(********** This file is from the Isabelle distribution **********) (* Title: HOL/ex/Tarski.thy ID: Id: Tarski.thy,v 1.10 2002/09/26 08:51:32 paulson Exp Author: Florian Kammüller, Cambridge University Computer Laboratory *) header {* The Full Theorem of Tarski *} theory Tarski imports Main FuncSet begin text {* Minimal version of lattice theory plus the full theorem of Tarski: The fixedpoints of a complete lattice themselves form a complete lattice. Illustrates first-class theories, using the Sigma representation of structures. Tidied and converted to Isar by lcp. *} record 'a potype = pset :: "'a set" order :: "('a * 'a) set" constdefs monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool" "monotone f A r == \x\A. \y\A. (x, y): r --> ((f x), (f y)) : r" least :: "['a => bool, 'a potype] => 'a" "least P po == @ x. x: pset po & P x & (\y \ pset po. P y --> (x,y): order po)" greatest :: "['a => bool, 'a potype] => 'a" "greatest P po == @ x. x: pset po & P x & (\y \ pset po. P y --> (y,x): order po)" lub :: "['a set, 'a potype] => 'a" "lub S po == least (%x. \y\S. (y,x): order po) po" glb :: "['a set, 'a potype] => 'a" "glb S po == greatest (%x. \y\S. (x,y): order po) po" isLub :: "['a set, 'a potype, 'a] => bool" "isLub S po == %L. (L: pset po & (\y\S. (y,L): order po) & (\z\pset po. (\y\S. (y,z): order po) --> (L,z): order po))" isGlb :: "['a set, 'a potype, 'a] => bool" "isGlb S po == %G. (G: pset po & (\y\S. (G,y): order po) & (\z \ pset po. (\y\S. (z,y): order po) --> (z,G): order po))" "fix" :: "[('a => 'a), 'a set] => 'a set" "fix f A == {x. x: A & f x = x}" interval :: "[('a*'a) set,'a, 'a ] => 'a set" "interval r a b == {x. (a,x): r & (x,b): r}" constdefs Bot :: "'a potype => 'a" "Bot po == least (%x. True) po" Top :: "'a potype => 'a" "Top po == greatest (%x. True) po" PartialOrder :: "('a potype) set" "PartialOrder == {P. refl (pset P) (order P) & antisym (order P) & trans (order P)}" CompleteLattice :: "('a potype) set" "CompleteLattice == {cl. cl: PartialOrder & (\S. S <= pset cl --> (\L. isLub S cl L)) & (\S. S <= pset cl --> (\G. isGlb S cl G))}" CLF :: "('a potype * ('a => 'a)) set" "CLF == SIGMA cl: CompleteLattice. {f. f: pset cl -> pset cl & monotone f (pset cl) (order cl)}" induced :: "['a set, ('a * 'a) set] => ('a *'a)set" "induced A r == {(a,b). a : A & b: A & (a,b): r}" constdefs sublattice :: "('a potype * 'a set)set" "sublattice == SIGMA cl: CompleteLattice. {S. S <= pset cl & (| pset = S, order = induced S (order cl) |): CompleteLattice }" syntax "@SL" :: "['a set, 'a potype] => bool" ("_ <<= _" [51,50]50) translations "S <<= cl" == "S : sublattice `` {cl}" constdefs dual :: "'a potype => 'a potype" "dual po == (| pset = pset po, order = converse (order po) |)" locale (open) PO = fixes cl :: "'a potype" and A :: "'a set" and r :: "('a * 'a) set" assumes cl_po: "cl : PartialOrder" defines A_def: "A == pset cl" and r_def: "r == order cl" locale (open) CL = PO + assumes cl_co: "cl : CompleteLattice" locale (open) CLF = CL + fixes f :: "'a => 'a" and P :: "'a set" assumes f_cl: "(cl,f) : CLF" (*was the equivalent "f : CLF``{cl}"*) defines P_def: "P == fix f A" locale (open) Tarski = CLF + fixes Y :: "'a set" and intY1 :: "'a set" and v :: "'a" assumes Y_ss: "Y <= P" defines intY1_def: "intY1 == interval