponse* response) { string serialized; request.SerializeToString(&serialized); uint32_t len = serialized.size(); CheckedWrite(write_fd, &len, sizeof(uint32_t)); CheckedWrite(write_fd, serialized.c_str(), serialized.size()); CheckedRead(read_fd, &len, sizeof(uint32_t)); serialized.resize(len); CheckedRead(read_fd, (void*)serialized.c_str(), len); if (!response->ParseFromString(serialized)) { GOOGLE_LOG(FATAL) << "Could not parse response proto from tested process."; } if (verbose) { fprintf(stderr, "conformance_test: request=%s, response=%s\n", request.ShortDebugString().c_str(), response->ShortDebugString().c_str()); } } void DoExpectParseFailureForProto(const string& proto, int line) { ConformanceRequest request; ConformanceResponse response; request.set_protobuf_payload(proto); // We don't expect output, but if the program erroneously accepts the protobuf // we let it send its response as this. We must not leave it unspecified. request.set_requested_output(ConformanceRequest::PROTOBUF); RunTest(request, &response); if (response.result_case() == ConformanceResponse::kParseError) { ReportSuccess(); } else { ReportFailure("Should have failed, but didn't. Line: %d, Request: %s, " "response: %s\n", line, request.ShortDebugString().c_str(), response.ShortDebugString().c_str()); } } // Expect that this precise protobuf will cause a parse error. #define ExpectParseFailureForProto(proto) DoExpectParseFailureForProto(proto, __LINE__) // Expect that this protobuf will cause a parse error, even if it is followed // by valid protobuf data. We can try running this twice: once with this // data verbatim and once with this data followed by some valid data. // // TODO(haberman): implement the second of these. #define ExpectHardParseFailureForProto(proto) DoExpectParseFailureForProto(proto, __LINE__) /* Routines for building arbitrary protos *************************************/ // We would use CodedOutputStream except that we want more freedom to build // arbitrary protos (even invalid ones). const string empty; string cat(const string& a, const string& b, const string& c = empty, const string& d = empty, const string& e = empty, const string& f = empty, const string& g = empty, const string& h = empty, const string& i = empty, const string& j = empty, const string& k = empty, const string& l = empty) { string ret; ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() + g.size() + h.size() + i.size() + j.size() + k.size() + l.size()); ret.append(a); ret.append(b); ret.append(c); ret.append(d); ret.append(e); ret.append(f); ret.append(g); ret.append(h); ret.append(i); ret.append(j); ret.append(k); ret.append(l); return ret; } // The maximum number of bytes that it takes to encode a 64-bit varint. #define VARINT_MAX_LEN 10 size_t vencode64(uint64_t val, char *buf) { if (val == 0) { buf[0] = 0; return 1; } size_t i = 0; while (val) { uint8_t byte = val & 0x7fU; val >>= 7; if (val) byte |= 0x80U; buf[i++] = byte; } return i; } string varint(uint64_t x) { char buf[VARINT_MAX_LEN]; size_t len = vencode64(x, buf); return string(buf, len); } // TODO: proper byte-swapping for big-endian machines. string fixed32(void *data) { return string(static_cast(data), 4); } string fixed64(void *data) { return string(static_cast(data), 8); } string delim(const string& buf) { return cat(varint(buf.size()), buf); } string uint32(uint32_t u32) { return fixed32(&u32); } string uint64(uint64_t u64) { return fixed64(&u64); } string flt(float f) { return fixed32(&f); } string dbl(double d) { return fixed64(&d); } string zz32(int32_t x) { return varint(WireFormatLite::ZigZagEncode32(x)); } string zz64(int64_t x) { return varint(WireFormatLite::ZigZagEncode64(x)); } string tag(uint32_t fieldnum, char wire_type) { return varint((fieldnum << 3) | wire_type); } string submsg(uint32_t fn, const string& buf) { return cat( tag(fn, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), delim(buf) ); } #define UNKNOWN_FIELD 666 uint32_t GetFieldNumberForType(WireFormatLite::FieldType type, bool repeated) { const Descriptor* d = TestAllTypes().GetDescriptor(); for (int i = 0; i < d->field_count(); i++) { const FieldDescriptor* f = d->field(i); if (static_cast(f->type()) == type && f->is_repeated() == repeated) { return f->number(); } } GOOGLE_LOG(FATAL) << "Couldn't find field with type " << (int)type; return 0; } void TestPrematureEOFForType(WireFormatLite::FieldType type) { // Incomplete values for each wire type. static const string incompletes[6] = { string("\x80"), // VARINT string("abcdefg"), // 64BIT string("\x80"), // DELIMITED (partial length) string(), // START_GROUP (no value required) string(), // END_GROUP (no value required) string("abc") // 32BIT }; uint32_t fieldnum = GetFieldNumberForType(type, false); uint32_t rep_fieldnum = GetFieldNumberForType(type, true); WireFormatLite::WireType wire_type = WireFormatLite::WireTypeForFieldType(type); const string& incomplete = incompletes[wire_type]; // EOF before a known non-repeated value. ExpectParseFailureForProto(tag(fieldnum, wire_type)); // EOF before a known repeated value. ExpectParseFailureForProto(tag(rep_fieldnum, wire_type)); // EOF before an unknown value. ExpectParseFailureForProto(tag(UNKNOWN_FIELD, wire_type)); // EOF inside a known non-repeated value. ExpectParseFailureForProto( cat( tag(fieldnum, wire_type), incomplete )); // EOF inside a known repeated value. ExpectParseFailureForProto( cat( tag(rep_fieldnum, wire_type), incomplete )); // EOF inside an unknown value. ExpectParseFailureForProto( cat( tag(UNKNOWN_FIELD, wire_type), incomplete )); if (wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED) { // EOF in the middle of delimited data for known non-repeated value. ExpectParseFailureForProto( cat( tag(fieldnum, wire_type), varint(1) )); // EOF in the middle of delimited data for known repeated value. ExpectParseFailureForProto( cat( tag(rep_fieldnum, wire_type), varint(1) )); // EOF in the middle of delimited data for unknown value. ExpectParseFailureForProto( cat( tag(UNKNOWN_FIELD, wire_type), varint(1) )); if (type == WireFormatLite::TYPE_MESSAGE) { // Submessage ends in the middle of a value. string incomplete_submsg = cat( tag(WireFormatLite::TYPE_INT32, WireFormatLite::WIRETYPE_VARINT), incompletes[WireFormatLite::WIRETYPE_VARINT] ); ExpectHardParseFailureForProto( cat( tag(fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), varint(incomplete_submsg.size()), incomplete_submsg )); } } else if (type != WireFormatLite::TYPE_GROUP) { // Non-delimited, non-group: eligible for packing. // Packed region ends in the middle of a value. ExpectHardParseFailureForProto( cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), varint(incomplete.size()), incomplete )); // EOF in the middle of packed region. ExpectParseFailureForProto( cat( tag(rep_fieldnum, WireFormatLite::WIRETYPE_LENGTH_DELIMITED), varint(1) )); } } int main(int argc, char *argv[]) { if (argc < 2) { fprintf(stderr, "Usage: conformance_test \n"); exit(1); } SpawnTestProgram(argv[1]); for (int i = 1; i <= FieldDescriptor::MAX_TYPE; i++) { TestPrematureEOFForType(static_cast(i)); } fprintf(stderr, "conformance_test: completed %d tests for %s, %d successes, " "%d failures.\n", successes + failures, argv[1], successes, failures); }