(********** This file is copied from Isabelle2011. It has been beautified with Tokens -> Replace Shortcuts **********) (* Title: HOL/ex/Tarski.thy Author: Florian Kammüller, Cambridge University Computer Laboratory *) header {* The Full Theorem of Tarski *} theory Tarski imports Main "~~/src/HOL/Library/FuncSet" begin text {* Minimal version of lattice theory plus the full theorem of Tarski: The fixedpoints of a complete lattice themselves form a complete lattice. Illustrates first-class theories, using the Sigma representation of structures. Tidied and converted to Isar by lcp. *} record 'a potype = pset :: "'a set" order :: "('a * 'a) set" definition monotone :: "['a \ 'a, 'a set, ('a *'a)set] \ bool" where "monotone f A r = (\x\A. \y\A. (x, y): r \ ((f x), (f y)) : r)" definition least :: "['a \ bool, 'a potype] \ 'a" where "least P po = (SOME x. x: pset po & P x & (\y \ pset po. P y \ (x,y): order po))" definition greatest :: "['a \ bool, 'a potype] \ 'a" where "greatest P po = (SOME x. x: pset po & P x & (\y \ pset po. P y \ (y,x): order po))" definition lub :: "['a set, 'a potype] \ 'a" where "lub S po = least (%x. \y\S. (y,x): order po) po" definition glb :: "['a set, 'a potype] \ 'a" where "glb S po = greatest (%x. \y\S. (x,y): order po) po" definition isLub :: "['a set, 'a potype, 'a] \ bool" where "isLub S po = (%L. (L: pset po & (\y\S. (y,L): order po) & (\z\pset po. (\y\S. (y,z): order po) \ (L,z): order po)))" definition isGlb :: "['a set, 'a potype, 'a] \ bool" where "isGlb S po = (%G. (G: pset po & (\y\S. (G,y): order po) & (\z \ pset po. (\y\S. (z,y): order po) \ (z,G): order po)))" definition "fix" :: "[('a \ 'a), 'a set] \ 'a set" where "fix f A = {x. x: A & f x = x}" definition interval :: "[('a*'a) set,'a, 'a ] \ 'a set" where "interval r a b = {x. (a,x): r & (x,b): r}" definition Bot :: "'a potype \ 'a" where "Bot po = least (%x. True) po" definition Top :: "'a potype \ 'a" where "Top po = greatest (%x. True) po" definition PartialOrder :: "('a potype) set" where "PartialOrder = {P. refl_on (pset P) (order P) & antisym (order P) & trans (order P)}" definition CompleteLattice :: "('a potype) set" where "CompleteLattice = {cl. cl: PartialOrder & (\S. S \ pset cl \ (\L. isLub S cl L)) & (\S. S \ pset cl \ (\G. isGlb S cl G))}" definition CLF_set :: "('a potype * ('a \ 'a)) set" where "CLF_set = (SIGMA cl: CompleteLattice. {f. f: pset cl \ pset cl & monotone f (pset cl) (order cl)})" definition induced :: "['a set, ('a * 'a) set] \ ('a *'a)set" where "induced A r = {(a,b). a : A & b: A & (a,b): r}" definition sublattice :: "('a potype * 'a set)set" where "sublattice = (SIGMA cl: CompleteLattice. {S. S \ pset cl & \ pset = S, order = induced S (order cl) \: CompleteLattice})" abbreviation sublat :: "['a set, 'a potype] \ bool" ("_ \= _" [51,50]50) where "S \= cl \ S : sublattice `` {cl}" definition dual :: "'a potype \ 'a potype" where "dual po = \ pset = pset po, order = converse (order po) \" locale S = fixes cl :: "'a potype" and A :: "'a set" and r :: "('a * 'a) set" defines A_def: "A \ pset cl" and r_def: "r \ order cl" locale PO = S + assumes cl_po: "cl : PartialOrder" locale CL = S + assumes cl_co: "cl : CompleteLattice" sublocale CL < PO apply (simp_all add: A_def r_def) apply