r (lub Y cl) (Top cl)" and v_def: "v == glb {x. ((%x: intY1. f x) x, x): induced intY1 r & x: intY1} (| pset=intY1, order=induced intY1 r|)" subsubsection {* Partial Order *} lemma (in PO) PO_imp_refl: "refl A r" apply (insert cl_po) apply (simp add: PartialOrder_def A_def r_def) done lemma (in PO) PO_imp_sym: "antisym r" apply (insert cl_po) apply (simp add: PartialOrder_def A_def r_def) done lemma (in PO) PO_imp_trans: "trans r" apply (insert cl_po) apply (simp add: PartialOrder_def A_def r_def) done lemma (in PO) reflE: "[| refl A r; x \ A|] ==> (x, x) \ r" apply (insert cl_po) apply (simp add: PartialOrder_def refl_def) done lemma (in PO) antisymE: "[| antisym r; (a, b) \ r; (b, a) \ r |] ==> a = b" apply (insert cl_po) apply (simp add: PartialOrder_def antisym_def) done lemma (in PO) transE: "[| trans r; (a, b) \ r; (b, c) \ r|] ==> (a,c) \ r" apply (insert cl_po) apply (simp add: PartialOrder_def) apply (unfold trans_def, fast) done lemma (in PO) monotoneE: "[| monotone f A r; x \ A; y \ A; (x, y) \ r |] ==> (f x, f y) \ r" by (simp add: monotone_def) lemma (in PO) po_subset_po: "S <= A ==> (| pset = S, order = induced S r |) \ PartialOrder" apply (simp (no_asm) add: PartialOrder_def) apply auto -- {* refl *} apply (simp add: refl_def induced_def) apply (blast intro: PO_imp_refl [THEN reflE]) -- {* antisym *} apply (simp add: antisym_def induced_def) apply (blast intro: PO_imp_sym [THEN antisymE]) -- {* trans *} apply (simp add: trans_def induced_def) apply (blast intro: PO_imp_trans [THEN transE]) done lemma (in PO) indE: "[| (x, y) \ induced S r; S <= A |] ==> (x, y) \ r" by (simp add: add: induced_def) lemma (in PO) indI: "[| (x, y) \ r; x \ S; y \ S |] ==> (x, y) \ induced S r" by (simp add: add: induced_def) lemma (in CL) CL_imp_ex_isLub: "S <= A ==> \L. isLub S cl L" apply (insert cl_co) apply (simp add: CompleteLattice_def A_def) done declare (in CL) cl_co [simp] lemma isLub_lub: "(\L. isLub S cl L) = isLub S cl (lub S cl)" by (simp add: lub_def least_def isLub_def some_eq_ex [symmetric]) lemma isGlb_glb: "(\G. isGlb S cl G) = isGlb S cl (glb S cl)" by (simp add: glb_def greatest_def isGlb_def some_eq_ex [symmetric]) lemma isGlb_dual_isLub: "isGlb S cl = isLub S (dual cl)" by (simp add: isLub_def isGlb_def dual_def converse_def) lemma isLub_dual_isGlb: "isLub S cl = isGlb S (dual cl)" by (simp add: isLub_def isGlb_def dual_def converse_def) lemma (in PO) dualPO: "dual cl \ PartialOrder" apply (insert cl_po) apply (simp add: PartialOrder_def dual_def refl_converse trans_converse antisym_converse) done lemma Rdual: "\S. (S <= A -->( \L. isLub S (| pset = A, order = r|) L)) ==> \S. (S <= A --> (\G. isGlb S (| pset = A, order = r|) G))" apply safe apply (rule_tac x = "lub {y. y \ A & (\k \ S. (y, k) \ r)} (|pset = A, order = r|) " in exI) apply (drule_tac x = "{y. y \ A & (\k \ S. (y,k) \ r) }" in spec) apply (drule mp, fast) apply (simp add: isLub_lub isGlb_def) apply (simp add: isLub_def, blast) done lemma lub_dual_glb: "lub S cl = glb S (dual cl)" by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) lemma glb_dual_lub: "glb S cl = lub S (dual cl)" by (simp add: lub_def glb_def least_def greatest_def dual_def converse_def) lemma CL_subset_PO: "CompleteLattice <= PartialOrder" by (simp add: PartialOrder_def