unfold_locales using cl_co unfolding CompleteLattice_def by auto locale CLF = S + fixes f :: "'a \ 'a" and P :: "'a set" assumes f_cl: "(cl,f) : CLF_set" (*was the equivalent "f : CLF_set``{cl}"*) defines P_def: "P \ fix f A" sublocale CLF < CL apply (simp_all add: A_def r_def) apply unfold_locales using f_cl unfolding CLF_set_def by auto locale Tarski = CLF + fixes Y :: "'a set" and intY1 :: "'a set" and v :: "'a" assumes Y_ss: "Y \ P" defines intY1_def: "intY1 \ interval r (lub Y cl) (Top cl)" and v_def: "v \ glb {x. ((%x: intY1. f x) x, x): induced intY1 r & x: intY1} \ pset=intY1, order=induced intY1 r\" subsection {* Partial Order *} lemma (in PO) dual: "PO (dual cl)" apply unfold_locales using cl_po unfolding PartialOrder_def dual_def by auto lemma (in PO) PO_imp_refl_on [simp]: "refl_on A r" apply (insert cl_po) apply (simp add: PartialOrder_def A_def r_def) done lemma (in PO) PO_imp_sym [simp]: "antisym r" apply (insert cl_po) apply (simp add: PartialOrder_def r_def) done lemma (in PO) PO_imp_trans [simp]: "trans r" apply (insert cl_po) apply (simp add: PartialOrder_def r_def) done lemma (in PO) reflE: "x \ A \ (x, x) \ r" apply (insert cl_po) apply (simp add: PartialOrder_def refl_on_def A_def r_def) done lemma (in PO) antisymE: "\ (a, b) \ r; (b, a) \ r \ \ a = b" apply (insert cl_po) apply (simp add: PartialOrder_def antisym_def r_def) done lemma (in PO) transE: "\ (a, b) \ r; (b, c) \ r\ \ (a,c) \ r" apply (insert cl_po) apply (simp add: PartialOrder_def r_def) apply (unfold trans_def, fast) done lemma (in PO) monotoneE: "\ monotone f A r; x \ A; y \ A; (x, y) \ r \ \ (f x, f y) \ r" by (simp add: monotone_def) lemma (in PO) po_subset_po: "S \ A \ \ pset = S, order = induced S r \ \ PartialOrder" apply (simp (no_asm) add: PartialOrder_def) apply auto -- {* refl *} apply (simp add: refl_on_def induced_def) apply (blast intro: reflE) -- {* antisym *} apply (simp add: antisym_def induced_def) apply (blast intro: antisymE) -- {* trans *} apply (simp add: trans_def induced_def) apply (blast intro: transE) done lemma (in PO) indE: "\ (x, y) \ induced S r; S \ A \ \ (x, y) \ r" by (simp add: add: induced_def) lemma (in PO) indI: "\ (x, y) \ r; x \ S; y \ S \ \ (x, y) \ induced S r" by (simp add: add: induced_def) lemma (in CL) CL_imp_ex_isLub: "S \ A \ \L. isLub S cl L" apply (insert cl_co) apply (simp add: CompleteLattice_def A_def) done declare (in CL) cl_co [simp] lemma isLub_lub: "(\L. isLub S cl L) = isLub S cl (lub S cl)" by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) lemma isGlb_glb: "(\G. isGlb S cl G) = isGlb S cl (glb S cl)" by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" by (simp add: isLub_def isGlb_def dual_def converse_def) lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" by (simp add: isLub_def isGlb_def dual_def converse_def) lemma (in PO) dualPO: "dual cl \ PartialOrder" apply (insert cl_po) apply (simp add: PartialOrder_def dual_def refl_on_converse trans_converse antisym_converse) done lemma Rdual: "\S. (S \ A \( \L. isLub S \ pset = A, order = r\ L)) \ \S. (S \ A \ (\G. isGlb S \ pset = A, order = r\ G))" apply safe apply (rule_tac x = "lub {y. y \ A & (\k \ S. (y, k) \ r)} \pset = A, order = r\ " in exI) apply (drule_tac x = "{y. y \ A & (\k \ S. (y,k) \ r) }" in spec) apply (drule mp, fast) apply (simp add: isLub_lub isGlb_def) apply (simp add: isLub_def, blast) done lemma lub_dual_glb: "lub S cl = glb S (dual cl)" by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) lemma glb_dual_lub: "glb S cl = lub S (dual cl)" by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) lemma CL_subset_PO: "CompleteLattice \ PartialOrder" by (simp add: PartialOrder_def CompleteLattice_def, fast) lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] (*declare CL_imp_PO [THEN PO.PO_imp_refl, simp] declare CL_imp_PO [THEN PO.PO_imp_sym, simp] declare CL_imp_PO [THEN PO.PO_imp_trans, simp]*) lemma (in CL) CO_refl_on: "refl_on A r" by (rule PO_imp_refl_on) lemma (in CL) CO_antisym: "antisym r" by (rule PO_imp_sym) lemma (in CL) CO_trans: "trans r" by (rule PO_imp_trans) lemma CompleteLatticeI: "\ po \ PartialOrder; (\S. S \ pset po \ (\L. isLub S po L)); (\S. S \ pset po \ (\G. isGlb S po G))\ \ po \ CompleteLattice" apply (unfold CompleteLattice_def, blast) done lemma (in CL) CL_dualCL: "dual cl \ CompleteLattice" apply (insert cl_co) apply (simp add: CompleteLattice_def dual_def) apply (fold dual_def) apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] dualPO) done lemma (in PO) dualA_iff: "pset (dual cl) = pset cl" by (simp add: dual_def) lemma (in PO) dualr_iff: "((x, y) \ (order(dual cl))) = ((y, x) \ order cl)" by (simp add: dual_def) lemma (in PO) monotone_dual: "monotone f (pset cl) (order cl) \ monotone f (pset (dual cl)) (order(dual cl))" by (simp add: monotone_def dualA_iff dualr_iff) lemma (in PO) interval_dual: "\ x \ A; y \ A\ \ interval r x y = interval (order(dual cl)) y x" apply (simp add: interval_def dualr_iff) apply (fold r_def, fast) done lemma (in PO) trans: "(x, y) \ r \ (y, z) \ r \ (x, z) \ r" using cl_po apply (auto simp add: PartialOrder_def r_def) unfolding trans_def by blast lemma (in PO) interval_not_empty: "interval r a b \ {} \ (a, b) \ r" apply (simp add: interval_def) using trans by blast lemma (in PO) interval_imp_mem: "x \ interval r a b \ (a, x) \ r" by (simp add: interval_def) lemma (in PO) left_in_interval: "\ a \ A; b \ A; interval r a b \ {} \ \ a \ interval r a b" apply (simp (no_asm_simp) add: interval_def) apply (simp add: PO_imp_trans interval_not_empty) apply (simp add: reflE) done lemma (in PO) right_in_interval: "\ a \ A; b \ A; interval r a b \ {} \ \ b \ interval r a b" apply (simp (no_asm_simp) add: interval_def) apply (simp add: PO_imp_trans interval_not_empty) apply (simp add: reflE) done subsection {* sublattice *} lemma (in PO) sublattice_imp_CL: "S \= cl \ \ pset = S, order = induced S r \ \ CompleteLattice" by (simp add: sublattice_def CompleteLattice_def r_def) lemma (in CL) sublatticeI: "\ S \ A; \ pset = S, order = induced S r \ \ CompleteLattice \ \ S \= cl" by (simp add: sublattice_def A_def r_def) lemma (in CL) dual: "CL (dual cl)" apply unfold_locales using cl_co unfolding CompleteLattice_def apply (simp add: dualPO isGlb_dual_isLub [symmetric] isLub_dual_isGlb [symmetric] dualA_iff) done subsection {* lub *} lemma (in CL) lub_unique: "\ S \ A; isLub S cl x; isLub S cl L\ \ x = L" apply (rule antisymE) apply (auto simp add: isLub_def r_def) done lemma (in CL) lub_upper: "\S \ A; x \ S\ \ (x, lub S cl) \ r" apply (rule CL_imp_ex_isLub [THEN exE], assumption) apply (unfold lub_def least_def) apply (rule some_equality [THEN ssubst]) apply (simp add: isLub_def) apply (simp add: lub_unique A_def isLub_def) apply (simp add: isLub_def r_def) done lemma (in CL) lub_least: "\ S \ A; L \ A; \x \ S. (x,L) \ r \ \ (lub S cl, L) \ r" apply (rule CL_imp_ex_isLub [THEN exE], assumption) apply (unfold lub_def least_def) apply (rule_tac s=x in some_equality [THEN ssubst]) apply (simp add: isLub_def) apply (simp add: lub_unique A_def isLub_def) apply (simp add: isLub_def r_def A_def) done lemma (in CL) lub_in_lattice: "S \ A \ lub S cl \ A" apply (rule CL_imp_ex_isLub [THEN exE], assumption) apply (unfold lub_def least_def) apply (subst some_equality) apply (simp add: isLub_def) prefer 2 apply (simp add: isLub_def A_def) apply (simp add: lub_unique A_def isLub_def) done lemma (in CL) lubI: "\ S \ A; L \ A; \x \ S. (x,L) \ r; \z \ A. (\y \ S. (y,z) \ r) \ (L,z) \ r \ \ L = lub S cl" apply (rule lub_unique, assumption) apply (simp add: isLub_def A_def r_def) apply (unfold isLub_def) apply (rule conjI) apply (fold A_def r_def) apply (rule lub_in_lattice, assumption) apply (simp add: lub_upper lub_least) done lemma (in CL) lubIa: "\ S \ A; isLub S cl L \ \ L = lub S cl" by (simp add: lubI isLub_def A_def r_def) lemma (in CL) isLub_in_lattice: "isLub S cl L \ L \ A" by (simp add: isLub_def A_def) lemma (in CL) isLub_upper: "\isLub S cl L; y \ S\ \ (y, L) \ r" by (simp add: isLub_def r_def) lemma (in CL) isLub_least: "\ isLub S cl L; z \ A; \y \ S. (y, z) \ r\ \ (L, z) \ r" by (simp add: isLub_def A_def r_def) lemma (in CL) isLubI: "\ L \ A; \y \ S. (y, L) \ r; (\z \ A. (\y \ S. (y, z):r) \ (L, z) \ r)\ \ isLub S cl L" by (simp add: isLub_def A_def r_def) subsection {* glb *} lemma (in CL) glb_in_lattice: "S \ A \ glb S cl \ A" apply (subst glb_dual_lub) apply (simp add: A_def) apply (rule dualA_iff [THEN subst]) apply (rule CL.lub_in_lattice) apply (rule dual) apply (simp add: dualA_iff) done lemma (in CL) glb_lower: "\S \ A; x \ S\ \ (glb S cl, x) \ r" apply (subst glb_dual_lub) apply (simp add: r_def) apply (rule dualr_iff [THEN subst]) apply (rule CL.lub_upper) apply (rule dual) apply (simp add: dualA_iff A_def, assumption) done text {* Reduce the sublattice property by using substructural properties; abandoned see @{text "Tarski_4.ML"}. *} lemma (in CLF) [simp]: "f: pset cl \ pset cl & monotone f (pset cl) (order cl)" apply (insert f_cl) apply (simp add: CLF_set_def) done declare (in CLF) f_cl [simp] lemma (in CLF) f_in_funcset: "f \ A \ A" by (simp add: A_def) lemma (in CLF) monotone_f: "monotone f A r" by (simp add: A_def r_def) lemma (in CLF) CLF_dual: "(dual cl, f) \ CLF_set" apply (simp add: CLF_set_def CL_dualCL monotone_dual) apply (simp add: dualA_iff) done lemma (in CLF) dual: "CLF (dual cl) f" apply (rule CLF.intro) apply (rule CLF_dual) done subsection {* fixed points *} lemma fix_subset: "fix f A \ A" by (simp add: fix_def, fast) lemma fix_imp_eq: "x \ fix f A \ f x = x" by (simp add: fix_def) lemma fixf_subset: "\ A \ B; x \ fix (%y: A. f y) A \ \ x \ fix f B" by (simp add: fix_def, auto) subsection {* lemmas for Tarski, lub *} lemma (in CLF) lubH_le_flubH: "H = {x. (x, f