CompleteLattice_def, fast) lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] declare CL_imp_PO [THEN Tarski.PO_imp_refl, simp] declare CL_imp_PO [THEN Tarski.PO_imp_sym, simp] declare CL_imp_PO [THEN Tarski.PO_imp_trans, simp] lemma (in CL) CO_refl: "refl A r" by (rule PO_imp_refl) lemma (in CL) CO_antisym: "antisym r" by (rule PO_imp_sym) lemma (in CL) CO_trans: "trans r" by (rule PO_imp_trans) lemma CompleteLatticeI: "[| po \ PartialOrder; (\S. S <= pset po --> (\L. isLub S po L)); (\S. S <= pset po --> (\G. isGlb S po G))|] ==> po \ CompleteLattice" apply (unfold CompleteLattice_def, blast) done lemma (in CL) CL_dualCL: "dual cl \ CompleteLattice" apply (insert cl_co) apply (simp add: CompleteLattice_def dual_def) apply (fold dual_def) apply (simp add: isLub_dual_isGlb [symmetric] isGlb_dual_isLub [symmetric] dualPO) done lemma (in PO) dualA_iff: "pset (dual cl) = pset cl" by (simp add: dual_def) lemma (in PO) dualr_iff: "((x, y) \ (order(dual cl))) = ((y, x) \ order cl)" by (simp add: dual_def) lemma (in PO) monotone_dual: "monotone f (pset cl) (order cl) ==> monotone f (pset (dual cl)) (order(dual cl))" by (simp add: monotone_def dualA_iff dualr_iff) lemma (in PO) interval_dual: "[| x \ A; y \ A|] ==> interval r x y = interval (order(dual cl)) y x" apply (simp add: interval_def dualr_iff) apply (fold r_def, fast) done lemma (in PO) interval_not_empty: "[| trans r; interval r a b \ {} |] ==> (a, b) \ r" apply (simp add: interval_def) apply (unfold trans_def, blast) done lemma (in PO) interval_imp_mem: "x \ interval r a b ==> (a, x) \ r" by (simp add: interval_def) lemma (in PO) left_in_interval: "[| a \ A; b \ A; interval r a b \ {} |] ==> a \ interval r a b" apply (simp (no_asm_simp) add: interval_def) apply (simp add: PO_imp_trans interval_not_empty) apply (simp add: PO_imp_refl [THEN reflE]) done lemma (in PO) right_in_interval: "[| a \ A; b \ A; interval r a b \ {} |] ==> b \ interval r a b" apply (simp (no_asm_simp) add: interval_def) apply (simp add: PO_imp_trans interval_not_empty) apply (simp add: PO_imp_refl [THEN reflE]) done subsubsection {* sublattice *} lemma (in PO) sublattice_imp_CL: "S <<= cl ==> (| pset = S, order = induced S r |) \ CompleteLattice" by (simp add: sublattice_def CompleteLattice_def A_def r_def) lemma (in CL) sublatticeI: "[| S <= A; (| pset = S, order = induced S r |) \ CompleteLattice |] ==> S <<= cl" by (simp add: sublattice_def A_def r_def) subsubsection {* lub *} lemma (in CL) lub_unique: "[| S <= A; isLub S cl x; isLub S cl L|] ==> x = L" apply (rule antisymE) apply (rule CO_antisym) apply (auto simp add: isLub_def r_def) done lemma (in CL) lub_upper: "[|S <= A; x \ S|] ==> (x, lub S cl) \ r" apply (rule CL_imp_ex_isLub [THEN exE], assumption) apply (unfold lub_def least_def) apply (rule some_equality [THEN ssubst]) apply (simp add: isLub_def) apply (simp add: lub_unique A_def isLub_def) apply (simp add: isLub_def r_def) done lemma (in CL) lub_least: "[| S <= A; L \ A; \x \ S. (x,L) \ r |] ==> (lub S cl, L) \ r" apply (rule CL_imp_ex_isLub [THEN exE], assumption) apply (unfold lub_def least_def) apply (rule_tac s=x in some_equality [THEN ssubst]) apply (simp add: isLub_def) apply (simp add: lub_unique A_def isLub_def) apply (simp add: isLub_def r_def A_def) done lemma (in CL) lub_in_lattice: "S <= A ==> lub S cl \ A" apply (rule CL_imp_ex_isLub [THEN exE], assumption) apply (unfold lub_def least_def) apply (subst some_equality) apply (simp add: isLub_def) prefer 2 apply (simp add: isLub_def A_def) apply (simp add: lub_unique A_def isLub_def) done lemma (in CL) lubI: "[| S <= A; L \ A; \x \ S. (x,L) \ r; \z \ A. (\y \ S. (y,z) \ r) --> (L,z) \ r |] ==> L = lub S cl" apply (rule lub_unique, assumption) apply (simp add: isLub_def A_def r_def) apply (unfold isLub_def) apply (rule conjI) apply (fold A_def r_def) apply (rule lub_in_lattice, assumption) apply (simp add: lub_upper lub_least) done lemma (in CL) lubIa: "[| S <= A; isLub S cl L |] ==> L = lub S cl" by (simp add: lubI isLub_def A_def r_def) lemma (in CL) isLub_in_lattice: "isLub S cl L ==> L \ A" by (simp add: isLub_def A_def) lemma (in CL) isLub_upper: "[|isLub S cl L; y \ S|] ==> (y, L) \ r" by (simp add: isLub_def r_def) lemma (in CL) isLub_least: "[| isLub S cl L; z \ A; \y \ S. (y, z) \ r|] ==> (L, z) \ r" by (simp add: isLub_def A_def r_def) lemma (in CL) isLubI: "[| L \ A; \y \ S. (y, L) \ r; (\z \ A. (\y \ S. (y, z):r) --> (L, z) \ r)|] ==> isLub S cl L" by (simp add: isLub_def A_def r_def) subsubsection {* glb *} lemma (in CL) glb_in_lattice: "S <= A ==> glb S cl \ A" apply (subst glb_dual_lub) apply (simp add: A_def) apply (rule dualA_iff [THEN subst]) apply (rule Tarski.lub_in_lattice) apply (rule dualPO) apply (rule CL_dualCL) apply (simp add: dualA_iff) done lemma (in CL) glb_lower: "[|S <= A; x \ S|] ==> (glb S cl, x) \ r" apply (subst glb_dual_lub) apply (simp add: r_def) apply (rule dualr_iff [THEN subst]) apply (rule Tarski.lub_upper [rule_format]) apply (rule dualPO) apply (rule CL_dualCL) apply (simp add: dualA_iff A_def, assumption) done text {* Reduce the sublattice property by using substructural properties; abandoned see @{text "Tarski_4.ML"}. *} lemma (in CLF) [simp]: "f: pset cl -> pset cl & monotone f (pset cl) (order cl)" apply (insert f_cl) apply (simp add: CLF_def) done declare (in CLF) f_cl [simp] lemma (in CLF) f_in_funcset: "f \ A -> A" by (simp add: A_def) lemma (in CLF) monotone_f: "monotone f A r" by (simp add: A_def r_def) lemma (in CLF) CLF_dual: "(cl,f) \ CLF ==> (dual cl, f) \ CLF" apply (simp add: CLF_def CL_dualCL monotone_dual) apply (simp add: dualA_iff) done subsubsection {* fixed points *} lemma fix_subset: "fix f A <= A" by (simp add: fix_def, fast) lemma fix_imp_eq: "x \ fix f A ==> f x = x" by (simp add: fix_def) lemma fixf_subset: "[| A <= B; x \ fix (%y: A. f y) A |] ==> x \ fix f B" apply (simp add: fix_def, auto) done subsubsection {* lemmas for Tarski, lub *} lemma (in CLF) lubH_le_flubH: "H = {x. (x, f x) \ r & x \ A} ==> (lub H cl, f (lub H cl)) \ r" apply (rule lub_least, fast) apply (rule f_in_funcset [THEN funcset_mem]) apply (rule lub_in_lattice, fast) -- {* @{text "\x:H. (x, f (lub H r)) \ r"} *} apply (rule ballI) apply (rule transE) apply (rule CO_trans) -- {* instantiates @{text "(x, ???z) \ order cl to (x, f x)"}, *} -- {* because of the def of @{text H} *} apply fast -- {* so it remains to show @{text "(f x, f (lub H cl)) \ r"} *} apply (rule_tac f = "f" in monotoneE) apply (rule monotone_f, fast) apply (rule lub_in_lattice, fast) apply (rule lub_upper, fast) apply assumption done lemma (in CLF) flubH_le_lubH: "[| H = {x. (x, f x) \ r & x \ A} |] ==> (f (lub H cl), lub H cl) \ r" apply (rule lub_upper, fast) apply (rule_tac t = "H" in ssubst, assumption) apply (rule CollectI) apply (rule conjI) apply (rule_tac [2] f_in_funcset [THEN funcset_mem]) apply (rule_tac [2] lub_in_lattice) prefer 2 apply fast apply (rule_tac f = "f" in monotoneE) apply (rule monotone_f) apply (blast intro: lub_in_lattice) apply (blast intro: lub_in_lattice f_in_funcset [THEN funcset_mem]) apply (simp add: lubH_le_flubH) done lemma (in CLF) lubH_is_fixp: "H = {x. (x, f x) \ r & x \ A} ==> lub H cl \ fix f A" apply (simp add: fix_def) apply (rule conjI) apply (rule lub_in_lattice, fast) apply (rule antisymE) apply (rule CO_antisym) apply (simp add: flubH_le_lubH) apply (simp add: lubH_le_flubH) done lemma (in CLF) fix_in_H: "[| H = {x. (x, f x) \ r & x \ A}; x \ P |] ==> x \ H" by (simp add: P_def fix_imp_eq [of _ f A] reflE CO_refl fix_subset [of f A, THEN subsetD]) lemma (in CLF) fixf_le_lubH: "H = {x. (x, f x) \ r & x \ A} ==> \x \ fix f A. (x, lub H cl) \ r" apply (rule ballI) apply (rule lub_upper, fast) apply (rule fix_in_H) apply (simp_all add: P_def) done lemma (in CLF) lubH_least_fixf: "H = {x. (x, f x) \ r & x \ A} ==> \L. (\y \ fix f A. (y,L) \ r) --> (lub H cl, L) \ r" apply (rule allI) apply (rule impI) apply (erule bspec) apply (rule lubH_is_fixp, assumption) done subsubsection {* Tarski fixpoint theorem 1, first part *} lemma (in CLF) T_thm_1_lub: "lub P cl = lub {x. (x, f x) \ r & x \ A} cl" apply (rule sym) apply (simp add: P_def) apply (rule lubI) apply (rule fix_subset) apply (rule lub_in_lattice, fast) apply (simp add: fixf_le_lubH) apply (simp add: lubH_least_fixf) done lemma (in CLF) glbH_is_fixp: "H = {x. (f x, x) \ r & x \ A} ==> glb H cl \ P" -- {* Tarski for glb *} apply (simp add: glb_dual_lub P_def A_def r_def) apply (rule dualA_iff [THEN subst]) apply (rule Tarski.lubH_is_fixp) apply (rule dualPO) apply (rule CL_dualCL) apply (rule f_cl [THEN CLF_dual]) apply (simp add: dualr_iff dualA_iff) done lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \ r & x \ A} cl" apply (simp add: glb_dual_lub P_def A_def r_def) apply (rule dualA_iff [THEN subst]) apply (simp add: Tarski.T_thm_1_lub [of _ f, OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff) done subsubsection {* interval *} lemma (in CLF) rel_imp_elem: "(x, y) \ r ==> x \ A" apply (insert CO_refl) apply (simp add: refl_def, blast) done lemma (in CLF) interval_subset: "[| a \ A; b \ A |] ==> interval r a b <= A" apply (simp add: interval_def) apply (blast intro: rel_imp_elem) done lemma (in CLF) intervalI: "[| (a, x) \ r; (x, b) \ r |] ==> x \ interval r a b" apply (simp add: interval_def) done lemma (in CLF) interval_lemma1: "[| S <= interval r a b; x \ S |] ==> (a, x) \ r" apply (unfold interval_def, fast) done lemma (in CLF) interval_lemma2: "[| S <= interval r a b; x \ S |] ==> (x, b) \ r" apply (unfold interval_def, fast) done lemma (in CLF) a_less_lub: "[| S <= A; S \ {}; \x \ S. (a,x) \ r; \y \ S. (y, L) \ r |] ==> (a,L) \ r" by (blast intro: transE PO_imp_trans) lemma (in CLF) glb_less_b: "[| S <= A; S \ {}; \x \ S. (x,b) \ r; \y \ S. (G, y) \ r |] ==> (G,b) \ r" by (blast intro: transE PO_imp_trans) lemma (in CLF) S_intv_cl: "[| a \ A; b \ A; S <= interval r a b |]==> S <= A" by (simp add: subset_trans [OF _ interval_subset]) lemma (in CLF) L_in_interval: "[| a \ A; b \ A; S <= interval r a b; S \ {}; isLub S cl L; interval r a b \ {} |] ==> L \ interval r a b" apply (rule intervalI) apply (rule a_less_lub) prefer 2 apply assumption apply (simp add: S_intv_cl) apply (rule ballI) apply (simp add: interval_lemma1) apply (simp add: isLub_upper) -- {* @{text "(L, b) \ r"} *} apply (simp add: isLub_least interval_lemma2) done lemma (in CLF) G_in_interval: "[| a \ A; b \ A; interval r a b \ {}; S <= interval r a b; isGlb S cl G; S \ {} |] ==> G \ interval r a b" apply (simp add: interval_dual) apply (simp add: Tarski.L_in_interval [of _ f] dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub) done lemma (in CLF) intervalPO: "[| a \ A; b \ A; interval r a b \ {} |] ==> (| pset = interval r a b, order = induced (interval r a b) r |) \ PartialOrder" apply (rule po_subset_po) apply (simp add: interval_subset) done lemma (in CLF) intv_CL_lub: "[| a \ A; b \ A; interval r a b \ {} |] ==> \S. S <= interval r a b --> (\L. isLub S (| pset = interval r a b, order = induced (interval r a b) r |) L)" apply (intro strip) apply (frule S_intv_cl [THEN CL_imp_ex_isLub]) prefer 2 apply assumption apply assumption apply (erule exE) -- {* define the lub for the interval as *} apply (rule_tac x = "if S = {} then a else L" in exI) apply (simp (no_asm_simp) add: isLub_def split del: split_if) apply (intro impI conjI) -- {* @{text "(if S = {} then a else L) \ interval r a b"} *} apply (simp add: CL_imp_PO L_in_interval) apply (simp add: left_in_interval) -- {* lub prop 1 *} apply (case_tac "S = {}") -- {* @{text "S = {}, y \ S = False => everything"} *} apply fast -- {* @{text "S \ {}"} *} apply simp -- {* @{text "\y:S. (y, L) \ induced (interval r a b) r"} *} apply (rule ballI) apply (simp add: induced_def L_in_interval) apply (rule conjI) apply (rule subsetD) apply (simp add: S_intv_cl, assumption) apply (simp add: isLub_upper) -- {* @{text "\z:interval r a b. (\y:S. (y, z) \ induced (interval r a b) r \ (if S = {} then a else L, z) \ induced (interval r a b) r"} *} apply (rule ballI) apply (rule impI) apply (case_tac "S = {}") -- {* @{text "S = {}"} *} apply simp apply (simp add: induced_def interval_def) apply (rule conjI) apply (rule reflE) apply (rule CO_refl, assumption) apply (rule interval_not_empty) apply (rule CO_trans) apply (simp add: interval_def) -- {* @{text "S \ {}"} *} apply simp apply (simp add: induced_def L_in_interval) apply (rule isLub_least, assumption) apply (rule subsetD) prefer 2 apply assumption apply (simp add: S_intv_cl, fast) done lemmas (in CLF) intv_CL_glb = intv_CL_lub [THEN Rdual] lemma (in CLF) interval_is_sublattice: "[| a \ A; b \ A; interval r a b \ {} |] ==> interval r a b <<= cl" apply (rule sublatticeI) apply (simp add: interval_subset) apply (rule CompleteLatticeI) apply (simp add: intervalPO) apply (simp add: intv_CL_lub) apply (simp add: intv_CL_glb) done lemmas (in CLF) interv_is_compl_latt = interval_is_sublattice [THEN sublattice_imp_CL] subsubsection {* Top and Bottom *} lemma (in CLF) Top_dual_Bot: "Top cl = Bot (dual cl)" by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) lemma (in CLF) Bot_dual_Top: "Bot cl = Top (dual cl)" by (simp add: Top_def Bot_def least_def greatest_def dualA_iff dualr_iff) lemma (in CLF) Bot_in_lattice: "Bot cl \ A" apply (simp add: Bot_def least_def) apply (rule someI2) apply (fold A_def) apply (erule_tac [2] conjunct1) apply (rule conjI) apply (rule glb_in_lattice) apply (rule subset_refl) apply (fold r_def) apply (simp add: glb_lower) done lemma (in CLF) Top_in_lattice: "Top cl \ A" apply (simp add: Top_dual_Bot A_def) apply (rule dualA_iff [THEN subst]) apply (blast intro!: Tarski.