x) \ r & x \ A} \ (lub H cl, f (lub H cl)) \ r" apply (rule lub_least, fast) apply (rule f_in_funcset [THEN funcset_mem]) apply (rule lub_in_lattice, fast) -- {* @{text "\x:H. (x, f (lub H r)) \ r"} *} apply (rule ballI) apply (rule transE) -- {* instantiates @{text "(x, ???z) \ order cl to (x, f x)"}, *} -- {* because of the def of @{text H} *} apply fast -- {* so it remains to show @{text "(f x, f (lub H cl)) \ r"} *} apply (rule_tac f = "f" in monotoneE) apply (rule monotone_f, fast) apply (rule lub_in_lattice, fast) apply (rule lub_upper, fast) apply assumption done lemma (in CLF) flubH_le_lubH: "\ H = {x. (x, f x) \ r & x \ A} \ \ (f (lub H cl), lub H cl) \ r" apply (rule lub_upper, fast) apply (rule_tac t = "H" in ssubst, assumption) apply (rule CollectI) apply (rule conjI) apply (rule_tac [2] f_in_funcset [THEN funcset_mem]) apply (rule_tac [2] lub_in_lattice) prefer 2 apply fast apply (rule_tac f = "f" in monotoneE) apply (rule monotone_f) apply (blast intro: lub_in_lattice) apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem]) apply (simp add: lubH_le_flubH) done lemma (in CLF) lubH_is_fixp: "H = {x. (x, f x) \ r & x \ A} \ lub H cl \ fix f A" apply (simp add: fix_def) apply (rule conjI) apply (rule lub_in_lattice, fast) apply (rule antisymE) apply (simp add: flubH_le_lubH) apply (simp add: lubH_le_flubH) done lemma (in CLF) fix_in_H: "\ H = {x. (x, f x) \ r & x \ A}; x \ P \ \ x \ H" by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl_on fix_subset [of f A, THEN subsetD]) lemma (in CLF) fixf_le_lubH: "H = {x. (x, f x) \ r & x \ A} \ \x \ fix f A. (x, lub H cl) \ r" apply (rule ballI) apply (rule lub_upper, fast) apply (rule fix_in_H) apply (simp_all add: P_def) done lemma (in CLF) lubH_least_fixf: "H = {x. (x, f x) \ r & x \ A} \ \L. (\y \ fix f A. (y,L) \ r) \ (lub H cl, L) \ r" apply (rule allI) apply (rule impI) apply (erule bspec) apply (rule lubH_is_fixp, assumption) done subsection {* Tarski fixpoint theorem 1, first part *} lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \ r & x \ A} cl" apply (rule sym) apply (simp add: P_def) apply (rule lubI) apply (rule fix_subset) apply (rule lub_in_lattice, fast) apply (simp add: fixf_le_lubH) apply (simp add: lubH_least_fixf) done lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \ r & x \ A} \ glb H cl \ P" -- {* Tarski for glb *} apply (simp add: glb_dual_lub P_def A_def r_def) apply (rule dualA_iff [THEN subst]) apply (rule CLF.lubH_is_fixp) apply (rule dual) apply (simp add: dualr_iff dualA_iff) done lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \ r & x \ A} cl" apply (simp add: glb_dual_lub P_def A_def r_def) apply (rule dualA_iff [THEN subst]) apply (simp add: CLF.T_thm_1_lub [of _ f, OF dual] dualPO CL_dualCL CLF_dual dualr_iff) done subsection {* interval *} lemma (in CLF) rel_imp_elem: "(x, y) \ r \ x \ A" apply (insert CO_refl_on) apply (simp add: refl_on_def, blast) done lemma (in CLF) interval_subset: "\ a \ A; b \ A \ \ interval r a b \ A" apply (simp add: interval_def) apply (blast intro: rel_imp_elem) done lemma (in CLF) intervalI: "\ (a, x) \ r; (x, b) \ r \ \ x \ interval r a b" by (simp add: interval_def) lemma (in CLF) interval_lemma1: "\ S \ interval r a b; x \ S \ \ (a, x) \ r" by (unfold interval_def, fast) lemma (in CLF) interval_lemma2: "\ S \ interval r a b; x \ S \ \ (x, b) \ r" by (unfold interval_def, fast) lemma (in CLF) a_less_lub: "\ S \ A; S \ {}; \x \ S. (a,x) \ r; \y \ S. (y, L) \ r \ \ (a,L) \ r" by (blast intro: transE) lemma (in CLF) glb_less_b: "\ S \ A; S \ {}; \x \ S. (x,b) \ r; \y \ S. (G, y) \ r \ \ (G,b) \ r" by (blast intro: transE) lemma (in CLF) S_intv_cl: "\ a \ A; b \ A; S \ interval r a b \\ S \ A" by (simp add: subset_trans [OF _ interval_subset]) lemma (in CLF) L_in_interval: "\ a \ A; b \ A; S \ interval r a b; S \ {}; isLub S cl L; interval r a b \ {} \ \ L \ interval r a b" apply (rule intervalI) apply (rule a_less_lub) prefer 2 apply assumption apply (simp add: S_intv_cl) apply (rule ballI) apply (simp add: interval_lemma1) apply (simp add: isLub_upper) -- {* @{text "(L, b) \ r"} *} apply (simp add: isLub_least interval_lemma2) done lemma (in CLF) G_in_interval: "\ a \ A; b \ A; interval r a b \ {}; S \ interval r a b; isGlb S cl G; S \ {} \ \ G \ interval r a b" apply (simp add: interval_dual) apply (simp add: CLF.L_in_interval [of _ f, OF dual] dualA_iff A_def isGlb_dual_isLub) done lemma (in CLF) intervalPO: "\ a \ A; b \ A; interval r a b \ {} \ \ \ pset = interval r a b, order = induced (interval r a b) r \ \ PartialOrder" apply (rule po_subset_po) apply (simp add: interval_subset) done lemma (in CLF) intv_CL_lub: "\ a \ A; b \ A; interval r a b \ {} \ \ \S. S \ interval r a b \ (\L. isLub S \ pset = interval r a b, order = induced (interval r a b) r \ L)" apply (intro strip) apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) prefer 2 apply assumption apply assumption apply (erule exE) -- {* define the lub for the interval as *} apply (rule_tac x = "if S = {} then a else L" in exI) apply (simp (no_asm_simp) add: isLub_def split del: split_if) apply (intro impI conjI) -- {* @{text "(if S = {} then a else L) \ interval r a b"} *} apply (simp add: CL_imp_PO L_in_interval) apply (simp add: left_in_interval) -- {* lub prop 1 *} apply (case_tac "S = {}") -- {* @{text "S = {}, y \ S = False \ everything"} *} apply fast -- {* @{text "S \ {}"} *} apply simp -- {* @{text "\y:S. (y, L) \ induced (interval r a b) r"} *} apply (rule ballI) apply (simp add: induced_def L_in_interval) apply (rule conjI) apply (rule subsetD) apply (simp add: S_intv_cl, assumption) apply (simp add: isLub_upper) -- {* @{text "\z:interval r a b. (\y:S. (y, z) \ induced (interval r a b) r \ (if S = {} then a else L, z) \ induced (interval r a b) r"} *} apply (rule ballI) apply (rule impI) apply (case_tac "S = {}") -- {* @{text "S = {}"} *} apply simp apply (simp add: induced_def interval_def) apply (rule conjI) apply (rule reflE, assumption) apply (rule interval_not_empty) apply (simp add: interval_def) -- {* @{text "S \ {}"} *} apply simp apply (simp add: induced_def L_in_interval) apply (rule isLub_least, assumption) apply (rule subsetD) prefer 2 apply assumption apply (simp add: S_intv_cl, fast) done lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual] lemma (in CLF) interval_is_sublattice: "\ a \ A; b \ A; interval r a b \ {} \ \ interval r a b \= cl" apply (rule sublatticeI) apply (simp add: interval_subset) apply (rule CompleteLatticeI) apply (simp add: intervalPO) apply (simp add: intv_CL_lub) apply (simp add: intv_CL_glb) done lemmas (in CLF) interv_is_compl_latt = interval_is_sublattice [THEN sublattice_imp_CL] subsection {* Top and Bottom *} lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)" by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)" by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) lemma (in CLF) Bot_in_lattice: "Bot cl \ A" apply (simp add: Bot_def least_def) apply (rule_tac a="glb A cl" in someI2) apply (simp_all add: glb_in_lattice glb_lower r_def [symmetric] A_def [symmetric]) done lemma (in CLF) Top_in_lattice: "Top cl \ A" apply (simp add: Top_dual_Bot A_def) apply (rule dualA_iff [THEN subst]) apply (rule CLF.Bot_in_lattice [OF dual]) done lemma (in CLF) Top_prop: "x \ A \ (x, Top cl) \ r" apply (simp add: Top_def greatest_def) apply (rule_tac a="lub A cl" in someI2) apply (rule someI2) apply (simp_all add: lub_in_lattice lub_upper r_def [symmetric] A_def [symmetric]) done lemma (in CLF) Bot_prop: "x \ A \ (Bot cl, x) \ r" apply (simp add: Bot_dual_Top r_def) apply (rule dualr_iff [THEN subst]) apply (rule CLF.Top_prop [OF dual]) apply (simp add: dualA_iff A_def) done lemma (in CLF) Top_intv_not_empty: "x \ A \ interval r x (Top cl) \ {}" apply (rule notI) apply (drule_tac a = "Top cl" in equals0D) apply (simp add: interval_def) apply (simp add: refl_on_def Top_in_lattice Top_prop) done lemma (in CLF) Bot_intv_not_empty: "x \ A \ interval r (Bot cl) x \ {}" apply (simp add: Bot_dual_Top) apply (subst interval_dual) prefer 2 apply assumption apply (simp add: A_def) apply (rule dualA_iff [THEN subst]) apply (rule CLF.Top_in_lattice [OF dual]) apply (rule CLF.Top_intv_not_empty [OF dual]) apply (simp add: dualA_iff A_def) done subsection {* fixed points form a partial order *} lemma (in CLF) fixf_po: "\ pset = P, order = induced P r\ \ PartialOrder" by (simp add: P_def fix_subset po_subset_po) lemma (in Tarski) Y_subset_A: "Y \ A" apply (rule subset_trans [OF _ fix_subset]) apply (rule Y_ss [simplified P_def]) done lemma (in Tarski) lubY_in_A: "lub Y cl \ A" by (rule Y_subset_A [THEN lub_in_lattice]) lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \ r" apply (rule lub_least) apply (rule Y_subset_A) apply (rule f_in_funcset [THEN funcset_mem]) apply (rule lubY_in_A) -- {* @{text "Y \ P \ f x = x"} *} apply (rule ballI) apply (rule_tac t = "x" in fix_imp_eq [THEN subst]) apply (erule Y_ss [simplified P_def, THEN subsetD]) -- {* @{text "reduce (f x, f (lub Y cl)) \ r to (x, lub Y cl) \ r"} by monotonicity *} apply (rule_tac f = "f" in monotoneE) apply (rule monotone_f) apply (simp add: Y_subset_A [THEN subsetD]) apply (rule lubY_in_A) apply (simp add: lub_upper Y_subset_A) done lemma (in Tarski) intY1_subset: "intY1 \ A" apply (unfold intY1_def) apply (rule interval_subset) apply (rule lubY_in_A) apply (rule Top_in_lattice) done lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD] lemma (in Tarski) intY1_f_closed: "x \ intY1 \ f x \ intY1" apply (simp add: intY1_def interval_def) apply (rule conjI) apply (rule transE) apply (rule lubY_le_flubY) -- {* @{text "(f (lub Y cl), f x) \ r"} *} apply (rule_tac f=f in monotoneE) apply (rule monotone_f) apply (rule lubY_in_A) apply (simp add: intY1_def interval_def