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl) done lemma (in CLF) Top_prop: "x \ A ==> (x, Top cl) \ r" apply (simp add: Top_def greatest_def) apply (rule someI2) apply (fold r_def A_def) prefer 2 apply fast apply (intro conjI ballI) apply (rule_tac [2] lub_upper) apply (auto simp add: lub_in_lattice) done lemma (in CLF) Bot_prop: "x \ A ==> (Bot cl, x) \ r" apply (simp add: Bot_dual_Top r_def) apply (rule dualr_iff [THEN subst]) apply (simp add: Tarski.Top_prop [of _ f] dualA_iff A_def dualPO CL_dualCL CLF_dual) done lemma (in CLF) Top_intv_not_empty: "x \ A ==> interval r x (Top cl) \ {}" apply (rule notI) apply (drule_tac a = "Top cl" in equals0D) apply (simp add: interval_def) apply (simp add: refl_def Top_in_lattice Top_prop) done lemma (in CLF) Bot_intv_not_empty: "x \ A ==> interval r (Bot cl) x \ {}" apply (simp add: Bot_dual_Top) apply (subst interval_dual) prefer 2 apply assumption apply (simp add: A_def) apply (rule dualA_iff [THEN subst]) apply (blast intro!: Tarski.Top_in_lattice f_cl dualPO CL_dualCL CLF_dual) apply (simp add: Tarski.Top_intv_not_empty [of _ f] dualA_iff A_def dualPO CL_dualCL CLF_dual) done subsubsection {* fixed points form a partial order *} lemma (in CLF) fixf_po: "(| pset = P, order = induced P r|) \ PartialOrder" by (simp add: P_def fix_subset po_subset_po) lemma (in Tarski) Y_subset_A: "Y <= A" apply (rule subset_trans [OF _ fix_subset]) apply (rule Y_ss [simplified P_def]) done lemma (in Tarski) lubY_in_A: "lub Y cl \ A" by (simp add: Y_subset_A [THEN lub_in_lattice]) lemma (in Tarski) lubY_le_flubY: "(lub Y cl, f (lub Y cl)) \ r" apply (rule lub_least) apply (rule Y_subset_A) apply (rule f_in_funcset [THEN funcset_mem]) apply (rule lubY_in_A) -- {* @{text "Y <= P ==> f x = x"} *} apply (rule ballI) apply (rule_tac t = "x" in fix_imp_eq [THEN subst]) apply (erule Y_ss [simplified P_def, THEN subsetD]) -- {* @{text "reduce (f x, f (lub Y cl)) \ r to (x, lub Y cl) \ r"} by monotonicity *} apply (rule_tac f = "f" in monotoneE) apply (rule monotone_f) apply (simp add: Y_subset_A [THEN subsetD]) apply (rule lubY_in_A) apply (simp add: lub_upper Y_subset_A) done lemma (in Tarski) intY1_subset: "intY1 <= A" apply (unfold intY1_def) apply (rule interval_subset) apply (rule lubY_in_A) apply (rule Top_in_lattice) done lemmas (in Tarski) intY1_elem = intY1_subset [THEN subsetD] lemma (in Tarski) intY1_f_closed: "x \ intY1 \ f x \ intY1" apply (simp add: intY1_def interval_def) apply (rule conjI) apply (rule transE) apply (rule CO_trans) apply (rule lubY_le_flubY) -- {* @{text "(f (lub Y cl), f x) \ r"} *} apply (rule_tac f=f in monotoneE) apply (rule monotone_f) apply (rule lubY_in_A) apply (simp add: intY1_def interval_def intY1_elem) apply (simp add: intY1_def interval_def) -- {* @{text "(f x, Top cl) \ r"} *} apply (rule Top_prop) apply (rule f_in_funcset [THEN funcset_mem]) apply (simp add: intY1_def interval_def intY1_elem) done lemma (in Tarski) intY1_func: "(%x: intY1. f x) \ intY1 -> intY1" apply (rule restrictI) apply (erule intY1_f_closed) done lemma (in Tarski) intY1_mono: "monotone (%x: intY1. f x) intY1 (induced intY1 r)" apply (auto simp add: monotone_def induced_def intY1_f_closed) apply (blast intro: intY1_elem monotone_f [THEN monotoneE]) done lemma (in Tarski) intY1_is_cl: "(| pset = intY1, order = induced intY1 r |) \ CompleteLattice" apply (unfold intY1_def) apply (rule interv_is_compl_latt) apply (rule lubY_in_A) apply (rule Top_in_lattice) apply (rule Top_intv_not_empty) apply (rule lubY_in_A) done lemma (in Tarski) v_in_P: "v \ P" apply (unfold P_def) apply (rule_tac A = "intY1" in fixf_subset) apply (rule intY1_subset) apply (simp add: Tarski.glbH_is_fixp [OF _ intY1_is_cl, simplified] v_def CL_imp_PO intY1_is_cl CLF_def intY1_func intY1_mono) done lemma (in Tarski) z_in_interval: "[| z \ P; \y\Y. (y, z) \ induced P r |] ==> z \ intY1" apply (unfold intY1_def P_def) apply (rule intervalI) prefer 2 apply (erule fix_subset [THEN subsetD, THEN Top_prop]) apply (rule lub_least) apply (rule Y_subset_A) apply (fast elim!: fix_subset [THEN subsetD]) apply (simp add: induced_def) done lemma (in Tarski) f'z_in_int_rel: "[| z \ P; \y\Y. (y, z) \ induced P r |] ==> ((%x: intY1. f x) z, z) \ induced intY1 r" apply (simp add: induced_def intY1_f_closed z_in_interval P_def) apply (simp add: fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD] CO_refl [THEN reflE]) done lemma (in Tarski) tarski_full_lemma: "\L. isLub Y (| pset = P, order = induced P r |) L" apply (rule_tac x = "v" in exI) apply (simp add: isLub_def) -- {* @{text "v \ P"} *} apply (simp add: v_in_P) apply (rule conjI) -- {* @{text v} is lub *} -- {* @{text "1. \y:Y. (y, v) \ induced P r"} *} apply (rule ballI) apply (simp add: induced_def subsetD v_in_P) apply (rule conjI) apply (erule Y_ss [THEN subsetD]) apply (rule_tac b = "lub Y cl" in transE) apply (rule CO_trans) apply (rule lub_upper) apply (rule Y_subset_A, assumption) apply (rule_tac b = "Top cl" in interval_imp_mem) apply (simp add: v_def) apply (fold intY1_def) apply (rule Tarski.glb_in_lattice [OF _ intY1_is_cl, simplified]) apply (simp add: CL_imp_PO intY1_is_cl, force) -- {* @{text v} is LEAST ub *} apply clarify apply (rule indI) prefer 3 apply assumption prefer 2 apply (simp add: v_in_P) apply (unfold v_def) apply (rule indE) apply (rule_tac [2] intY1_subset) apply (rule Tarski.glb_lower [OF _ intY1_is_cl, simplified]) apply (simp add: CL_imp_PO intY1_is_cl) apply force apply (simp add: induced_def intY1_f_closed z_in_interval) apply (simp add: P_def fix_imp_eq [of _ f A] fix_subset [of f A, THEN subsetD] CO_refl [THEN reflE]) done lemma CompleteLatticeI_simp: "[| (| pset = A, order = r |) \ PartialOrder; \S. S <= A --> (\L. isLub S (| pset = A, order = r |) L) |] ==> (| pset = A, order = r |) \ CompleteLattice" by (simp add: CompleteLatticeI Rdual) theorem (in CLF) Tarski_full: "(| pset = P, order = induced P r|) \ CompleteLattice" apply (rule CompleteLatticeI_simp) apply (rule fixf_po, clarify) apply (simp add: P_def A_def r_def) apply (blast intro!: Tarski.tarski_full_lemma cl_po cl_co f_cl) done end