intY1_elem) apply (simp add: intY1_def interval_def) -- {* @{text "(f x, Top cl) \ r"} *} apply (rule Top_prop) apply (rule f_in_funcset [THEN funcset_mem]) apply (simp add: intY1_def interval_def intY1_elem) done lemma (in Tarski) intY1_mono: "monotone (%x: intY1. f x) intY1 (induced intY1 r)" apply (auto simp add: monotone_def induced_def intY1_f_closed) apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) done lemma (in Tarski) intY1_is_cl: "\ pset = intY1, order = induced intY1 r \ \ CompleteLattice" apply (unfold intY1_def) apply (rule interv_is_compl_latt) apply (rule lubY_in_A) apply (rule Top_in_lattice) apply (rule Top_intv_not_empty) apply (rule lubY_in_A) done lemma (in Tarski) v_in_P: "v \ P" apply (unfold P_def) apply (rule_tac A = "intY1" in fixf_subset) apply (rule intY1_subset) unfolding v_def apply (rule CLF.glbH_is_fixp [OF CLF.intro, unfolded CLF_set_def, of "\pset = intY1, order = induced intY1 r\", simplified]) apply auto apply (rule intY1_is_cl) apply (erule intY1_f_closed) apply (rule intY1_mono) done lemma (in Tarski) z_in_interval: "\ z \ P; \y\Y. (y, z) \ induced P r \ \ z \ intY1" apply (unfold intY1_def P_def) apply (rule intervalI) prefer 2 apply (erule fix_subset [THEN subsetD, THEN Top_prop]) apply (rule lub_least) apply (rule Y_subset_A) apply (fast elim!: fix_subset [THEN subsetD]) apply (simp add: induced_def) done lemma (in Tarski) f'z_in_int_rel: "\ z \ P; \y\Y. (y, z) \ induced P r \ \ ((%x: intY1. f x) z, z) \ induced intY1 r" apply (simp add: induced_def intY1_f_closed z_in_interval P_def) apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD] reflE) done lemma (in Tarski) tarski_full_lemma: "\L. isLub Y \ pset = P, order = induced P r \ L" apply (rule_tac x = "v" in exI) apply (simp add: isLub_def) -- {* @{text "v \ P"} *} apply (simp add: v_in_P) apply (rule conjI) -- {* @{text v} is lub *} -- {* @{text "1. \y:Y. (y, v) \ induced P r"} *} apply (rule ballI) apply (simp add: induced_def subsetD v_in_P) apply (rule conjI) apply (erule Y_ss [THEN subsetD]) apply (rule_tac b = "lub Y cl" in transE) apply (rule lub_upper) apply (rule Y_subset_A, assumption) apply (rule_tac b = "Top cl" in interval_imp_mem) apply (simp add: v_def) apply (fold intY1_def) apply (rule CL.glb_in_lattice [OF CL.intro [OF intY1_is_cl], simplified]) apply auto apply (rule indI) prefer 3 apply assumption prefer 2 apply (simp add: v_in_P) apply (unfold v_def) apply (rule indE) apply (rule_tac [2] intY1_subset) apply (rule CL.glb_lower [OF CL.intro [OF intY1_is_cl], simplified]) apply (simp add: CL_imp_PO intY1_is_cl) apply force apply (simp add: induced_def intY1_f_closed z_in_interval) apply (simp add: P_def fix_imp_eq [of _ f A] reflE fix_subset [of f A, THEN subsetD]) done lemma CompleteLatticeI_simp: "\ \ pset = A, order = r \ \ PartialOrder; \S. S \ A \ (\L. isLub S \ pset = A, order = r \ L) \ \ \ pset = A, order = r \ \ CompleteLattice" by (simp add: CompleteLatticeI Rdual) theorem (in CLF) Tarski_full: "\ pset = P, order = induced P r\ \ CompleteLattice" apply (rule CompleteLatticeI_simp) apply (rule fixf_po, clarify) apply (simp add: P_def A_def r_def) apply (rule Tarski.tarski_full_lemma [OF Tarski.intro [OF _ Tarski_axioms.intro]]) proof - show "CLF cl f" .. qed end